A Tectonic Model for Evolution of the Cascade Range
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Play Fairway Analysis of the Central Cascades Arc-Backarc Regime, Oregon: Preliminary Indications
GRC Transactions, Vol. 39, 2015 Play Fairway Analysis of the Central Cascades Arc-Backarc Regime, Oregon: Preliminary Indications Philip E. Wannamaker1, Andrew J. Meigs2, B. Mack Kennedy3, Joseph N. Moore1, Eric L. Sonnenthal3, Virginie Maris1, and John D. Trimble2 1University of Utah/EGI, Salt Lake City UT 2Oregon State University, College of Earth, Ocean and Atmospheric Sciences, Corvallis OR 3Lawrence Berkeley National Laboratory, Center for Isotope Geochemistry, Berkeley CA [email protected] Keywords Play Fairway Analysis, geothermal exploration, Cascades, andesitic volcanism, rift volcanism, magnetotellurics, LiDAR, geothermometry ABSTRACT We are assessing the geothermal potential including possible blind systems of the Central Cascades arc-backarc regime of central Oregon through a Play Fairway Analysis (PFA) of existing geoscientific data. A PFA working model is adopted where MT low resistivity upwellings suggesting geothermal fluids may coincide with dilatent geological structural settings and observed thermal fluids with deep high-temperature contributions. A challenge in the Central Cascades region is to make useful Play assessments in the face of sparse data coverage. Magnetotelluric (MT) data from the relatively dense EMSLAB transect combined with regional Earthscope stations have undergone 3D inversion using a new edge finite element formulation. Inversion shows that low resistivity upwellings are associated with known geothermal areas Breitenbush and Kahneeta Hot Springs in the Mount Jefferson area, as well as others with no surface manifestations. At Earthscope sampling scales, several low-resistivity lineaments in the deep crust project from the east to the Cascades, most prominently perhaps beneath Three Sisters. Structural geology analysis facilitated by growing LiDAR coverage is revealing numerous new faults confirming that seemingly regional NW-SE fault trends intersect N-S, Cascades graben- related faults in areas of known hot springs including Breitenbush. -
Oregon Historic Trails Report Book (1998)
i ,' o () (\ ô OnBcox HrsroRrc Tnans Rpponr ô o o o. o o o o (--) -,J arJ-- ö o {" , ã. |¡ t I o t o I I r- L L L L L (- Presented by the Oregon Trails Coordinating Council L , May,I998 U (- Compiled by Karen Bassett, Jim Renner, and Joyce White. Copyright @ 1998 Oregon Trails Coordinating Council Salem, Oregon All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without permission in writing from the publisher. Printed in the United States of America. Oregon Historic Trails Report Table of Contents Executive summary 1 Project history 3 Introduction to Oregon's Historic Trails 7 Oregon's National Historic Trails 11 Lewis and Clark National Historic Trail I3 Oregon National Historic Trail. 27 Applegate National Historic Trail .41 Nez Perce National Historic Trail .63 Oregon's Historic Trails 75 Klamath Trail, 19th Century 17 Jedediah Smith Route, 1828 81 Nathaniel Wyeth Route, t83211834 99 Benjamin Bonneville Route, 1 833/1 834 .. 115 Ewing Young Route, 1834/1837 .. t29 V/hitman Mission Route, 184l-1847 . .. t4t Upper Columbia River Route, 1841-1851 .. 167 John Fremont Route, 1843 .. 183 Meek Cutoff, 1845 .. 199 Cutoff to the Barlow Road, 1848-1884 217 Free Emigrant Road, 1853 225 Santiam Wagon Road, 1865-1939 233 General recommendations . 241 Product development guidelines 243 Acknowledgements 241 Lewis & Clark OREGON National Historic Trail, 1804-1806 I I t . .....¡.. ,r la RivaÌ ï L (t ¡ ...--."f Pðiräldton r,i " 'f Route description I (_-- tt |". -
Snowmobiles in the Wilderness
Snowmobiles in the Wilderness: You can help W a s h i n g t o n S t a t e P a r k s A necessary prohibition Join us in safeguarding winter recreation: Each year, more and more people are riding snowmobiles • When riding in a new area, obtain a map. into designated Wilderness areas, which is a concern for • Familiarize yourself with Wilderness land managers, the public and many snowmobile groups. boundaries, and don’t cross them. This may be happening for a variety of reasons: many • Carry the message to clubs, groups and friends. snowmobilers may not know where the Wilderness boundaries are or may not realize the area is closed. For more information about snowmobiling opportunities or Wilderness areas, please contact: Wilderness…a special place Washington State Parks and Recreation Commission (360) 902-8500 Established by Congress through the Wilderness Washington State Snowmobile Association (800) 784-9772 Act of 1964, “Wilderness” is a special land designation North Cascades National Park (360) 854-7245 within national forests and certain other federal lands. Colville National Forest (509) 684-7000 These areas were designated so that an untouched Gifford Pinchot National Forest (360) 891-5000 area of our wild lands could be maintained in a natural Mt. Baker-Snoqualmie National Forest (425) 783-6000 state. Also, they were set aside as places where people Mt. Rainier National Park (877) 270-7155 could get away from the sights and sounds of modern Okanogan-Wenatchee National Forest (509) 664-9200 civilization and where elements of our cultural history Olympic National Forest (360) 956-2402 could be preserved. -
1922 Elizabeth T
co.rYRIG HT, 192' The Moootainetro !scot1oror,d The MOUNTAINEER VOLUME FIFTEEN Number One D EC E M BER 15, 1 9 2 2 ffiount Adams, ffiount St. Helens and the (!oat Rocks I ncoq)Ora,tecl 1913 Organized 190!i EDITORlAL ST AitF 1922 Elizabeth T. Kirk,vood, Eclttor Margaret W. Hazard, Associate Editor· Fairman B. L�e, Publication Manager Arthur L. Loveless Effie L. Chapman Subsc1·iption Price. $2.00 per year. Annual ·(onl�') Se,·ent�·-Five Cents. Published by The Mountaineers lncorJ,orated Seattle, Washington Enlerecl as second-class matter December 15, 19t0. at the Post Office . at . eattle, "\Yash., under the .-\0t of March 3. 1879. .... I MOUNT ADAMS lllobcl Furrs AND REFLEC'rION POOL .. <§rtttings from Aristibes (. Jhoutribes Author of "ll3ith the <6obs on lltount ®l!!mµus" �. • � J� �·,,. ., .. e,..:,L....._d.L.. F_,,,.... cL.. ��-_, _..__ f.. pt",- 1-� r�._ '-';a_ ..ll.-�· t'� 1- tt.. �ti.. ..._.._....L- -.L.--e-- a';. ��c..L. 41- �. C4v(, � � �·,,-- �JL.,�f w/U. J/,--«---fi:( -A- -tr·�� �, : 'JJ! -, Y .,..._, e� .,...,____,� � � t-..__., ,..._ -u..,·,- .,..,_, ;-:.. � --r J /-e,-i L,J i-.,( '"'; 1..........,.- e..r- ,';z__ /-t.-.--,r� ;.,-.,.....__ � � ..-...,.,-<. ,.,.f--· :tL. ��- ''F.....- ,',L � .,.__ � 'f- f-� --"- ��7 � �. � �;')'... f ><- -a.c__ c/ � r v-f'.fl,'7'71.. I /!,,-e..-,K-// ,l...,"4/YL... t:l,._ c.J.� J..,_-...A 'f ',y-r/� �- lL.. ��•-/IC,/ ,V l j I '/ ;· , CONTENTS i Page Greetings .......................................................................tlristicles }!}, Phoiitricles ........ r The Mount Adams, Mount St. Helens, and the Goat Rocks Outing .......................................... B1/.ith Page Bennett 9 1 Selected References from Preceding Mount Adams and Mount St. -
The Geological Newsletter
JAN 90 THE GEOLOGICAL NEWSLETTER ·• GEOLOGICAL SOCIETY OF THE OREGON COUNTRY GEOLOGICAL SOCIETY Non-Profit Org. U.S. POSTAGE OF THE OREGON COUNTRY PAID P.O. BOX ?a 7- Portland, Oregon PORTLAND, OR 97207- -:· ·--~··, Permit No. 999 - -- '~ Dr. Frank Boersma 120 W. 33~d Street Vancouver, WA 98660 GEOLOGICAL SOCIETY OF THE OREGOt\ COllNTRY 1989-1990 ADMINISTRATION BOARD OF DIRECTORS President Directors Rosemary Kenney 221-0757 Peter E. Baer (3 years) 661-7995 4211 S\-1 Condor Charlene Holzwarth (2 years) 284-3444 Portland, OR 97201 Esther Kennedy (1 year) 287-3091 Vice President Margaret L. Steere 246-1670 Immediate Past Presidents Joline Robustelli 223-2852 6929 SW 34 Ave. ~ Portland, OR 97219 R.E. (Andy) Corcoran 244-5605 Secretary Alta B. Fosback 641-6323 THE GEOLOGICAL NEWSLETTER 8942 SW Fairview Place Tigard, OR 97223 Editor: Sandra Anderson 775-5538 Treasurer Calendar: Margaret Steere 246-1670 Braden Pillow 659-6318 Business Manager: Carol Cole 220-0078 19562 SE Cottonwood St. Assist: Cecelia Crater 235-5158 Milwaukie, OR 97267 ACTIVITIES CHAIRS Calligrapher Properties and PA System Wallace R.· McClung 637-3834 (Luncheon) Donald Botteron 245-6251 Field Trips (Evening) Walter A. Sunderland 625-6840 Charlene Holzwarth 284-3444 Publications Alta B. Fosback 641-6323 Geneva E. Reddekopp 654-9818 Geology Seminars Publicity Donald D. Barr 246-2785 Roberta L. Walter 235-3579 Historian Refreshments Phyllis G. Bonebrake 289-8597 (Friday Evening) Hospitality David and Marvel Gillespie 246-2368 254-0135 (Luncheon) Margaret Fink 289-0188 Harold and Patricia Gay Moore (Evening) Maxine Harrington 297-ll86 (Geology Seminars) Catherine Evenson 654-2636 Library: Esther Kennedy 287-3091 ' ' Betty Turner 246-3192 Telephone n Past Presidents Panel Jean L. -
Petrographic Study of a Quartz Diorite Stock Near Superior, Pinal County, Arizona
Petrographic study of a quartz diorite stock near Superior, Pinal County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Puckett, James Carl, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 23:40:37 Link to Item http://hdl.handle.net/10150/554062 PETROGRAPHIC STUDY OF A QUARTZ DIORITE STOCK NEAR SUPERIOR, PINAL COUNTY, ARIZONA by James Carl Puckett, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 0 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg ment the proposed use of the material is in the interests of scholar ship. In all other instances, however, permission must be obtained from the author. -
The Science Behind Volcanoes
The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere. -
Evaporation from Salty Lagoons (Case Study: Qattara Depression)
The British University in Egypt BUE Scholar Civil Engineering Engineering Spring 4-2017 Evaporation from Salty Lagoons (Case Study: Qattara Depression) Mohamed Abdelhamid Eizeldin Dr. [email protected] Heba Abdelazim M.Sc Sherif Eldidy Prof. Cairo University Follow this and additional works at: https://buescholar.bue.edu.eg/civil_eng Part of the Civil Engineering Commons, and the Hydraulic Engineering Commons Recommended Citation Eizeldin, Mohamed Abdelhamid Dr.; Abdelazim, Heba M.Sc; and Eldidy, Sherif Prof., "Evaporation from Salty Lagoons (Case Study: Qattara Depression)" (2017). Civil Engineering. 7. https://buescholar.bue.edu.eg/civil_eng/7 This Conference Proceeding is brought to you for free and open access by the Engineering at BUE Scholar. It has been accepted for inclusion in Civil Engineering by an authorized administrator of BUE Scholar. For more information, please contact [email protected]. Al-Azhar University Civil Engineering Research Magazine (CERM) Vol. (39) No. (2) April, 2017 Evaporation from Salty Lagoons (Case Study: Qattara Depression) Abdel Azeem, H.S1, El-Didy, S.M2, Eizeldin, M.A3, and Helmi, A.M4 ﻣﻠﺨﺺ ﻋﺮﺑﻲ ﺗﻢ إﻋﺪاد اﻟﻌﺪﯾﺪ ﻣﻦ اﻟﺪراﺳﺎت - ﻓﻲ ﺑﺪاﯾﺔ اﻟﻘﺮن اﻟﻌﺸﺮﯾﻦ - ﻟﺪراﺳﺔ ﺗﻮﺻﯿﻞ ﻣﯿﺎه اﻟﺒﺤﺮ اﻟﻤﺘﻮﺳﻂ ﻣﻦ ﺧﻼل ﻗﻨﺎة ﺗﻮﺻﯿﻞ ﻟﻤﻨﺨﻔﺾ اﻟﻘﻄﺎرة ﺑﮭﺪف ﺗﻮﻟﯿﺪ اﻟﻄﺎﻗﺔ اﻟﻜﮭﺮﺑﺎﺋﯿﺔ وذﻟﻚ ﺑﺈﺳﺘﻐﻼل ﻓﺮق اﻟﻤﻨﺎﺳﯿﺐ ﺑﯿﻦ اﻟﻤﻨﺨﻔﺾ واﻟﺒﺤﺮ اﻟﻤﺘﻮﺳﻂ ، وﺗﮭﺪف اﻟﺪراﺳﺔ اﻟﺤﺎﻟﯿﺔ إﻟﻰ :-أ) إﻧﺸﺎء ﻣﻨﻈﻮﻣﺔ ﻣﻌﻠﻮﻣﺎت ھﯿﺪروﻟﻮﺟﯿﺔ ﻟﻠﻤﻨﺨﻔﺾ ب) ﺣﺴﺎب ﻣﻌﺪﻻت اﻟﺒﺨﺮ اﻟﻤﺘﻮﻗﻊ ﻣﻦ اﻟﻤﯿﺎه اﻟﻤﺎﻟﺤﺔ اﻟﻤﺠﻤﻌﺔ ﻓﻲ ﺑﺤﯿﺮة اﻟﻤﻨﺨﻔﺾ. وﻗﺪ ﺗﻢ إﻋﺪاد ﻣﻨﮭﺞ اﻟﺪراﺳﺔ ﺑﺎﺳﺘﺨﺪام اﻟﺒﺮاﻣﺞ اﻟﺤﺪﯾﺜﺔ اﻟﺘﻲ ﻟﻢ ﺗﻜﻦ ﻣﺘﺎﺣﺔ ﻟﻠﺪراﺳﺎت اﻟﺴﺎﺑﻘﺔ ﻟﻠﻤﺸﺮوع ﺣﯿﻨﮭﺎ، وھﺬه اﻟﺒﺮاﻣﺞ ﻣﺜﻞ اﻟﻨﻤﺎذج اﻟﻌﺪدﯾﺔ اﻟﻔﻌﺎﻟﺔ، ﻧﻈﺎم اﻟﻤﻌﻠﻮﻣﺎت اﻟﻌﺪدﯾﺔ ( GIS) ، وﻧﻤﺎذج اﻹرﺗﻔﺎﻋﺎت اﻟﺮﻗﻤﯿﺔ (DEM). -
Volcanism on Mars
Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny. -
Information Circular 41: Origin of Cascade Landscapes
111ackin I CdrlJ .rc-1J ORIGIN OF CASCADE LANDSCAPES ---=-~--=---------=---- FRONTISPIECE Picket Range in upper Skagit area, Northern Cascade Mountains. Snowfields occupy a former ice-filled cirque. Grass is enroaching on ice-polished rock surfaces. State of Washington DANIEL J. EVANS, Governor Department of Conservation ROY MUNDY, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, SupervisoT Information Circular No. 41 ORIGIN OF CASCADE LANDSCAPES By J. HOOVER MACKIN and ALLENS. CARY STATE PRINTING PLANT, OLYMPIA, WASHINGTON 1965 For sale by Department of Conservation, Olympia, Washington. Price, 50 cents. FOREWORD The Cascade Range has had an important influence on the lives of a great many people ever since man has inhabited the Northwest. The mountains were a barrier to Indian travel; they were a challenge to the westward migration of the early settlers in the area; they posed serious problems for the early railroad builders; and they still constitute an obstruction to east-west travel. A large part of the timber, mineral, and surface water resources of the State come from the Cascades. About 80 percent of the area covered by glaciers in the United States, exclusive of Alaska, is in the Cascades of Washington. This region includes some of the finest mountain scenery in the country and is a popular outdoor recreation area. The Cascade Range is a source of economic value to many, a source of pleasure to many others, and a problem or source of irritation to some. Regardless of their reactions, many people have wondered about the origin of the mountains How and when did the Cascades come into being, and what forces were responsible for the construction job? -This report, "Origin of Cascade Landscapes," gives the answers to these questions. -
Pacific Crest National Scenic Trail FY 2017 Appropriations Request
Photo ©2016 Alasdair Fowler Pacific Crest National Scenic Trail FY 2017 Appropriations Request Prepared by: Pacific Crest Trail Association www.pcta.org Graphic design donated by Cover Photos by Alasdair Fowler, Shonda Feather and Carolyn Tepolt Pacific Crest National Scenic Trail FY2017 Appropriations Request The Pacific Crest Trail Association (PCTA) respectfully asks Congress to support the following FY2017 appropriations to protect, preserve and promote the Pacific Crest National Scenic Trail (PCT): I. Land PCT Corridor Acquisition Projects & Water U.S. Forest Service (USFS) Budget Request Conservation $7.0 million Fund California—Landers Meadow, trail and resource (LWCF) protection within the Sequoia National Forest; Trinity Divide, trail and resource protection within the Shasta- Trinity National Forest, Donomore Meadows, trail and resource protection within the Rogue River-Siskiyou National Forest. Washington—Columbia Gorge, trail and resource protection in and adjacent to the Columbia River Gorge National Scenic Area; Stevens Pass, purchase portion of the trail that currently has no easement. $250,000—LWCF line item for program administration Bureau of Land Management (BLM) Budget Request $515,000 California—California Desert Southwest, purchase parcels within the San Gorgonio Wilderness to create an uninterrupted wilderness experience. Oregon—Cascade-Siskiyou Area, trail and resource $7.8 million protection in southern Oregon near the Klamath Basin. U.S. Forest Service (USFS) Budget Request II. Capital $2.1 million—allocation -
Taconic Physiography
Bulletin No. 272 ' Series B, Descriptive Geology, 74 DEPARTMENT OF THE INTERIOR . UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR 4 t TACONIC PHYSIOGRAPHY BY T. NELSON DALE WASHINGTON GOVERNMENT PRINTING OFFICE 1905 CONTENTS. Page. Letter of transinittal......................................._......--..... 7 Introduction..........I..................................................... 9 Literature...........:.......................... ........................... 9 Land form __._..___.._.___________..___._____......__..__...._..._--..-..... 18 Green Mountain Range ..................... .......................... 18 Taconic Range .............................'............:.............. 19 Transverse valleys._-_-_.-..._.-......-....___-..-___-_....--_.-.._-- 19 Longitudinal valleys ............................................. ^...... 20 Bensselaer Plateau .................................................... 20 Hudson-Champlain valley................ ..-,..-.-.--.----.-..-...... 21 The Taconic landscape..................................................... 21 The lakes............................................................ 22 Topographic types .............,.....:..............'.................... 23 Plateau type ...--....---....-.-.-.-.--....-...... --.---.-.-..-.--... 23 Taconic type ...-..........-........-----............--......----.-.-- 28 Hudson-Champlain type ......................"...............--....... 23 Rock material..........................'.......'..---..-.....-...-.--.-.-. 23 Harder rocks ....---...............-.-.....-.-...--.-.........