Hindcasts for the Mulde 2002 Extreme Event J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zinnwald Lithium Project
Zinnwald Lithium Project Report on the Mineral Resource Prepared for Deutsche Lithium GmbH Am St. Niclas Schacht 13 09599 Freiberg Germany Effective date: 2018-09-30 Issue date: 2018-09-30 Zinnwald Lithium Project Report on the Mineral Resource Date and signature page According to NI 43-101 requirements the „Qualified Persons“ for this report are EurGeol. Dr. Wolf-Dietrich Bock and EurGeol. Kersten Kühn. The effective date of this report is 30 September 2018. ……………………………….. Signed on 30 September 2018 EurGeol. Dr. Wolf-Dietrich Bock Consulting Geologist ……………………………….. Signed on 30 September 2018 EurGeol. Kersten Kühn Mining Geologist Date: Page: 2018-09-30 2/219 Zinnwald Lithium Project Report on the Mineral Resource TABLE OF CONTENTS Page Date and signature page .............................................................................................................. 2 1 Summary .......................................................................................................................... 14 1.1 Property Description and Ownership ........................................................................ 14 1.2 Geology and mineralization ...................................................................................... 14 1.3 Exploration status .................................................................................................... 15 1.4 Resource estimates ................................................................................................. 16 1.5 Conclusions and Recommendations ....................................................................... -
„Studie Zur Charakterisierung Der Schadstoffeinträge Aus Den Erzbergbaurevieren Der Mulde in Die Elbe“
„Studie zur Charakterisierung der Schadstoffeinträge aus den Erzbergbaurevieren der Mulde in die Elbe“ Annia Greif, TU Bergakademie Freiberg, Institut für Mineralogie Auftraggeber: Behörde für Stadtentwicklung und Umwelt (BSU), Amt für Umweltschutz Hamburg, Abteilung Wasserwirtschaft, Projekt ELSA der Freien und Hansestadt Hamburg, Projektleiter: Herr Dr. R. Schwartz Projektbearbeiterin: Frau I. Keller Auftragnehmer: TU Bergakademie Freiberg (TU BAF), Institut für Mineralogie, Brennhausgasse 14, 09599 Freiberg Projektleiter: Herr Prof. Dr. G. Heide, Projektbearbeiterin: Frau Dipl.-Min. A. Greif Projektbegleitung: Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG), Ansprechpartnerin: Frau S. Rohde Bearbeitungszeitraum: 01.07.2012 bis 31.07.2013 Abschlussbericht: Stand zum 04.07.2013 Relevanz der Studie Trotz der Verbesserung der Belastungssituation der Elbe mit anorganischen und organi- schen Schadstoffen nach 1990 stellt die verbliebene Schadstoffbelastung der Elbesedimente immer noch eine Belastung von Biota, Auenböden und der Nordsee dar. Maßnahmen zur Beräumung von schadstoffbelasteten Sedimenten haben für den Hamburger Hafen ökologi- sche und finanzielle Konsequenzen. Die Mulde wurde bereits Anfang der 1990er Jahre als belastungsrelevanter Zufluss der Elbe erkannt und stellt auch heute noch eine wesentliche überregionale Quelle für Schwermetalle und Arsen in der Elbe dar. Ursächlich für die Belastungen sind die geogenen Besonderheiten im Einzugsgebiet. Insbesondere die Emissionen aus dem erzgebirgischen Erzbergbau -
Fluor-Schorl, a New Member of the Tourmaline Supergroup, and New Data on Schorl from the Cotype Localities
Eur. J. Mineral. Open Access Article 2016, 28, 163–177 Special issue dedicated to Published online 7 October 2015 Thomas Armbruster Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities 1,2, 1,2 3 4 5 ANDREAS ERTL *,UWE KOLITSCH ,M.DARBY DYAR ,HANS-PETER MEYER ,GEORGE R. ROSSMAN , 6 2 4 2 2 DARRELL J. HENRY ,MARKUS PREM ,THOMAS LUDWIG ,LUTZ NASDALA ,CHRISTIAN L. LENGAUER , 2 1 EKKEHART TILLMANNS and GERHARD NIEDERMAYR 1 Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, 1010 Vienna, Austria *Corresponding author, e-mail: [email protected] 2 Institut fu¨r Mineralogie und Kristallographie, Geozentrum, Universita¨t Wien, Althanstrasse 14, 1090 Vienna, Austria 3 Department of Geography and Geology, Mount Holyoke College, South Hadley, Massachusetts 01075, USA 4 Institut fu¨r Geowissenschaften, Universita¨t Heidelberg, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany 5 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125–2500, USA 6 Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA 2+ Abstract: Fluor-schorl, NaFe 3Al6Si6O18(BO3)3(OH)3F, is a new mineral species of the tourmaline supergroup from alluvial tin deposits near Steinberg, Zschorlau, Erzgebirge (Saxonian Ore Mountains), Saxony, Germany, and from pegmatites near Grasstein (area from Mittewald to Sachsenklemme), Trentino, South Tyrol, Italy. Fluor-schorl was formed as a pneumatolytic phase and in high-temperature hydrothermal veins in granitic pegmatites. Crystals are black (pale brownish to pale greyish-bluish, if ,0.3 mm in diameter) with a bluish-white streak. -
Zinnwald Lithium Project
Zinnwald Lithium Project Technical Report on the Feasibility Study for the Zinnwald Lithium Project, Germany Prepared for: Deutsche Lithium GmbH Am St. Niclas Schacht 13 09599 Freiberg Germany Effective date: 2019-05-31 Issue date: 2019-05-31 Zinnwald Lithium Project Technical Report on the Feasibility Study TABLE OF CONTENTS Page Date and Signature Page ............................................................................................................. 2 1 Summary ........................................................................................................................ 22 1.1 Property Description and Ownership ........................................................................ 22 1.2 Geology and Mineralization ...................................................................................... 22 1.3 Exploration Status .................................................................................................... 23 1.4 Resource Estimates ................................................................................................. 23 1.5 Reserve Estimates ................................................................................................... 25 1.6 Mining ...................................................................................................................... 26 1.7 Processing and Metallurgical Test Work .................................................................. 27 1.8 Recovery Methods .................................................................................................. -
Fluor-Schorl, a New Member of the Tourmaline Supergroup, and New Data on Schorl from the Cotype Localities
Eur. J. Mineral. Open Access Article 2016, 28, 163–177 Special issue dedicated to Published online 7 October 2015 Thomas Armbruster Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities 1,2, 1,2 3 4 5 ANDREAS ERTL *,UWE KOLITSCH ,M.DARBY DYAR ,HANS-PETER MEYER ,GEORGE R. ROSSMAN , 6 2 4 2 2 DARRELL J. HENRY ,MARKUS PREM ,THOMAS LUDWIG ,LUTZ NASDALA ,CHRISTIAN L. LENGAUER , 2 1 EKKEHART TILLMANNS and GERHARD NIEDERMAYR 1 Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, 1010 Vienna, Austria *Corresponding author, e-mail: [email protected] 2 Institut fu¨r Mineralogie und Kristallographie, Geozentrum, Universita¨t Wien, Althanstrasse 14, 1090 Vienna, Austria 3 Department of Geography and Geology, Mount Holyoke College, South Hadley, Massachusetts 01075, USA 4 Institut fu¨r Geowissenschaften, Universita¨t Heidelberg, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany 5 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125–2500, USA 6 Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA 2+ Abstract: Fluor-schorl, NaFe 3Al6Si6O18(BO3)3(OH)3F, is a new mineral species of the tourmaline supergroup from alluvial tin deposits near Steinberg, Zschorlau, Erzgebirge (Saxonian Ore Mountains), Saxony, Germany, and from pegmatites near Grasstein (area from Mittewald to Sachsenklemme), Trentino, South Tyrol, Italy. Fluor-schorl was formed as a pneumatolytic phase and in high-temperature hydrothermal veins in granitic pegmatites. Crystals are black (pale brownish to pale greyish-bluish, if ,0.3 mm in diameter) with a bluish-white streak. -
B-Bericht Zum Koordinierungsraum Mulde-Elbe-Schwarze Elster
Bericht über die Umsetzung der Anhänge II, III und IV der Richtlinie 2000/60/EG für den Koordinierungsraum Mulde-Elbe-Schwarze Elster (B-Bericht) Herausgeber: Sächsisches Staatsministerium für Umwelt und Landwirtschaft Ministerium für ländliche Entwicklung, Umwelt und Verbraucherschutz des Landes Brandenburg Ministerium für Landwirtschaft und Umwelt des Landes Sachsen-Anhalt - I - Inhaltsverzeichnis (Die in Klammern gesetzten Verweise in den Kapitelüberschriften beziehen sich auf die Anhänge der Richtlinie 2000/60/EG) Abbildungsverzeichnis III Tabellenverzeichnis IV Abkürzungsverzeichnis V Verzeichnis der Tabellen im Anhang 1 VII Verzeichnis der Karten im Anhang 2 VIII 1 Einführung 1 2 Beschreibung des Koordinierungsraumes (Anh. I) 2 2.1 Geographische Ausdehnung des Koordinierungsraumes 2 2.2 Aufteilung der Flussgebietseinheit Elbe in Koordinierungsräume 6 3 Zuständige Behörden (Anh. I i) 7 4 Analyse der Merkmale der Flussgebietseinheit und Überprüfung der Umweltauswirkungen menschlicher Tätigkeiten (Artikel 5 Anh. II) 8 4.1 Oberflächengewässer (Anh. II 1) 8 4.1.1 Beschreibung der Typen von Oberflächenwasserkörpern 9 4.1.2 Typspezifische Referenzbedingungen und höchstes ökologisches Potenzial (Anh. II 1.3 i bis iii und v bis vi) 13 4.1.3 Bezugsnetz für Gewässertypen mit sehr gutem ökologischen Zustand (Anh. II 1.3 iv) 13 4.1.4 Vorläufige Ausweisung künstlicher und erheblich veränderter Oberflächenwasserkörper (Anh. II 1.2) 14 4.1.5 Belastungen der Oberflächenwasserkörper (Anh. II 1.4) 16 4.1.5.1 Signifikante punktuelle Schadstoffquellen (Anh. II 1.4) 16 4.1.5.2 Signifikante diffuse Schadstoffquellen (Anh. II 1.4) 17 4.1.5.3 Signifikante Wasserentnahmen (Anh. II 1.4) 18 4.1.5.4 Signifikante Abflussregulierungen (Anh. -
Hydrodynamic Simulation of the Effects of In-Channel Large Woody
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-35 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 4 February 2019 c Author(s) 2019. CC BY 4.0 License. Hydrodynamic simulation of the effects of in-channel large woody debris on the flood hydrographs of a low mountain range creek, Ore Mountains, Germany Daniel Rasche1,2, Christian Reinhardt-Imjela1, Achim Schulte1, Robert Wenzel1,3 5 1Freie Universität Berlin, Department of Earth Sciences, Institute of Geographical Sciences, Berlin, 12249, Germany 2GFZ German Research Centre for Geosciences, Section Hydrology, Potsdam, 14473, Germany 3LfU State Office of the Environment Brandenburg, Potsdam, 14476, Germany Correspondence to: Christian Reinhardt-Imjela ([email protected]) 10 Abstract. Fifteen years after introducing the European Union's water framework directive (WFD), most of the German surface water bodies are still far away from having the targeted good ecological status or potential. One reason are insufficient hydromorphological diversities such as riverbed structure including the absence of natural woody debris in the channels. The presence of large woody debris (LWD) in river channels can improve the hydromorphological and hydraulic characteristics of rivers and streams and therefore act positively on a river’s ecology. On the contrary, floating LWD is a potential threat for 15 anthropogenic goods and infrastructure during flood events. Concerning the contradiction of potential risks as well as positive ecological impacts, addressing the physical effects of large woody debris is highly important, for example to identify river sections in which large woody debris can remain or can be reintroduced. -
Hydrodynamic Simulation of the Effects of Stable In-Channel Large Wood On
Hydrodynamic simulation of the effects of stable in-channel large wood on the flood hydrographs of a low mountain range creek, Ore Mountains, Germany Daniel Rasche1,2, Christian Reinhardt-Imjela1, Achim Schulte1, Robert Wenzel1,3 5 1Freie Universität Berlin, Department of Earth Sciences, Institute of Geographical Sciences, Berlin, 12249, Germany 2GFZ German Research Centre for Geosciences, Section Hydrology, Potsdam, 14473, Germany 3LfU State Office of the Environment Brandenburg, Potsdam, 14476, Germany Correspondence to: Christian Reinhardt-Imjela ([email protected]) 10 Abstract. Large wood (LW) can alter the hydromorphological and hydraulic characteristics of rivers and streams and may act positively on a river’s ecology by i.e. leading to an increased habitat availability. On the contrary, floating as well as stable LW is a potential threat for anthropogenic goods and infrastructure during flood events. Concerning the contradiction of potential risks as well as positive ecological impacts, addressing the physical effects of stable large wood is highly important. Hydrodynamic models offer the possibility of investigating the hydraulic effects of fastened large wood. However, the work- 15 and time-consumption varies between approaches of incorporating large wood in hydrodynamic models. In this study, a two- dimensional hydraulic model is set up for a mountain creek to simulate the hydraulic effects of stable LW and to compare multiple methods to account for large wood induced roughness. LW is implemented by changing in-channel roughness coefficients and by adding topographic elements to the model in order to determine which method most accurately simulates observed hydrographs and to provide guidance for future hydrodynamic modelling of stable large wood with two-dimensional 20 models. -
Model-Based Quantification and Internet-Based Visualisation of Emis- Sions Into Germany’S Rivers („Prioritary Substances“)
TEXTE 46/2010 Calculation of Emissions into Rivers in Germany using the MONERIS Model Nutrients, heavy metals and polycyclic aromatic hydrocarbons | TEXTE | 46/2010 ENVIRONMENTAL RESEARCH OF THE FEDERAL MINISTRY OF THE ENVIRONMENT, NATURE CONSERVATION AND NUCLEAR SAFETY Project No. (FKZ) 204 24 218 and 205 24 204 Report No. (UBA-FB) 001410/E Calculation of Emissions into Rivers in Germany using the MONERIS Model Nutrients, heavy metals and polycyclic aromatic hydrocarbons by Dr. Stephan Fuchs, Dr. Ulrike Scherer, Ramona Wander Institut für Wasser und Gewässerentwicklung (Karlsruher Institut für Technologie), Karlsruhe Dr. Horst Behrendt, Dr. Markus Venohr, Dieter Opitz Leibnitz-Institut für Gewässerökologie und Binnenfischerei im Forschungsverbund Berlin e.V., Berlin Dr. Thomas Hillenbrand, Dr. Frank Marscheider-Weidemann, Thomas Götz Fraunhofer-Institut für System- und Innovationsforschung, Karlsruhe On behalf of the Federal Environment Agency (Germany) UMWELTBUNDESAMT This publication is only available online. It can be downloaded from http://www.uba.de/uba-info-medien-e/4018.html along with a German version. The contents of this publication do not necessarily reflect the official opinions. ISSN 1862-4804 Publisher: Federal Environment Agency (Umweltbundesamt) P.O.B. 14 06 06813 Dessau-Roßlau Germany Phone: +49-340-2103-0 Fax: +49-340-2103 2285 Email: [email protected] Internet: http://www.umweltbundesamt.de http://fuer-mensch-und-umwelt.de/ Edited by: Section II 2.2 Discharges and Inputs to Surface Waters Dr. Joachim Heidemeier, Antje Ullrich Dessau-Roßlau, September 2010 This report is dedicated to Dr. Horst Behrendt. Dr. Behrendt worked at the Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) in Berlin. -
Heavily Modified Water Bodies
Heavily Modified Waters in Europe Case Study on the River “Zwickauer Mulde”1 Research Project MAKEF Dr. P. Podraza University of Essen Institute of Ecology, Department of Hydrobiology 45117 Essen Phone: 0049-(0)201-183-3868 Fax: 0049-(0)201-183-4583 Email: [email protected] 1 The Saxon State Ministry of Environment and Agriculture kindly gave the permission to use data in this case study analysis. The data were provided by the Saxon State Agency of Environment and Geology and the Saxon State Agency of Agriculture. 1 Members of the research project MAKEF (co-authors) • Dr. P. Podraza University of Essen Institute of Ecology, Department of Hydrobiology D-45117 Essen • Prof. Dr. Klaus Greve Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Geography D-53115 Bonn • Martin Halle umweltbüro essen A. Bolle & Partner GbR Rellinghauser Str. 334 f D-45136 Essen • Dr. Thomas Zumbroich, Dr. Andreas Müller Büro für Umweltanalytik Bonn/ Essen Breite Str. 21 D-53111 Bonn • Dirk Glacer Ingenieurbüro Glacer Horster Str. 25e D-45279 Essen 2 Table of Contents page PART I 5 1 Preface 6 2 Summary Table 7 3 Introduction 8 3.1 Choice of Case Study 8 3.2 General Remarks 8 4 Description of Case Study Area 9 4.1 Geology, Topography and Hydrology 9 4.2 Socio-Economic Geography and Human Activities in the catchment 11 4.3 Identification of Water Bodies 13 4.4 Discussion and Conclusions 19 PART II 20 5 Physical Alterations 21 5.1 Pressures and Uses 21 5.2 Physical Alterations 29 5.3 Changes in the Hydromorphological Characteristics of the Water -
DEM-Based Analysis of Interactions Between Tectonics and Landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic)
Remote Sens. 2014, 6, 7971-8001; doi:10.3390/rs6097971 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article DEM-Based Analysis of Interactions between Tectonics and Landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic) Louis Andreani 1;2;*, Klaus P. Stanek 2, Richard Gloaguen 1, Ottomar Krentz 3 and Leomaris Domínguez-González 2 1 Department of Exploration, Helmholtz Institute Freiberg for Resource Technology, Halsbrücker Str. 34, 09599 Freiberg, Germany; E-Mail: [email protected] 2 Institut für Geologie, TU Bergakademie Freiberg, Bernhard-von-Cotta Str. 2, 09599 Freiberg, Germany; E-Mails: [email protected] (K.P.S.); [email protected] (L.D.-G.) 3 Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Halsbrücker Str. 31A, 09599 Freiberg, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-351-260-4426. Received: 26 April 2014; in revised form: 9 August 2014 / Accepted: 11 August 2014 / Published: 26 August 2014 Abstract: Tectonics modify the base-level of rivers and result in the progressive erosion of landscapes. We propose here a new method to classify landscapes according to their erosional stages. This method is based on the combination of two DEM-based geomorphic indices: the hypsometric integral, which highlights elevated surfaces, and surface roughness, which increases with the topographic elevation and the incision by the drainage network. The combination of these two indices allows one to produce a map of erosional discontinuities that can be easily compared with the known structural framework. -
Long-Term Persistence in Discharge Time Series of Mountainous Catchments in the Elbe River Basin
Hydrological processes and water security in a changing world Proc. IAHS, 383, 135–140, 2020 https://doi.org/10.5194/piahs-383-135-2020 Open Access © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Long-term persistence in discharge time series of mountainous catchments in the Elbe River basin Ondrej Ledvinka1 and Thomas Recknagel2 1Hydrology Database and Water Budget Department, Czech Hydrometeorological Institute, Na Sabatce 2050/17, Prague 412, 14306, Czechia 2Department M4, Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz, 56068, Germany Correspondence: Ondrej Ledvinka ([email protected]) Published: 16 September 2020 Abstract. Statistical detection of trends in hydrometeorological time series is a crucial task when revealing how river systems react to environmental and human-induced changes. It was shown that the autocorrelation structure of a series influences the power of parametric and nonparametric trend tests. While the order of short-memory processes can be sufficiently captured by AR(I)MA models, the determination of the Hurst exponent, which describes the long memory, is still challenging, considering that the available methods partially give different results. In the Elbe River basin, Europe, several studies focusing on the detection (or description) of long-term persistence were performed. However, different lengths of series and different methods were used. The aim of the present work is to gather the results gained in various parts of the Elbe basin in Central Europe and to compare them with our estimation of the Hurst exponent using six discharge series observed in selected subbasins. Instead of the dependence of the exponent on the catchment area suggested by the theory of aggregated short-memory processes, we rather found a relationship between this parameter and the series length.