<I>Soyauxia</I> (Peridiscaceae, Formerly Medusandraceae)

Total Page:16

File Type:pdf, Size:1020Kb

<I>Soyauxia</I> (Peridiscaceae, Formerly Medusandraceae) Plant Ecology and Evolution 148 (3): 409–419, 2015 http://dx.doi.org/10.5091/plecevo.2015.1040 REGULAR PAPER A synopsis of Soyauxia (Peridiscaceae, formerly Medusandraceae) with a new species from Liberia Frans J. Breteler1,*, Freek T. Bakker2 & Carel C.H. Jongkind3 1Grintweg 303, NL-6704 AR Wageningen, The Netherlands (previously Herbarium Vadense, Wageningen) 2Biosystematics Group, Wageningen University, P.O. Box 647, NL-6700 AP, Wageningen, The Netherlands 3Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium *Author for correspondence: [email protected] Background – Botanical exploration of the Sapo National Park in Liberia resulted in the discovery of a new species, which, after DNA investigation, was identified as belonging to Soyauxia of the small family Peridiscaceae. Methods – Normal practices of herbarium taxonomy and DNA sequence analysis have been applied. All the relevant herbarium material has been studied, mainly at BR, K, P, and WAG. The presented phylogenetic relationships of the new Soyauxia species is based on rbcL gene sequence comparison, inferred by a RAxML analysis including 100 replicates fast bootstrapping. The distribution maps have been produced using Map Maker Pro. Relevant collection data are stored in the NHN (Nationaal Herbarium Nederland) database. Key results − The new species Soyauxia kwewonii and an imperfectly known species are treated in the framework of a synopsis with the six other species of the genus. rbcL sequence comparison followed by RAxML analyses yielded a well-supported match of S. kwewonii with the Soyauxia clade. Its conservation status according to the IUCN red list criteria is assessed as Endangered. Its distribution as well as the distribution areas of the genus and of the remaining species are mapped. Soyauxia ledermannii is neotypified and the most common species in Gabon, S. glabrescens, is also illustrated. Key words – Peridiscaceae, Medusandraceae, Soyauxia, taxonomic synopsis, new species, tropical Africa, Liberia. INTRODUCTION research on relationships of Peridiscaceae, Medusandra was not sampled, nor even mentioned. On the other hand, Whit- The genus Soyauxia was described by Oliver in 1882, based tonia was mentioned but not included in their analysis. on S. gabonensis Oliv. He classified it in the Passifloraceae. Soyauxia shows some distinct morphological features in Later on Gilg (1925) placed it in the Flacourtiaceae. Hutch- which it differs from Peridiscus, such as the pinnate (also inson & Dalziel (1927) treated it as a member of, again, the Passifloraceae. It remained there till Brenan (1954) rec- in Whittonia) instead of palmate leaf venation, the presence ognised it as a member of his then recently described fam- of petals, the quadrilocular anthers, the superior ovary, and ily Medusandraceae, based on Medusandra Brenan (Brenan the long styles. These elements are not mentioned in table 1952). Hutchinson (1959) still kept Soyauxia in the Passiflo- 1 of Soltis et al. (2007), which was based on characters of raceae and opposed Brenan’s view that it belonged to Me- Peri discus only. A recent DNA-based analysis (Wurdack dusandraceae. Metcalfe (1962), when commenting upon the & Davis 2009) placed also Medusandra in Peridiscaceae, anatomical features of the new genus Whittonia (Sandwith which now comprises four genera. Two of these, Peridiscus 1962), took also Soyauxia into account and, despite some and Whittonia, are both monotypic, and natives of tropical distinct elements pointing to Peridiscaceae, suggested that it South America, whereas Medusandra with two species and was best placed in Flacourtiaceae rather than in Passiflorace- Soyauxia with seven or eight species, occur in tropical Af- ae. He also considered Medusandra not to be closely allied rica. to Soyauxia. Cronquist (1981) followed Metcalfe (1962) in Recent botanical exploration of the Sapo National Park placing Soyauxia in the Flacourtiaceae and Takhtajan (1997) in Liberia resulted in the discovery of a new species of placed it in the Passifloraceae. Soltis et al. (2007) placed Soyauxia. Based on fruiting material, it was at first classified Soyauxia in the Peridiscaceae. However, in their DNA-based as a new species of, possibly, Apodiscus (Phyllanthaceae). Its All rights reserved. © 2015 Botanic Garden Meise and Royal Botanical Society of Belgium – ISSN 2032-3921 Pl. Ecol. Evol. 148 (3), 2015 sterile and fruiting material is indeed very difficult to distin- have discovered several new species in and around the park, guish from this genus and, to a lesser extent, from Amanoa, most of them endemic to the south-east of Liberia. Example also of Phyllanthaceae. DNA investigation by the second au- of these endemics are Eugenia sapoensis Jongkind (Jong- thor, however, revealed that it belongs in the Peridiscaceae. kind 2015: 3), Heckeldora jongkindii J.J.de Wilde (De Wilde Its formal description has been included in the synopsis of all 2007: 182), Napoleonaea sapoensis Jongkind (Prance & Soyauxia species presented below. Jongkind 2015: 31), Pavetta sapoensis W.D.Hawth. (Haw- Sapo National Park, where the only fertile tree of the new species was found, is an area of c. 1800 km2 of protected rain thorne 2013: 573) and Psychotria tetragonopus O.Lachenaud forest in the south-east of Liberia. The flora of this national & Jongkind (Lachenaud & Jongkind 2013: 228). Several park was practically unknown until the start of this century other new species still have to be published. At the moment and is still underexplored. Since 2002 botanical expeditions Sapo National Park is more and more becoming an island Figure 1 – Phylogenetic relationships of Soyauxia kwewonii based on rbcL gene sequence comparison, inferred by RAxML analysis including 100 replicates fast bootstrapping. Numbers at nodes indicate bootstrap values and branch widths are drawn proportional to support; scale bar indicates number of substitutions per site. 410 Breteler, Bakker & Jongkind, A new species of Soyauxia (Peridiscaceae) from Liberia of protected forest surrounded by new mining activities, oil (WAG) from Liberia for S. floribunda and Cheek 10617 (K) palm plantations, roads and railways planned or in progress. from Cameroon for S. talbotii. Both voucher specimens have been seen for this publication. METHODS DISCUSSION Normal practices of herbarium taxonomy have been applied. All relevant herbarium material of the genus Soyauxia has Molecular phylogenetic analysis been studied, mainly at BR, K, P, and WAG. The distribution The phylogenetic analysis of the rbcL alignment yielded maps have been produced using Map Maker Pro. Its collect- the tree depicted in fig. 1, in which the Liberian specimen is ing data are stored in the NHN (Nationaal Herbarium Ned- firmly positioned in a trichotomy with the two Soyauxia se- erland) database accessible at http://vstbol.leidenuniv.nl/nhn/ quences, showing comparable branch lengths. We therefore Explore. conclude that it is phylogenetically very close to the two ear- DNA extraction was performed using standard CTAB- lier sampled Soyauxia species. based protocols (see Bakker et al. 1998) and included or- ganic extractions with CH3Cl. PCR amplification of rbcL Chorology followed Wurdack & Davis (2009), using primers 713f and 1460r. Resulting fragments were Sanger sequenced, depos- The genus Soyauxia is confined to the subdivisions Upper ited in GenBank under accession number KR080511, and and Lower Guinea of the Guineo-Congolian Region (White used as query in BLASTn searches in GenBank. The 100 1979). Its southeastern limit is situated in the coastal Loango most similar sequences were then combined in an alignment National Park in Gabon, from where an unidentified speci- containing mostly Saxifragales affinity sequences, and using men (number 8 in the synopsis below) has been collected. Ranunculus as outgroup. Both subdivisions contain three endemic species, Soyauxia floribunda, S. grandifolia and S. kwewonii in Upper Guin- The rbcL sequence alignment, containing 46 sequences, ea, and S. gabonensis, S. glabrescens and S. ledermannii in was then subjected to phylogenetic analysis using RAxML Lower Guinea. Soyauxia talbotii occurs in both subdivisions (Stamatakis 2014) through the Science Gateway (San Diego; (fig. 2). Miller et al. 2010) at www.phylo.org, using default settings. The ‘bipartitions.result’ tree, containing the best ML tree Morphology plus bootstrap values were then visualised in FigTree (Drum- mond et al. 2012). The data from the two earlier sampled The distinct, circular flower disc in Peridiscus, from where Soyauxia species used in the tree are based on Kpadeyeah 20 the Peridiscaceae derived their name, is dehiscent in Soyaux- Figure 2 – Distribution of the genus Soyauxia. 411 Pl. Ecol. Evol. 148 (3), 2015 ia, where it falls off with the stamens or somewhat later. with central column and 6–8 pendulous ovules. Fruit capsu- Its appearance and position looks very much like an inner, lar, dehiscent into 3–4 valves. Seed one with copious bony staminodial row of stamens and may better be conceived as endosperm. Embryo small. such. From this point of view, and looking at Keay’s key to An African genus of seven to eight species confined to the genera of Medusandraceae (Keay 1958), the two genera forests in Upper and Lower Guinea of the Guineo-Congolian become morphologically more similar: Soyauxia has now Region. staminodes and no disc just like in Medusandra. The fertile stamens of e.g. Soyauxia glabrescens (fig. 5E & H) are also more or less united into rows at the base. A true intrastami-
Recommended publications
  • Thymelaeaceae)
    Origin and diversification of the Australasian genera Pimelea and Thecanthes (Thymelaeaceae) by MOLEBOHENG CYNTHIA MOTS! Thesis submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG Supervisor: Dr Michelle van der Bank Co-supervisors: Dr Barbara L. Rye Dr Vincent Savolainen JUNE 2009 AFFIDAVIT: MASTER'S AND DOCTORAL STUDENTS TO WHOM IT MAY CONCERN This serves to confirm that I Moleboheng_Cynthia Motsi Full Name(s) and Surname ID Number 7808020422084 Student number 920108362 enrolled for the Qualification PhD Faculty _Science Herewith declare that my academic work is in line with the Plagiarism Policy of the University of Johannesburg which I am familiar. I further declare that the work presented in the thesis (minor dissertation/dissertation/thesis) is authentic and original unless clearly indicated otherwise and in such instances full reference to the source is acknowledged and I do not pretend to receive any credit for such acknowledged quotations, and that there is no copyright infringement in my work. I declare that no unethical research practices were used or material gained through dishonesty. I understand that plagiarism is a serious offence and that should I contravene the Plagiarism Policy notwithstanding signing this affidavit, I may be found guilty of a serious criminal offence (perjury) that would amongst other consequences compel the UJ to inform all other tertiary institutions of the offence and to issue a corresponding certificate of reprehensible academic conduct to whomever request such a certificate from the institution. Signed at _Johannesburg on this 31 of _July 2009 Signature Print name Moleboheng_Cynthia Motsi STAMP COMMISSIONER OF OATHS Affidavit certified by a Commissioner of Oaths This affidavit cordons with the requirements of the JUSTICES OF THE PEACE AND COMMISSIONERS OF OATHS ACT 16 OF 1963 and the applicable Regulations published in the GG GNR 1258 of 21 July 1972; GN 903 of 10 July 1998; GN 109 of 2 February 2001 as amended.
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]
  • First Steps Towards a Floral Structural Characterization of the Major Rosid Subclades
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2006 First steps towards a floral structural characterization of the major rosid subclades Endress, P K ; Matthews, M L Abstract: A survey of our own comparative studies on several larger clades of rosids and over 1400 original publications on rosid flowers shows that floral structural features support to various degrees the supraordinal relationships in rosids proposed by molecular phylogenetic studies. However, as many apparent relationships are not yet well resolved, the structural support also remains tentative. Some of the features that turned out to be of interest in the present study had not previously been considered in earlier supraordinal studies. The strongest floral structural support is for malvids (Brassicales, Malvales, Sapindales), which reflects the strong support of phylogenetic analyses. Somewhat less structurally supported are the COM (Celastrales, Oxalidales, Malpighiales) and the nitrogen-fixing (Cucurbitales, Fagales, Fabales, Rosales) clades of fabids, which are both also only weakly supported in phylogenetic analyses. The sister pairs, Cucurbitales plus Fagales, and Malvales plus Sapindales, are structurally only weakly supported, and for the entire fabids there is no clear support by the present floral structural data. However, an additional grouping, the COM clade plus malvids, shares some interesting features but does not appear as a clade in phylogenetic analyses. Thus it appears that the deepest split within eurosids- that between fabids and malvids - in molecular phylogenetic analyses (however weakly supported) is not matched by the present structural data. Features of ovules including thickness of integuments, thickness of nucellus, and degree of ovular curvature, appear to be especially interesting for higher level relationships and should be further explored.
    [Show full text]
  • INTRODUCTION Revisions for Thailand of the Genera Now
    THAI FOR. BULL. (BOT.) 43: 46–50. 2015. Revisiting taxonomic circumscriptions in Hydnocarpus Gaertn. and Ryparosa Blume for the Achariaceae of Thailand BRUCE L. WEBBER1 & BOB HARWOOD2 ABSTRACT. The split of the Flacourtiaceae into Achariaceae and Salicaceae has necessitated an updated treatment of these families for regional fl oras. In revising the Achariaceae for the Flora of Thailand, new insights on taxon circumscriptions in the family were generated based on a robust interrogation of delimiting characters and historical taxonomic decisions. Justifi cations for accepting certain taxa and synonymising others are here presented, along with recommendations for guiding future taxonomic work. KEY WORDS: Achariaceae, delimiting characters, Flacourtiaceae, Hydnocarpus, Ryparosa, Hermann Sleumer, Thailand. INTRODUCTION (e.g. Ryparosa fasciculata King and Ryparosa scortechinii King), and characterise important Revisions for Thailand of the genera now morphological differences between species (Sleumer, included in Achariaceae have often lagged behind 1954), do not appear to hold when subjected to current circumscriptions at both the family and closer scrutiny, particularly when applying fi eld- species levels. The most recent regional revision based knowledge of the species in question. To covering the 11 genera that were once placed in complement the revision of Achariaceae for the Flacourtiaceae is now 30 years old (Sleumer, 1985). Flora of Thailand (Harwood & Webber, 2015), here Since then, Chase et al. (2002) concluded that there we revisit species from two of the four genera in was no justifi cation for maintaining Flacourtiaceae, Thailand – Hydnocarpus and Ryparosa – providing and placed the majority of genera in either Salicaceae detailed notes on the justifi cation behind our taxo- or Achariaceae.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]
  • The Fossil Record of Angiosperm Families in Relation to Baraminology
    The Proceedings of the International Conference on Creationism Volume 7 Article 31 2013 The Fossil Record of Angiosperm Families in Relation to Baraminology Roger W. Sanders Bryan College Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Sanders, Roger W. (2013) "The Fossil Record of Angiosperm Families in Relation to Baraminology," The Proceedings of the International Conference on Creationism: Vol. 7 , Article 31. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol7/iss1/31 Proceedings of the Seventh International Conference on Creationism. Pittsburgh, PA: Creation Science Fellowship THE FOSSIL RECORD OF ANGIOSPERM FAMILIES IN RELATION TO BARAMINOLOGY Roger W. Sanders, Ph.D., Bryan College #7802, 721 Bryan Drive, Dayton, TN 37321 USA KEYWORDS: Angiosperms, flowering plants, fossils, baramins, Flood, post-Flood continuity criterion, continuous fossil record ABSTRACT To help estimate the number and boundaries of created kinds (i.e., baramins) of flowering plants, the fossil record has been analyzed. To designate the status of baramin, a criterion is applied that tests whether some but not all of a group’s hierarchically immediate subgroups have a fossil record back to the Flood (accepted here as near the Cretaceous-Paleogene boundary).
    [Show full text]
  • 583–584 Angiosperms 583 *Eudicots and Ceratophyllales
    583 583 > 583–584 Angiosperms These schedules are extensively revised, having been prepared with little reference to earlier editions. 583 *Eudicots and Ceratophyllales Subdivisions are added for eudicots and Ceratophyllales together, for eudicots alone Class here angiosperms (flowering plants), core eudicots For monocots, basal angiosperms, Chloranthales, magnoliids, see 584 See Manual at 583–585 vs. 600; also at 583–584; also at 583 vs. 582.13 .176 98 Mangrove swamp ecology Number built according to instructions under 583–588 Class here comprehensive works on mangroves For mangroves of a specific order or family, see the order or family, e.g., mangroves of family Combretaceae 583.73 .2 *Ceratophyllales Class here Ceratophyllaceae Class here hornworts > 583.3–583.9 Eudicots Class comprehensive works in 583 .3 *Ranunculales, Sabiaceae, Proteales, Trochodendrales, Buxales .34 *Ranunculales Including Berberidaceae, Eupteleaceae, Menispermaceae, Ranunculaceae Including aconites, anemones, barberries, buttercups, Christmas roses, clematises, columbines, delphiniums, hellebores, larkspurs, lesser celandine, mandrake, mayapple, mayflower, monkshoods, moonseeds, wolfsbanes For Fumariaceae, Papaveraceae, Pteridophyllaceae, see 583.35 See also 583.9593 for mandrakes of family Solanaceae .35 *Fumariaceae, Papaveraceae, Pteridophyllaceae Including bleeding hearts, bloodroot, celandines, Dutchman’s breeches, fumitories, poppies See also 583.34 for lesser celandine .37 *Sabiaceae * *Add as instructed under 583–588 1 583 Dewey Decimal Classification
    [Show full text]
  • Elatinaceae Are Sister to Malpighiaceae; Peridiscaceae Belong to Saxifragales
    Elatinaceae are Sister to Malpighiaceae; Peridiscaceae Belong to Saxifragales The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Davis, Charles C., and Mark W. Chase. 2004. Elatinaceae are sister to Malpighiaceae; Peridiscaceae belong to Saxifragales. American Journal of Botany 91(2): 262-273. Published Version http://dx.doi.org/10.3732/ajb.91.2.262 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2666728 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA American Journal of Botany 91(2): 262±273. 2004. ELATINACEAE ARE SISTER TO MALPIGHIACEAE; PERIDISCACEAE BELONG TO SAXIFRAGALES1 CHARLES C. DAVIS2,4 AND MARK W. C HASE3 2Department of Ecology and Evolutionary Biology, University of Michigan Herbarium, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2287 USA; and 3Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS UK Phylogenetic data from plastid (ndhF and rbcL) and nuclear (PHYC) genes indicate that, within the order Malpighiales, Elatinaceae are strongly supported as sister to Malpighiaceae. There are several putative morphological synapomorphies for this clade; most notably, they both have a base chromosome number of X 5 6 (or some multiple of three or six), opposite or whorled leaves with stipules, unicellular hairs (also uniseriate in some Elatinaceae), multicellular glands on the leaves, and resin (Elatinacae) or latex (Malpighiaceae).
    [Show full text]
  • ARBOLES Y ARBUSTOS Del Centro Río Amigos 1 Robin Foster, Heike Betz, Hamilton Beltrán Fotos De R
    WEB VERSION Madre de Dios, PERU ARBOLES y ARBUSTOS del Centro Río Amigos 1 Robin Foster, Heike Betz, Hamilton Beltrán Fotos de R. Foster & H. Betz, con unas de H. Beltrán, T. Plowman, C. Taylor, I. de la Cerda. Producido por: R. Foster, H. Betz, M. Metz, con el apoyo de ACCA y el Andrew Mellon Foundation. © Environmental & Conservation Programs, The Field Museum, Chicago, IL 60605 USA. [[email protected]] Rapid Color Guide # 80 versión 1.0 1 Aphelandra 2 Aphelandra 3 Sanchezia 4 Anacardium occidentale 5 Anacardium occidentale ACANTHACEAE ACANTHACEAE ACANTHACEAE ANACARDIACEAE ANACARDIACEAE 6 Astronium graveolens 7 Annona hypoglauca 8 Annona 9 Crematosperma 10 Cymbopetalum ANACARDIACEAE ANNONACEAE ANNONACEAE ANNONACEAE ANNONACEAE 11 Cymbopetalum 12 Duguetia flagellaris 13 Duguetia flagellaris 14 Duguetia flagellaris 15 Duguetia flagellaris ANNONACEAE ANNONACEAE ANNONACEAE ANNONACEAE ANNONACEAE 16 Duguetia 17 Guatteria acutissima cf. 18 Guatteria acutissima cf. 19 Guatteria 20 Klarobelia candida ANNONACEAE ANNONACEAE ANNONACEAE ANNONACEAE ANNONACEAE Madre de Dios, PERU WEB VERSION 2 TREES and SHRUBS of Centro Rio Amigos Robin Foster, Heike Betz, Hamilton Beltrán Photos by R. Foster & H. Betz, & a few by H. Beltran, T. Plowman, C. Taylor, I. de la Cerda. Produced by: R. Foster, H. Betz, M. Metz. Support from ACCA and the Andrew Mellon Foundation. © Environmental & Conservation Programs, The Field Museum, Chicago, IL 60605 USA. [[email protected]] Rapid Color Guide # 80 version 1.0 21 Klarobelia candida 22 Oxandra mediocris 23 Oxandra xylopioides 24 Rollinia fosteri 25 Rollinia mucosa ANNONACEAE ANNONACEAE ANNONACEAE ANNONACEAE ANNONACEAE 26 Rollinia mucosa 27 Ruizodendron ovale 28 Trigynaea duckei 29 Trigynaea duckei 30 Unonopsis ANNONACEAE ANNONACEAE ANNONACEAE ANNONACEAE ANNONACEAE 31 Xylopia cuspidata 32 Xylopia cuspidata 33 Xylopia ligustrifolia 34 Fusaea peruviana cf.
    [Show full text]
  • Field Identification of the 50 Most Common Plant Families in Temperate Regions
    Field identification of the 50 most common plant families in temperate regions (including agricultural, horticultural, and wild species) by Lena Struwe [email protected] © 2016, All rights reserved. Note: Listed characteristics are the most common characteristics; there might be exceptions in rare or tropical species. This compendium is available for free download without cost for non- commercial uses at http://www.rci.rutgers.edu/~struwe/. The author welcomes updates and corrections. 1 Overall phylogeny – living land plants Bryophytes Mosses, liverworts, hornworts Lycophytes Clubmosses, etc. Ferns and Fern Allies Ferns, horsetails, moonworts, etc. Gymnosperms Conifers, pines, cycads and cedars, etc. Magnoliids Monocots Fabids Ranunculales Rosids Malvids Caryophyllales Ericales Lamiids The treatment for flowering plants follows the APG IV (2016) Campanulids classification. Not all branches are shown. © Lena Struwe 2016, All rights reserved. 2 Included families (alphabetical list): Amaranthaceae Geraniaceae Amaryllidaceae Iridaceae Anacardiaceae Juglandaceae Apiaceae Juncaceae Apocynaceae Lamiaceae Araceae Lauraceae Araliaceae Liliaceae Asphodelaceae Magnoliaceae Asteraceae Malvaceae Betulaceae Moraceae Boraginaceae Myrtaceae Brassicaceae Oleaceae Bromeliaceae Orchidaceae Cactaceae Orobanchaceae Campanulaceae Pinaceae Caprifoliaceae Plantaginaceae Caryophyllaceae Poaceae Convolvulaceae Polygonaceae Cucurbitaceae Ranunculaceae Cupressaceae Rosaceae Cyperaceae Rubiaceae Equisetaceae Rutaceae Ericaceae Salicaceae Euphorbiaceae Scrophulariaceae
    [Show full text]
  • Downloaded on 06 October 2019
    bioRxiv preprint doi: https://doi.org/10.1101/825273; this version posted October 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Notes on the threatened lowland forests of Mt Cameroon and their endemics including Drypetes njonji sp. nov., with a key to species of Drypetes sect. Stipulares (Putranjivaceae). Martin Cheek1, Nouhou Ndam2, Andrew Budden1 1Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK 2Tetra Tech ARD - West Africa Biodiversity & Climate Change (WA BiCC) Program PMB CT58 Accra, Ghana Author for correspondence: [email protected] ABSTRACT Background and aims – This paper reports a further discovery of a new endemic threatened species to science in the context of long-term botanical surveys in the lowland coastal forests of Mount Cameroon specifically and generally in the Cross River-Sanaga interval of west-central Africa. These studies focus on species discovery and conservation through the Tropical Important Plant Areas programme. Methods – Normal practices of herbarium taxonomy have been applied to study the material collected. The relevant collections are stored in the Herbarium of the Royal Botanic Gardens, Kew, London and at the Limbe Botanic Garden, Limbe, and the Institute of Research in Agronomic Development – National Herbarium of Cameroon, Yaoundé. Key results – New species to science continue to be discovered from Mt Cameroon. Most of these species are rare, highly localised, and threatened by habitat destruction. These discoveries increase the justification for improved conservation management of surviving habitat.
    [Show full text]