<I>Muscodor Cinnamomi</I>, a New Endophytic Species from <I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volatile Hydrocarbons from Endophytic Fungi and Their Efficacy in Fuel Production and Disease Control B
Naik Egyptian Journal of Biological Pest Control (2018) 28:69 Egyptian Journal of https://doi.org/10.1186/s41938-018-0072-x Biological Pest Control REVIEW ARTICLE Open Access Volatile hydrocarbons from endophytic fungi and their efficacy in fuel production and disease control B. Shankar Naik Abstract Endophytic fungi are the microorganisms which asymptomatically colonize internal tissues of plant roots and shoots. Endophytes produce a broad spectrum of odorous compounds with different physicochemical and biological properties that make them useful in both industry and agriculture. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds with high densities, which include terpenes, flavonoids, alkaloids, quinines, cyclohexanes, and hydrocarbons. Many of these compounds showed anti-microbial, anti-oxidant, anti-neoplastic, anti-leishmanial and anti-proliferative activities, cytotoxicity, and fuel production. In this review, the role of volatile compounds produced by fungal endophytes in fuel production and their potential application in biological control is discussed. Keywords: Endophytic fungi, Biocontrol, Biofuel, Mycodiesel, Volatile organic compounds Background activities, and cytotoxicity (Firakova et al. 2007;Korpiet Endophytic fungi are the microorganisms, which asymp- al. 2009; Kharwar et al. 2011; Zhao et al. 2016 and Wu et tomatically colonize the internal tissues of plant roots and al. 2016). shoots (Bacon and White 2000). Endophytes provide Volatile organic compounds (VOCs) are a large group beneficial effects on host plants in deterring pathogens, of carbon-based chemicals with low molecular weights herbivores, increased tolerance to stress drought, low soil and high vapor pressure produced by living organisms as fertility, and enhancement of plant biomass (Redman et al. -
(12) United States Patent (10) Patent N0.: US 7,267,975 B2 Strobe] Et A1
US007267975B2 (12) United States Patent (10) Patent N0.: US 7,267,975 B2 Strobe] et a1. (45) Date of Patent: Sep. 11,2007 (54) METHODS AND COMPOSITIONS Chen, J ., et al. “Termites fumigate their nests with naphthalene,” RELATING TO INSECT REPELLENTS Nature. 392:558-559 (Apr. 1998). FROM A NOVEL ENDOPHYTIC FUNGUS Daisy, B. H. et al. “Muscodor vitigenus, anam. sp. nov. an endophyte from Paullinia paullinioides, ” Mycotaxon 84:39-50. (2002). (75) Inventors: Gary Strobe], BoZeman, MT (US); Daisy, B. et a1 “Napthalene, an insect repellent, is produced by Bryn Daisy, Anchorage, AK (U S) Muscodor vitigenus, a novel endopythic fungus”, Microbiology (2002), 148, 3737-3747. (73) Assignee: Montana State University, BoZeman, Guarro, J. et al. “Developments in Fungal Taxonomy,” Clin MT (US) Microbiol Rev. 12(3):454-500, (Jul. 1999). ( * ) Notice: Subject to any disclaimer, the term of this Hawksworth, D. C. et al. “Where are the undescribed fungi?” patent is extended or adjusted under 35 Phytopath 87(9):888-891 (1987). U.S.C. 154(b) by 234 days. Heath, R. R., et al. “Development and evaluation of systems to collect volatile semiochemicals from insects and plants using a (21) App1.No.: 10/687,546 charcoal-infused medium for air puri?cation,” Journal of Chemical Ecology. 18(7):1209-1226 (1992). (22) Filed: Oct. 15, 2003 Mitchell, J. I., et al. “Sequence or Structure? A Short Review on the Application of Nucleic Acid Sequence Information to Fungal Tax (65) Prior Publication Data onomy,” Mycologist. (1995). US 2004/0185031 A1 Sep. 23, 2004 Morrill, W. L., et al. -
Evaluation of Their Potential As a Biological Control Agent for Ganoderma Boninense, a Pathogenic Fungus of Elaeis Guineensis
Characterization of new Muscodor padawan and Muscodor sarawak, isolated from Sarawak, Malaysia: evaluation of their potential as a biological control agent for Ganoderma boninense, a pathogenic fungus of Elaeis guineensis By Noreha Mahidi A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy at Swinburne University of Technology 2015 Abstract The aim of this thesis is to isolate endophytic Muscodor-like fungi that produces anti-Ganoderma volatile chemicals, from the rich biodiversity resources of Sarawak. These fungi were then examined for their potential to be developed as biological control agents to control Ganoderma boninense, a pathogenic fungus that causes basal stem rot disease in oil palm, Elaeis guineensis. Ten new isolates of endophytic Muscodor-like fungi were successfully obtained from leaves of different plants of Cinnamomum javanicum collected from the Padawan forest in Kuching, Sarawak, Malaysia, using a co-culture technique with Muscodor albus as the selection organism. Two isolates, Muscodor padawan and Muscodor sarawak were selected for further investigation. Muscodor padawan, when grown on potato dextrose agar, exhibits poor production of aerial mycelia, a yellowish colour, with 20 to 28mm colony diameter after 10 days of incubation at 250C. Muscodor sarawak forms whitish colony with a diameter of 23 to 30mm after 10 days of incubation at 250C and produces moderate aerial mycelia on potato dextrose agar. Scanning electron micrograph of the aerial mycelia of M. padawan showed hyphal formed coiled-like structures, spider mat-like attachments on the surface of hyphae and occasionally the presence of chlamydospores and clumps of hyphae. Formation of new hyphae at lateral main hyphae, chlamydospores at intermediate hyphae, half coiled hyphae at the tip and a strip of hyphae attached by lateral hyphae that formed short bridge-like structure were found in M. -
INTERNATIONAL JOURNAL of CURRENT RESEARCH International Journal of Current Research Vol
z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 11, Issue, 11, pp.8323-8331, November, 2019 DOI: https://doi.org/10.24941/ijcr.37321.11.2019 ISSN: 0975-833X RESEARCH ARTICLE A SHORT REVIEW – ENDOPHYTIC FUNGI IN MEDICINAL PLANTS *Manisha R. Survase and Santosh D. Taware Mahatma Gandhi Mission, Institute of Biosciences and Technology, Aurangabad-431003, India ARTICLE INFO ABSTRACT Article History: Medicinal plants are known to be used for centuries which are still being used for their health benefits Received 14th August, 2019 and are a valuable source for bioprospecting endophytes. These days medicinal plants are exploited Received in revised form for the isolation of plant-derived drugs as they are effective and have relatively less or no side effect, 18th September, 2019 due to which medicinal plants are getting exhausted. Endophytes are ubiquitous organisms found in Accepted 25th October, 2019 plant bodies that constitute an important component of microbial diversity. Endophytic fungi reside in th Published online 26 November, 2019 the host plant without causing apparent symptoms of infection. Endophytes are gaining attention as a subject for research, medicinal, agricultural potential and application in plant pathology due to their Key Words: benefits for the host plant in defense and development. The review reveals the importance of endophytic fungi from medicinal plants as a source of bioactive and chemically novel compounds. Endophytes, Medicinal plants transmission, Endophyte-Host interaction, Diversity. Copyright © 2019, Manisha R. Survase and Santosh D. Taware. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
UC Riverside UC Riverside Previously Published Works
UC Riverside UC Riverside Previously Published Works Title Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Permalink https://escholarship.org/uc/item/3fm155t1 Authors U'Ren, Jana M Miadlikowska, Jolanta Zimmerman, Naupaka B et al. Publication Date 2016-05-01 DOI 10.1016/j.ympev.2016.02.010 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California *Graphical Abstract (for review) ! *Highlights (for review) • Endophytes illuminate Xylariaceae circumscription and phylogenetic structure. • Endophytes occur in lineages previously not known for endophytism. • Boreal and temperate lichens and non-flowering plants commonly host Xylariaceae. • Many have endophytic and saprotrophic life stages and are widespread generalists. *Manuscript Click here to view linked References 1 Contributions of North American endophytes to the phylogeny, 2 ecology, and taxonomy of Xylariaceae (Sordariomycetes, 3 Ascomycota) 4 5 6 Jana M. U’Ren a,* Jolanta Miadlikowska b, Naupaka B. Zimmerman a, François Lutzoni b, Jason 7 E. Stajichc, and A. Elizabeth Arnold a,d 8 9 10 a University of Arizona, School of Plant Sciences, 1140 E. South Campus Dr., Forbes 303, 11 Tucson, AZ 85721, USA 12 b Duke University, Department of Biology, Durham, NC 27708-0338, USA 13 c University of California-Riverside, Department of Plant Pathology and Microbiology and Institute 14 for Integrated Genome Biology, 900 University Ave., Riverside, CA 92521, USA 15 d University of Arizona, Department of Ecology and Evolutionary Biology, 1041 E. Lowell St., 16 BioSciences West 310, Tucson, AZ 85721, USA 17 18 19 20 21 22 23 24 * Corresponding author: University of Arizona, School of Plant Sciences, 1140 E. -
Recent Progress in Biodiversity Research on the Xylariales and Their Secondary Metabolism
The Journal of Antibiotics (2021) 74:1–23 https://doi.org/10.1038/s41429-020-00376-0 SPECIAL FEATURE: REVIEW ARTICLE Recent progress in biodiversity research on the Xylariales and their secondary metabolism 1,2 1,2 Kevin Becker ● Marc Stadler Received: 22 July 2020 / Revised: 16 September 2020 / Accepted: 19 September 2020 / Published online: 23 October 2020 © The Author(s) 2020. This article is published with open access Abstract The families Xylariaceae and Hypoxylaceae (Xylariales, Ascomycota) represent one of the most prolific lineages of secondary metabolite producers. Like many other fungal taxa, they exhibit their highest diversity in the tropics. The stromata as well as the mycelial cultures of these fungi (the latter of which are frequently being isolated as endophytes of seed plants) have given rise to the discovery of many unprecedented secondary metabolites. Some of those served as lead compounds for development of pharmaceuticals and agrochemicals. Recently, the endophytic Xylariales have also come in the focus of biological control, since some of their species show strong antagonistic effects against fungal and other pathogens. New compounds, including volatiles as well as nonvolatiles, are steadily being discovered from these fi 1234567890();,: 1234567890();,: ascomycetes, and polythetic taxonomy now allows for elucidation of the life cycle of the endophytes for the rst time. Moreover, recently high-quality genome sequences of some strains have become available, which facilitates phylogenomic studies as well as the elucidation of the biosynthetic gene clusters (BGC) as a starting point for synthetic biotechnology approaches. In this review, we summarize recent findings, focusing on the publications of the past 3 years. -
Emarcea Castanopsidicola Gen. Et Sp. Nov. from Thailand, a New Xylariaceous Taxon Based on Morphology and DNA Sequences
STUDIES IN MYCOLOGY 50: 253–260. 2004. Emarcea castanopsidicola gen. et sp. nov. from Thailand, a new xylariaceous taxon based on morphology and DNA sequences Lam. M. Duong2,3, Saisamorn Lumyong3, Kevin D. Hyde1,2 and Rajesh Jeewon1* 1Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China; 2Mushroom Research Centre, 128 Mo3 Ban Phadeng, PaPae, Maetaeng, Chiang Mai 50150, Thailand 3Department of Biology, Chiang Mai University, Chiang Mai, Thailand *Correspondence: Rajesh Jeewon, [email protected] Abstract: We describe a unique ascomycete genus occurring on leaf litter of Castanopsis diversifolia from monsoonal forests of northern Thailand. Emarcea castanopsidicola gen. et sp. nov. is typical of Xylariales as ascomata develop beneath a blackened clypeus, ostioles are papillate and asci are unitunicate with a J+ subapical ring. The ascospores in Emarcea cas- tanopsidicola are, however, 1-septate, hyaline and long fusiform, which distinguishes it from other genera in the Xylariaceae. In order to substantiate these morphological findings, we analysed three sets of sequence data generated from ribosomal DNA gene (18S, 28S and ITS) under different optimality criteria. We analysed this data to provide further information on the phylogeny and taxonomic position of this new taxon. All phylogenies were essentially similar and there is conclusive mo- lecular evidence to support the establishment of Emarcea castanopsidicola within the Xylariales. Results indicate that this taxon bears close phylogenetic affinities to Muscodor (anamorphic Xylariaceae) and Xylaria species and therefore this genus is best accommodated in the Xylariaceae. Taxonomic novelties: Emarcea Duong, R. Jeewon & K.D. -
Efficacy of the Biofumigant Fungus Muscodor Albus (Ascomycota
BIOLOGICAL AND MICROBIAL CONTROL Efficacy of the Biofumigant Fungus Muscodor albus (Ascomycota: Xylariales) for Control of Codling Moth (Lepidoptera: Tortricidae) in Simulated Storage Conditions 1 L. A. LACEY, D. R. HORTON, D. C. JONES, H. L. HEADRICK, AND L. G. NEVEN USDAÐARS, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Road, Wapato, WA 98951 J. Econ. Entomol. 102(1): 43Ð49 (2009) ABSTRACT Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), a serious pest of pome fruit, is a threat to exportation of apples (Malus spp.) because of the possibility of shipping infested fruit. The need for alternatives to fumigants such as methyl bromide for quarantine security of exported fruit has encouraged the development of effective fumigants with reduced side effects. The endophytic fungus Muscodor albus Worapong, Strobel and Hess (Ascomycota: Xylariales) produces volatile compounds that are biocidal for several pest organisms, including plant pathogens and insect pests. The objectives of our research were to determine the effects of M. albus volatile organic compounds (VOCs) on codling moth adults, neonate larvae, larvae in infested apples, and diapausing cocooned larvae in simulated storage conditions. Fumigation of adult codling moth with VOCs produced by M. albus for 3 d and incubating in fresh air for 24 h at 25ЊC resulted in 81% corrected mortality. Four- and 5-d exposures resulted in higher mortality (84 and 100%, respectively), but control mortality was also high due to the short life span of the moths. Exposure of neonate larvae to VOCs for3donapples and incubating for 7 d resulted in 86% corrected mortality. Treated larvae were predominantly Þrst instars, whereas 85% of control larvae developed to second and third instars. -
Downloaded from 1 Week at 25±2 °C on PDA Were Carried out According to the Genbank
Ann Microbiol (2013) 63:1341–1351 DOI 10.1007/s13213-012-0593-6 ORIGINAL ARTICLE Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand Nakarin Suwannarach & Jaturong Kumla & Boonsom Bussaban & Kevin D. Hyde & Kenji Matsui & Saisamorn Lumyong Received: 1 August 2012 /Accepted: 13 December 2012 /Published online: 9 January 2013 # Springer-Verlag Berlin Heidelberg and the University of Milan 2013 Abstract The genus Muscodor comprises fungal endo- Introduction phytes which produce mixtures of volatile compounds (VOCs) with antimicrobial activities. In the present study, Endophytes colonize healthy inter- and intracellular living tissue four novel species, Muscodor musae, M. oryzae, M. suthe- of host plants, typically without causing any visible symptoms pensis and M. equiseti were isolated from Musa acuminata, of disease (Azevedo et al. 2000; Saikkonen et al. 2004; Hyde Oryza rufipogon, Cinnamomum bejolghota and Equisetum and Soytong 2008). Endophytes also protect their hosts from debile, respectively; these are medicinal plants of northern infectious agents and adverse conditions by secreting bioactive Thailand. The new Muscodor species are distinguished secondary metabolites (Azevedo et al. 2000; Gao et al. 2010). based on morphological and physiological characteristics The highest plant biodiversity biomes are found in tropical and and on molecular analysis of ITS-rDNA. Volatile compound temperate rainforest regions, and plants in these areas also analysis showed that 2-methylpropanoic acid was the main possess a high endophyte diversity (Strobel 2003). Muscodor VOCs produced by M. musae, M. suthepensis and M. equi- species are volatile, producing endophytes known from certain seti. The mixed volatiles from each fungus showed in vitro tropical tree and vine species in Australia, Central and South antimicrobial activity. -
Muscodor Fengyangensis Sp. Nov. from Southeast China: Morphology, Physiology and Production of Volatile Compounds
fungal biology 114 (2010) 797e808 journal homepage: www.elsevier.com/locate/funbio Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds Chu-Long ZHANGa, Guo-Ping WANGb, Li-Juan MAOc, Monika KOMON-ZELAZOWSKAd, Zhi-Lin YUANa, Fu-Cheng LINa,*, Irina S. DRUZHININAd, Christian P. KUBICEKd,* aState Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China bZhejiang Dayang Chemical Co. LTD, Jiande 311616, China c985-Institute of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310029, China dInstitute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, 1060 Vienna, Austria article info abstract Article history: The fungal genus Muscodor was erected on the basis of Muscodor albus, an endophytic fun- Received 24 April 2010 gus originally isolated from Cinnamomum zeylanicum. It produces a mixture of volatile or- Received in revised form ganic compounds (VOCs) with antimicrobial activity that can be used as mycofumigants. 12 July 2010 The genus currently comprises five species. Here we describe the isolation and character- Accepted 20 July 2010 ization of a new species of Muscodor on the basis of five endophytic fungal strains from Available online 29 July 2010 leaves of Actinidia chinensis, Pseudotaxus chienii and an unidentified broad leaf tree in the Corresponding Editor: Marc Stadler Fengyangshan Nature Reserve, Zhejiang Province, Southeast of China. They exhibit white colonies on potato dextrose agar (PDA) media, rope-like mycelial strands, but did not spor- Keywords: ulate. The optimum growth temperature is 25 C. The results of a phylogenetic analysis Antimicrobial activity based on four loci (ITS1e5.8SeITS2, 28S rRNA, rpb2 and tub1) are consistent with the hy- ITS rRNA pothesis that these five strains belong to a single taxon. -
The Novel Fungal Genus-Muscodor and Its Biological Promise
Harnessing endophytes for industrial microbiology Gary Strobel Department of Plant Sciences Montana State University Bozeman, Montana, 59717 Phone: 406 994 5148 Email: [email protected] 1 Summary Endophytic microorganisms exist within the living tissues of most plant species. They are most abundant in rainforest plants. Novel endophytes usually have associated with them novel secondary natural products and or processes. Muscodor is a novel endophytic fungal genus that produces bioactive volatile organic compounds (VOC’s). This fungus as well as its VOC’s has enormous potential for uses in agriculture, industry, and medicine. Muscodor albus produces a mixture of VOC’s that act synergistically in being lethal to a wide variety of plant and human pathogenic fungi and bacteria. This mixture of gases consists primarily of various alcohols, acids, esters, ketones, and lipids. Artificial mixtures of the VOC’s mimic the biological effects of the fungal VOC’s when tested against a wide range of fungal and bacterial pathogens. Many practical applications for “mycofumigation” by M. albus have been investigated and the fungus is now in the market place. 2 Introduction Microorganisms have long served mankind by virtue of the myriad of the enzymes and secondary compounds that they make [1]. Furthermore, only a relatively small number of microbes are used directly in various industrial applications i.e. cheese/ wine/ beer making as well as in environmental clean –up operations and for the biological control of pests and pathogens. It seems that we have by no means exhausted the world for its hidden microbes. A much more comprehensive search of the niches on our earth may yet reveal novel microbes having direct usefulness to human societies. -
CHAPTER 2 LITERATURE REVIEW 2.1 Introduction of Fungi Fungi Are One of the Most Diverse Life from on Earth and Predicting Number
CHAPTER 2 LITERATURE REVIEW 2.1 Introduction of fungi Fungi are one of the most diverse life from on earth and predicting number of fungal species is considered important among mycologists (Hyde, 2001). Fungi are a group of organism that are classified within their own kingdom, the fungal kingdom, as they are neither plants nor animals. The fungi are fact, an ancient lineage that first appear in the fossil recode as spores in conjunction with the first appearance of land plants, about 500450 million years ago (Cairney, 2000). Fungi are eukaryotic and heterotrophic, lacking chlorophyll (Moncalvo, 2005). Most of fungi have an alternating haploid/diploid lifecycle, as seen in other sexual organism, but they also have an anamorphic lifecycle that persists without sexual recombination (Bidochka and De Koning, 2001). Most fungi are saprobic living on dead organic matter, in the soil or as pathogens and endophytes of plant and animal. The six fungal phyla accepted include the Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota, Microsporidia and Zygomycota (Kirk et al., 2008). Currently about 80,060 species are known. Rossman (1994) estimated the number of fungal species in the world was just over 1 million (Table 2.1) based on information in the US National Fungus Collection database, an All Taxon Biodiversity Inventory (ATBI) of tropical site, and the literature. Recent studies suggested that fungal diversity is greater in the tropics than in temperate regions, and might prove to be hyper-diverse, 7 and as a consequence 1.5 million species will eventually be discovered (Fröhlich and Hyde, 1999; Arnold et al., 2000). Table 2.1 Major groups of fungi and estimated world species number (Rossman, 1994).