Design and Implementation of Image Processing and Compression Algorithms for a Miniature Embedded Eye Tracking System Pavel Morozkin

Total Page:16

File Type:pdf, Size:1020Kb

Design and Implementation of Image Processing and Compression Algorithms for a Miniature Embedded Eye Tracking System Pavel Morozkin Design and implementation of image processing and compression algorithms for a miniature embedded eye tracking system Pavel Morozkin To cite this version: Pavel Morozkin. Design and implementation of image processing and compression algorithms for a miniature embedded eye tracking system. Signal and Image processing. Sorbonne Université, 2018. English. NNT : 2018SORUS435. tel-02953072 HAL Id: tel-02953072 https://tel.archives-ouvertes.fr/tel-02953072 Submitted on 29 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Institut supérieur d’électronique de Paris (ISEP) École doctorale : « Informatique, télécommunications & électronique de Paris » Design and Implementation of Image Processing and Compression Algorithms for a Miniature Embedded Eye Tracking System Par Pavel MOROZKIN Thèse de doctorat de Traitement du signal et de l’image Présentée et soutenue publiquement le 29 juin 2018 Devant le jury composé de : M. Ales PROCHAZKA Rapporteur M. François-Xavier COUDOUX Rapporteur M. Basarab MATEI Examinateur M. Habib MEHREZ Examinateur Mme Maria TROCAN Directrice de thèse M. Marc Winoc SWYNGHEDAUW Encadrant Abstract Human-Machine Interaction (HMI) progressively becomes a part of coming future. Being an example of HMI, embedded eye tracking systems allow user to interact with objects placed in a known environment by using natural eye movements. The EyeDee™ portable eye tracking solution (developed by SuriCog) is an example of an HMI- based product, which includes Weetsy™ portable wire/wireless system (including Weetsy™ frame and Weetsy™ board), π-Box™ remote smart sensor and PC-based processing unit running SuriDev eye/head tracking and gaze estimation software, delivering its result in real-time to a client’s application through SuriSDK (Software Development Kit). Due to wearable form factor developed eye-tracking system must conform to certain constraints, where the most important are low power consumption, low heat generation low electromagnetic radiation, low MIPS (Million Instructions per Second), as well as support wireless eye data transmission and be space efficient in general. Eye image acquisition, finding of the eye pupil ROI (Region Of Interest), compression of ROI and its wireless transmission in compressed form over a medium are very beginning steps of the entire eye tracking algorithm targeted on finding coordinates of human eye pupil. Therefore, it is necessary to reach the highest performance possible at each step in the entire chain. Applying of image compression allows to drastically reduce amount of data to be sent to a remotely located PC-based processing unit performing eye tracking. However, to reach maximal performance image compression algorithms must be executed at the same frequency as eye image acquisition frequency (100 Hz minimum). Such a high frequency makes a certain constraints on several compression system parameters as well as compressed eye images, where the major ones are size of compressed eye image, quality of decompressed eye image, time needed to perform compression/decompression, computational complexity, operating memory requirements and some others. In contrast with state-of-the-art general-purpose image compression systems, it is possible to construct an entire new eye tracking application-specific image processing and compression methods, approaches and algorithms, design and implementation of which are the goal of this thesis. ii Contents Abstract ................................................................................................................................................... ii Contents .................................................................................................................................................. iii List of Figures ........................................................................................................................................... v List of Tables ......................................................................................................................................... viii List of Abbreviations ............................................................................................................................... ix 1 Introduction ......................................................................................................................................... 1 1.1 Objective and Scope of the Research ........................................................................................... 2 1.2 Summary of the Contributions .................................................................................................... 2 1.3 Thesis Outline .............................................................................................................................. 4 1.4 Thesis Information ....................................................................................................................... 4 2 Theoretical Part .................................................................................................................................. 5 2.1 Introduction ................................................................................................................................. 5 2.2 Eye Tracking Specifics ................................................................................................................. 5 2.3 Image Nature and Terminology Specifics .................................................................................... 8 2.4 Image Compression Fundamentals .............................................................................................. 9 2.4.1 Using Advantages of Human Visual System ...................................................................... 11 2.4.2 Image Compression Building Blocks .................................................................................. 12 2.4.3 Image Compression Techniques (JPEG and JPEG 2000) ................................................. 13 2.4.4 Video Compression Techniques (H.264 and H.265) ........................................................... 14 2.4.5 Image Compression Recent Improvements......................................................................... 15 2.5 Machine Learning ...................................................................................................................... 17 2.6 Neural Network Fundamentals .................................................................................................. 19 2.6.1 Neural Network Basics ....................................................................................................... 19 2.6.2 Multilayer Perceptron and Convolutional Neural Network ............................................... 30 2.6.3 Some Related Work in ANNs/CNNs/DNNs ...................................................................... 32 2.7 Eye Tracking System Application Specifics ............................................................................... 33 2.8 Computational Complexity and Implementation Aspect .......................................................... 35 2.9 Conclusion .................................................................................................................................. 37 3 Methodology ...................................................................................................................................... 39 3.1 Introduction ............................................................................................................................... 39 3.2 SuriCog's Eye Tracking Application Specifics ........................................................................... 39 3.2.1 SuriCog's Eye Tracking Algorithm .................................................................................... 39 3.2.2 SuriCog's Application-Specific Image Compression ........................................................... 40 3.2.3 Finding of the Eye Image Compression Algorithm Requirements ..................................... 40 3.2.3.1 Finding Maximal Time of Eye Image Compression/Decompression .......................... 41 3.2.3.2 Finding Minimal Size of Compressed Eye Image........................................................ 42 3.2.3.3 Finding Minimal Quality of Decompressed Eye Image .............................................. 42 3.2.3.4 Considerations on Ability to Operate in Lossy Transmission Medium ...................... 43 3.3 Eye Image Compression Alternative Approaches ...................................................................... 44 3.3.1 3D Modeling of Pupil Surface ............................................................................................ 44 3.3.2 Dictionary Based Eye Image Compression ......................................................................... 46 3.3.3 Dictionary + DCT Based Eye Image Compression ........................................................... 48 3.3.4 Schemes with Shared Model ..............................................................................................
Recommended publications
  • Institute for Clinical and Economic Review
    INSTITUTE FOR CLINICAL AND ECONOMIC REVIEW FINAL APPRAISAL DOCUMENT CORONARY COMPUTED TOMOGRAPHIC ANGIOGRAPHY FOR DETECTION OF CORONARY ARTERY DISEASE January 9, 2009 Senior Staff Daniel A. Ollendorf, MPH, ARM Chief Review Officer Alexander Göhler, MD, PhD, MSc, MPH Lead Decision Scientist Steven D. Pearson, MD, MSc President, ICER Associate Staff Michelle Kuba, MPH Sr. Technology Analyst Marie Jaeger, B.S. Asst. Decision Scientist © 2009, Institute for Clinical and Economic Review 1 CONTENTS About ICER .................................................................................................................................. 3 Acknowledgments ...................................................................................................................... 4 Executive Summary .................................................................................................................... 5 Evidence Review Group Deliberation.................................................................................. 17 ICER Integrated Evidence Rating.......................................................................................... 25 Evidence Review Group Members........................................................................................ 27 Appraisal Overview.................................................................................................................. 30 Background ................................................................................................................................ 33
    [Show full text]
  • Acronyms Abbreviations &Terms
    Acronyms Abbreviations &Terms A Capability Assurance Job Aid FEMA P-524 / July 2009 FEMA Acronyms Abbreviations and Terms Produced by the National Preparedness Directorate, National Integration Center, Incident Management Systems Integration Division Please direct requests for additional copies to: FEMA Publications (800) 480-2520 Or download the document from the Web: www.fema.gov/plan/prepare/faat.shtm U.S. Department of Homeland Security Federal Emergency Management Agency The FEMA Acronyms, Abbreviations & Terms (FAAT) List is not designed to be an authoritative source, merely a handy reference and a living document subject to periodic updating. Inclusion recognizes terminology existence, not legitimacy. Entries known to be obsolete (see new “Obsolete or Replaced” section near end of this document) are included because they may still appear in extant publications and correspondence. Your comments and recommendations are welcome. Please electronically forward your input or direct your questions to: [email protected] Please direct requests for additional copies to: FEMA Publications (800) 480-2520 Or download the document from the Web: www.fema.gov/plan/prepare/faat.shtm 2SR Second Stage Review ABEL Agent Based Economic Laboratory 4Wd Four Wheel Drive ABF Automatic Broadcast Feed A 1) Activity of Isotope ABHS Alcohol Based Hand Sanitizer 2) Ampere ABI Automated Broker Interface 3) Atomic Mass ABIH American Board of Industrial Hygiene A&E Architectural and Engineering ABIS see IDENT A&FM Aviation and Fire Management ABM Anti-Ballistic Missile
    [Show full text]
  • Parallel Heterogeneous Computing a Case Study on Accelerating JPEG2000 Coder
    Parallel Heterogeneous Computing A Case Study On Accelerating JPEG2000 Coder by Ro-To Le M.Sc., Brown University; Providence, RI, USA, 2009 B.Sc., Hanoi University of Technology; Hanoi, Vietnam, 2007 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Engineering at Brown University PROVIDENCE, RHODE ISLAND May 2013 c Copyright 2013 by Ro-To Le This dissertation by Ro-To Le is accepted in its present form by The School of Engineering as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date R. Iris Bahar, Ph.D., Advisor Date Joseph L. Mundy, Ph.D., Advisor Recommended to the Graduate Council Date Vishal Jain, Ph.D., Reader Approved by the Graduate Council Date Peter M. Weber, Dean of the Graduate School iii Vitae Roto Le was born in Duc-Tho, Ha-Tinh, a countryside area in the Midland of Vietnam. He received his B.Sc., with Excellent Classification, in Electronics and Telecommunications from Hanoi University of Technology in 2007. Soon after re- ceiving his B.Sc., Roto came to Brown University to start a Ph.D. program in Com- puter Engineering in Fall 2007. His Ph.D. program was sponsored by a fellowship from the Vietnam Education Foundation, which was selectively nominated by the National Academies’ scientists. During his Ph.D. program, he earned a M.Sc. degree in Computer Engineering in 2009. Roto has been studying several aspects of modern computing systems, from hardware architecture and VLSI system design to high-performance software design. He has published several articles in designing a parallel JPEG2000 coder based on heterogeneous CPU-GPGPU systems and designing novel Three-Dimensional (3D) FPGA architectures.
    [Show full text]
  • Developing New Afm Imaging Technique and Software for Dna Mismatch Repair
    DEVELOPING NEW AFM IMAGING TECHNIQUE AND SOFTWARE FOR DNA MISMATCH REPAIR Zimeng Li A dissertation submitted to the faulty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy. Chapel Hill 2019 Approved by: Dorothy Erie Tom Clegg Richard Superfine Wu Yue Tom Kunkel Paul Modrich ©2019 Zimeng Li ALL RIGHTS RESERVED ii ABSTRACT Zimeng Li: Developing New AFM Imaging Technique and Software for DNA Mismatch Repair (Under the direction of Dorothy Erie) Atomic Force Microscopy (AFM) is a powerful technique to study the assembly and function of multiprotein-DNA complexes, such as the MutS-MutL-DNA complex in DNA mismatch repair. As a high-resolution, single-molecule imaging technique, AFM has the advantage of directly visualizing individual protein-DNA complexes in their native conformations, but it has two severe limitations. First, it is unable to resolve the location of the DNA inside the protein. Second, it lacks a comprehensive software that is tailored for single- molecule studies and high-throughput analyses. To tackle these issues, we developed DREEM (Dual-Resonance-frequency-Enhanced Electrostatic Force Microscopy). DREEM is a new AFM imaging method that is capable of resolving DNA path inside the protein-DNA complex. With DREEM, we can reveal the path of the DNA wrapping around histones in nucleosomes and the path of DNA through multiprotein mismatch repair complexes. We also developed Image Metrics, a full-featured AFM software package that excels in high-throughput shape analysis and single-molecule analysis.
    [Show full text]
  • Move Ban for Industry Types
    Urm twr MATAWAN, N. J., THURSDAY, MARCH 7, 1963 M«mbnr 84th YEAR — 36th WEEK National Editorial Au o c IqUom New Jtrte y I*rca»a Association Single Copy Tea Cent* Cliffwood Beach Man Killed hi Houle 35 rl. ruck-Car Accident Ifr ) w ; r Smoky Blaze lakes Three Lives In Keyport M m m i lyes Candidates Kowalski, Devino i Seek Nominations ^ , Frank Devmo-und bi^numd Ko- i walskt ihis week announced they i ! will seek the Republican nominii-! Peter C. Olson, 71, ot Cliffwood Beach was fatally injured Friday i highway.' The (ruck driver, Richard Watkins, Brooklyn, Juckkmfed his evening <vlu>n his car collided with a ttiictor-traller on Route 33, mirth, vehicle an ho attempted to avoid tlie crash. The Olsen car is shown m of lluilet Ave-, Rarltun Township. The accident occurred when Mr.: Ihe background. Olsen was leaving a parking lot, attempting to enter the snow-sllckcd • j . _ ‘ FRANK DEVINO At School R e g io n a l Bill M e e t lion m next month s pi unary elec­ Applegate, H yrne tion as candidates tor two seats Beginning next month, ull reg- 1 on the M aiaw an low nship u>mm>i. Assemblyman Clifton T. Barka- i irst aid oTuirts to save the lives of three persons t men and-M r. Klelnschnm ll was found in an upstair* uiarly scheduled meetings of (lie i let? to be idled this year. 1 lnw, Monmouth. and Joseph Min- • faded last night when a smoky wall fire charred and; bedroom.
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]
  • Nanosurf Operating Instructions (Naio).Book
    Nanosurf NaioAFM Operating Instructions for Naio Control Software Version 3.6 “NANOSURF” AND THE NANOSURF LOGO ARE TRADEMARKS OF NANOSURF AG, REGISTERED AND/OR OTHERWISE PROTECTED IN VARIOUS COUNTRIES. COPYRIGHT © NOVEMBER 2015, NANOSURF AG, SWITZERLAND. OPERATING INSTRUCTIONS V3.6R0, BT05386-22. Table of contents Table of contents PART A: INTRODUCTION TO THE INSTRUMENT CHAPTER 1: The NaioAFM 15 1.1: Introduction.............................................................................................. 16 1.2: Components of the system...................................................................... 16 1.2.1: Contents of the tool set ..................................................................................17 1.3: Connectors, indicators and controls....................................................... 18 CHAPTER 2: Installing the NaioAFM 21 2.1: Installing the Naio control software ....................................................... 22 2.1.1: Preparation..........................................................................................................22 2.1.2: Installation...........................................................................................................22 2.2: Installing the hardware............................................................................ 23 CHAPTER 3: Preparing for measurement 25 3.1: Introduction.............................................................................................. 26 3.2: Initializing the NaioAFM system ...........................................................
    [Show full text]
  • A Robust Multilayer Image Steganography Method Based on a Randomized Lsb Algorithm
    International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 9, September 2018, pp. 272–284, Article ID: IJMET_09_09_031 Available online at https://iaeme.com/Home/issue/IJMET?Volume=9&Issue=9 ISSN Print: 0976-6340 and ISSN Online: 0976-6359 © IAEME Publication Scopus Indexed A ROBUST MULTILAYER IMAGE STEGANOGRAPHY METHOD BASED ON A RANDOMIZED LSB ALGORITHM Saad Almutairi Faculty of Computers and Information Technology, University of Tabuk, Tabuk City, Saudia Arabi Abdulgader Almutairi College of Sciences and arts in ArRass, Qassim University, Qassim, Kingdom of Saudi Arabia ABSTRACT Recently, the demand for the uses of the steganography techniques to exchange a hidden secret data throughout unsecure networks has increased substantially. Nonetheless, although there are many techniques and methods out there in steganography field, a further researches need to be conducted in order to come up with a new secure techniques and methods. Thus, our research proposes a new robust multilayer image steganography method called MITEGO method that is based on a randomized LSB algorithm to overcome the weaknesses of the previous related works in the field, and to provide more secure image steganography at different points. MITEGO method follows a set of rules to create a stego image object (stego file) to embed and extract a secret message based on two layers: Hardening Layer and Embed/Extract Layer. Subsequently, MiTEGOsoft software tool is developed based on MITEGO method. Finally, MITEGO method is evaluated based on experiments and analysis of corresponding results. The research calculated Peak Signal-to-Noise Ratio (PSNR) in decibel (dB) unit by using ImageMagick software tool for each generated stego file.
    [Show full text]
  • Designing and Developing a Model for Converting Image Formats Using Java API for Comparative Study of Different Image Formats
    International Journal of Scientific and Research Publications, Volume 4, Issue 7, July 2014 1 ISSN 2250-3153 Designing and developing a model for converting image formats using Java API for comparative study of different image formats Apurv Kantilal Pandya*, Dr. CK Kumbharana** * Research Scholar, Department of Computer Science, Saurashtra University, Rajkot. Gujarat, INDIA. Email: [email protected] ** Head, Department of Computer Science, Saurashtra University, Rajkot. Gujarat, INDIA. Email: [email protected] Abstract- Image is one of the most important techniques to Different requirement of compression in different area of image represent data very efficiently and effectively utilized since has produced various compression algorithms or image file ancient times. But to represent data in image format has number formats with time. These formats includes [2] ANI, ANIM, of problems. One of the major issues among all these problems is APNG, ART, BMP, BSAVE, CAL, CIN, CPC, CPT, DPX, size of image. The size of image varies from equipment to ECW, EXR, FITS, FLIC, FPX, GIF, HDRi, HEVC, ICER, equipment i.e. change in the camera and lens puts tremendous ICNS, ICO, ICS, ILBM, JBIG, JBIG2, JNG, JPEG, JPEG 2000, effect on the size of image. High speed growth in network and JPEG-LS, JPEG XR, MNG, MIFF, PAM, PCX, PGF, PICtor, communication technology has boosted the usage of image PNG, PSD, PSP, QTVR, RAS, BE, JPEG-HDR, Logluv TIFF, drastically and transfer of high quality image from one point to SGI, TGA, TIFF, WBMP, WebP, XBM, XCF, XPM, XWD. another point is the requirement of the time, hence image Above mentioned formats can be used to store different kind of compression has remained the consistent need of the domain.
    [Show full text]
  • Image Data Compression
    Report Concerning Space Data System Standards IMAGE DATA COMPRESSION INFORMATIONAL REPORT CCSDS 120.1-G-2 GREEN BOOK February 2015 Report Concerning Space Data System Standards IMAGE DATA COMPRESSION INFORMATIONAL REPORT CCSDS 120.1-G-2 GREEN BOOK February 2015 CCSDS REPORT CONCERNING IMAGE DATA COMPRESSION AUTHORITY Issue: Informational Report, Issue 2 Date: February 2015 Location: Washington, DC, USA This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of technical panel experts from CCSDS Member Agencies. The procedure for review and authorization of CCSDS Reports is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). This document is published and maintained by: CCSDS Secretariat National Aeronautics and Space Administration Washington, DC, USA E-mail: [email protected] CCSDS 120.1-G-2 Page i February 2015 CCSDS REPORT CONCERNING IMAGE DATA COMPRESSION FOREWORD Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Report is therefore subject to CCSDS document management and change control procedures, which are defined in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). Current versions of CCSDS documents are maintained at the CCSDS Web site: http://www.ccsds.org/ Questions relating to the contents or status of this document should be sent to the CCSDS Secretariat at the e-mail address indicated on page i. CCSDS 120.1-G-2 Page ii February 2015 CCSDS REPORT CONCERNING IMAGE DATA COMPRESSION At time of publication, the active Member and Observer Agencies of the CCSDS were: Member Agencies – Agenzia Spaziale Italiana (ASI)/Italy.
    [Show full text]
  • Metodi Per L'analisi Di Immagini
    Metodi per l’analisi di immagini AFM Prof. Claudio Rivetti Dipartimento di Biochimica e Biologia Molecolare Università degli Studi di Parma Corso di perfezionamento in TECNICHE DI MICROSCOPIA A FORZA ATOMICA - Parma 29 febbraio 2012 Sommario Che cosa è un’immagine e come viene rappresentata Tipi di immagine: RGB, Indexed, Grayscale, Black and white Formato dei file di immagini Filtri e trasformazioni per elaborare immagini AFM Riconoscimento e misura di oggetti Software disponibili Che cosa è un’immagine R G B R 79 R 141 R 112 G 46 G 109 G 78 B 16 B 21 B 20 R 112 R 248 R 241 G 80 G 216 G 184 B 48 B 104 B 104 R 56 R 207 R 241 G 24 G 116 G 148 B 8 B 60 B 48 2563 = 16.777.216 colori 256 colori Color Table Index R G B i 240 i 220 i 215 1 125 43 55 2 230 56 90 3 22 220 102 4 34 130 179 5 55 133 140 i 80 i 201 i 221 6 140 21 77 7 150 28 61 8 140 10 14 … … … … 254 8 89 98 i 4 i 208 i 180 255 220 100 199 256 11 202 251 I 54 I 114 I 85 I 87 I 219 I 195 I 33 I 141 I 172 0 1 0 0 11 0 1 0 Profondità del colore dell’immagine La profondità di colore (color depth) è la quantità di bit necessari per rappresentare il colore di un singolo pixel in un'immagine 1 bit 4 bit 1 bit 21 = 2 colori 2 bit 22 = 4 colori 4 bit 24 = 16 colori 8 bit 28 = 256 colori 12 bit 212 = 4096 colori 8 bit 24 bit 16 bit 216 = 65536 colori 24 bit 224 = 16.777.216 colori B G R I Un’immagine grayscale può essere resa a colori utilizzando una scala di falsi colori Salvare un immagine su disco in un file Contiene informazioni relative Header all’immagine Contiene la matrice o le matrici (nel caso di RGB) di numeri che rappresentano l’immagine Data La dimensione del file dipende, dalla dimensione dell’immagine, dal tipo di immagine (RGB, grayscale, indexed) dai byte utilizzati per rappresentare il valore dei pixel.
    [Show full text]
  • Laserinduced Nanobubbles - Interaction of Gold Nanoparticles with Pulsed Laserlight”
    Electrical Scanning Probe Microscopy on Organic Optoelectronic Structures Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften\ " am Fachbereich Physik, Mathematik und Informatik der Johannes-Gutenberg-Universit¨at in Mainz vorgelegt von Stefan Weber geboren in Trier Mainz, den 26. August 2010 Die vorliegende Arbeit wurde in der Zeit von September 2007 bis August 2010 unter der Betreuung von Dr. Rudiger¨ Berger und Prof. Dr. Hans-Jurgen¨ Butt am Max- Planck-Institut fur¨ Polymerforschung in Mainz durchgefuhrt.¨ Tag der mundlichen¨ Prufung:¨ 3. November 2010 Dekan: Prof. Dr. Manfred Lehn 1. Berichterstatter: Prof. Dr. H.J. Butt 2. Berichterstatter: Prof. Dr. T. Palberg 3. Berichterstatter: Prof. Dr. E. Meyer (Universit¨at Basel, Schweiz) 4. Berichterstatter: Prof. Dr. D.Y. Yoon (Seoul National University, Sudkorea)¨ D77 \I am a firm believer that without speculation there is no good and original observation." Charles R. Darwin in a letter to Alfred R. Wallace, December 22nd, 1857 Zusammenfassung Im Bereich der organischen Optoelektronik hat die mikro- und nanoskopische Struk- tur der Materialien einen großen Einfluss auf die Leistungsf¨ahigkeit der Bauteile. In diesem Bereich gewinnen rasterkraftmikroskopische Methoden (SFM) immer mehr an Bedeutung. Neben topographischer Information k¨onnen zahlreiche andere Ober- fl¨acheneigenschaften wie elektrische Leitf¨ahigkeit (Leitf¨ahigkeits-Rasterkraftmikros- kopie, C-SFM) oder Oberfl¨achenpotentiale (Kelvinsondenmikroskopie, KPFM) mit Aufl¨osungen im Bereich von Nanometern gemessen werden. Im Rahmen dieser Arbeit wurden die SFM basierten elektrischen Betriebsmodi ver- wendet um den Zusammenhang zwischen Morphologie und den elektrischen Eigen- schaften in optoelektronischen Hybridstrukturen zu erforschen. Diese Strukturen wurden in der Gruppe von Prof. J. Gutmann (MPI-P Mainz) entwickelt.
    [Show full text]