Citizen Scientist Pollinator Monitoring Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orchard Mason Bees
Orchard Mason Bees This page offers WWW links outside WSU as an option for finding further information. No endorsement of products or information is implied by including those sites. The orchard mason bee (Osmia lignaria) is a gentle beneficial insect that has potential as a pollinator of apples, cherries, and other tree fruits. It is found throughout most of North America, particularly in wooded areas but often around homes in towns and cities. Homeowners sometimes become concerned when they see the bee entering cavities under shake siding or investigating nail holes or other cavities in wood during March through early June. These are not destructive insects, since they do not excavate holes in the wood, though they will clean out loose debris. No controls are recommended, since no damage is done. To prevent the bee from nesting, holes may be filled with caulking. The orchard mason bee is usually slightly smaller than a honey bee and a shiny dark blue in color. The actual size of the bee depends largely upon the size of the hole in which it grew. Males (Fig. 1) are smaller than females, have longer antennae and an additional tuft of light colored hairs on the face. Females (Fig. 2) have hairs on the underside of the abdomen, called the "scopa", adapted for carrying pollen. Fig. 1 Male orchard bee. Note the long antennae. (The red coloring is caused by Chaetodactylus sp. mites riding on the bee.) Female orchard mason bee on blossom. Fig. 2 The female approaches the flower from the top, transferring pollen from other flowers in the process. -
Male and Female Bees Show Large Differences in Floral Preference
bioRxiv preprint doi: https://doi.org/10.1101/432518; this version posted November 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Male and female bees show large differences in floral preference 2 3 Michael Roswell [email protected] 4 Graduate program in ecology and evolution, Rutgers University 5 14 College Farm Road, New Brunswick, NJ 08904 6 7 Jonathan Dushoff 8 Department of biology, McMaster University 9 1280 Main St. West, Hamilton, Ontario ON L8S 4K1 10 11 Rachael Winfree 12 Department of ecology, evolution, and natural resources, Rutgers University 13 14 College Farm Road, New Brunswick, NJ 08904 1 bioRxiv preprint doi: https://doi.org/10.1101/432518; this version posted November 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Abstract 15 16 1. Intraspecific variation in foraging niche can drive food web dynamics and 17 ecosystem processes. Field studies and theoretical analysis of plant-pollinator 18 interaction networks typically focus on the partitioning of the floral community 19 between pollinator species, with little attention paid to intraspecific variation 20 among plants or foraging bees. In other systems, male and female animals 21 exhibit different, cascading, impacts on interaction partners. -
Wisconsin Bee Identification Guide
WisconsinWisconsin BeeBee IdentificationIdentification GuideGuide Developed by Patrick Liesch, Christy Stewart, and Christine Wen Honey Bee (Apis mellifera) The honey bee is perhaps our best-known pollinator. Honey bees are not native to North America and were brought over with early settlers. Honey bees are mid-sized bees (~ ½ inch long) and have brownish bodies with bands of pale hairs on the abdomen. Honey bees are unique with their social behavior, living together year-round as a colony consisting of thousands of individuals. Honey bees forage on a wide variety of plants and their colonies can be useful in agricultural settings for their pollination services. Honey bees are our only bee that produces honey, which they use as a food source for the colony during the winter months. In many cases, the honey bees you encounter may be from a local beekeeper’s hive. Occasionally, wild honey bee colonies can become established in cavities in hollow trees and similar settings. Photo by Christy Stewart Bumble bees (Bombus sp.) Bumble bees are some of our most recognizable bees. They are amongst our largest bees and can be close to 1 inch long, although many species are between ½ inch and ¾ inch long. There are ~20 species of bumble bees in Wisconsin and most have a robust, fuzzy appearance. Bumble bees tend to be very hairy and have black bodies with patches of yellow or orange depending on the species. Bumble bees are a type of social bee Bombus rufocinctus and live in small colonies consisting of dozens to a few hundred workers. Photo by Christy Stewart Their nests tend to be constructed in preexisting underground cavities, such as former chipmunk or rabbit burrows. -
Seasonal and Spatial Patterns of Mortality and Sex Ratio in the Alfalfa
Seasonal and spatial patterns of mortality and sex ratio in the alfalfa leafcutting bee, Megachile rotundata (F.) by Ruth Pettinga ONeil A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Ruth Pettinga ONeil (2004) Abstract: Nests from five seed alfalfa sites of the alfalfa leafcutting bee Megachile rotundata (F.) were monitored over the duration of the nesting season in 2000 and 2001, from early July through late August. Cells containing progeny of known age and known position within the nest were subsequently analyzed for five commonly encountered categories of pre-diapause mortality in this species. Chalkbrood and pollen ball had the strongest seasonal relationships of mortality factors studied. Chalkbrood incidence was highest in early-produced cells. Pollen ball was higher in late-season cells. Chalkbrood, parasitism by the chalcid Pteromalus venustus, and death of older larvae and prepupae , due to unknown source(s) exhibited the strongest cell-position relationships. Both chalkbrood and parasitoid incidence were highest in the inner portions of nests. The “unknown” category of mortality was highest in outer portions of nests. Sex ratio was determined for a subset of progeny reared to adulthood. The ratio of females to males is highest in cells in inner nest positions. Sex ratio is female-biased very early in the nesting season, when all cells being provisioned are the inner cells of nests, due to the strong positional effect on sex ratio. SEASONAL AND SPATIAL PATTERNS OF MORTALITY AND SEX RATIO IN THE ALFALFA LEAFCUTTING BEE, Megachile rotundata (F.) by . -
Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P. -
Growing a Wild NYC: a K-5 Urban Pollinator Curriculum Was Made Possible Through the Generous Support of Our Funders
A K-5 URBAN POLLINATOR CURRICULUM Growing a Wild NYC LESSON 1: HABITAT HUNT The National Wildlife Federation Uniting all Americans to ensure wildlife thrive in a rapidly changing world Through educational programs focused on conservation and environmental knowledge, the National Wildlife Federation provides ways to create a lasting base of environmental literacy, stewardship, and problem-solving skills for today’s youth. Growing a Wild NYC: A K-5 Urban Pollinator Curriculum was made possible through the generous support of our funders: The Seth Sprague Educational and Charitable Foundation is a private foundation that supports the arts, housing, basic needs, the environment, and education including professional development and school-day enrichment programs operating in public schools. The Office of the New York State Attorney General and the New York State Department of Environmental Conservation through the Greenpoint Community Environmental Fund. Written by Nina Salzman. Edited by Sarah Ward and Emily Fano. Designed by Leslie Kameny, Kameny Design. © 2020 National Wildlife Federation. Permission granted for non-commercial educational uses only. All rights reserved. September - January Lesson 1: Habitat Hunt Page 8 Lesson 2: What is a Pollinator? Page 20 Lesson 3: What is Pollination? Page 30 Lesson 4: Why Pollinators? Page 39 Lesson 5: Bee Survey Page 45 Lesson 6: Monarch Life Cycle Page 55 Lesson 7: Plants for Pollinators Page 67 Lesson 8: Flower to Seed Page 76 Lesson 9: Winter Survival Page 85 Lesson 10: Bee Homes Page 97 February -
Teen Facilitator Guide Created By
2016 Teen Facilitator Guide Created by: Robert L. Horton, PhD, Agri-Science Professor, College of Food, Agriculture, and Environmental Sciences, The Ohio State University Patty House, MS, County Extension Educator 3, College of Food, Agriculture, and Environmental Sciences, The Ohio State University Denise Ellsworth, Program Director, Honey Bee and Native Pollinator Education, The Ohio State University Denise M. Johnson, Program Manager, Ohio State University Extension Master Gardener Volunteer Program, The Ohio State University Margaret Duden, SimplySmart Education Specialists Liz Kasper, Pete Sandvik, Northern Design Group The 4-H Ag Innovators Experience Honey Bee Challenge focuses on a critical component—honey bees—to growing food and feeding the world. Approximately one in every three bites we eat is the result of these pollinators at work. Apples, pumpkins, strawberries, alfalfa, sunflowers, oranges, buckwheat, and almonds are just some of the crops that rely on honey bee pollination. As the Teen Facilitator for this activity, you will help youth learn that: • Honey bees and other pollinators are essential contributors to growing food and feeding the world. • Honey bees utilize a combination of natural and agricultural habitats to maintain healthy hives. • Preserving and maintaining the natural foraging habitats of honey bees is important. • Commercial beekeepers transport honey bees all across the country to boost crop yield, since there is not enough managed honeybees or native pollinators to maximize agricultural production. • Youth can contribute to honey bee health in their own communities. The 4-H Ag Innovators Honey Bee Challenge is an ideal activity for 3rd to 8th grade youth at summer reading programs, summer camps, summer childcare settings, festivals, and fairs. -
Redalyc.CLEPTOPARASITE BEES, with EMPHASIS on THE
Acta Biológica Colombiana ISSN: 0120-548X [email protected] Universidad Nacional de Colombia Sede Bogotá Colombia ALVES-DOS-SANTOS, ISABEL CLEPTOPARASITE BEES, WITH EMPHASIS ON THE OILBEES HOSTS Acta Biológica Colombiana, vol. 14, núm. 2, 2009, pp. 107-113 Universidad Nacional de Colombia Sede Bogotá Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=319027883009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta biol. Colomb., Vol. 14 No. 2, 2009 107 - 114 CLEPTOPARASITE BEES, WITH EMPHASIS ON THE OILBEES HOSTS Abejas cleptoparásitas, con énfasis en las abejas hospederas coletoras de aceite ISABEL ALVES-DOS-SANTOS1, Ph. D. 1Departamento de Ecologia, IBUSP. Universidade de São Paulo, Rua do Matão 321, trav 14. São Paulo 05508-900 Brazil. [email protected] Presentado 1 de noviembre de 2008, aceptado 1 de febrero de 2009, correcciones 7 de julio de 2009. ABSTRACT Cleptoparasite bees lay their eggs inside nests constructed by other bee species and the larvae feed on pollen provided by the host, in this case, solitary bees. The cleptoparasite (adult and larvae) show many morphological and behavior adaptations to this life style. In this paper I present some data on the cleptoparasite bees whose hosts are bees specialized to collect floral oil. Key words: solitary bee, interspecific interaction, parasitic strategies, hospicidal larvae. RESUMEN Las abejas Cleptoparásitas depositan sus huevos en nidos construídos por otras especies de abejas y las larvas se alimentan del polen que proveen las hospederas, en este caso, abejas solitarias. -
Bee Bodies Honey Bee Anatomy
BEE BODIES HONEY BEE ANATOMY Essential Question: HOW DOES A HONEY BEE’S STRUCTURE SUPPORT ITS FUNCTION IN THE ECOSYSTEM? LEARNING OBJECTIVES n Distinguish between the structural and behavioral adaptations of the honey bee. n Investigate and infer the function of basic adaptations. n Explain how different organisms use their unique adaptations to meet their needs. RESOURCES MATERIALS • Image, Bee Pollen Baskets • Chart Paper • Writing Utensils • Image, Bee Body • Markers • Reading, Bee Bodies • Journals, Paper, or Digital • Assessment, Which Bee Notebooks Body Part? OVERVIEW OF LESSON / BACKGROUND Most people can describe or draw a basic bee: black and yellow stripes, wings, a 3-part body. This lesson will take students beyond the basics by bringing the honey bee’s amazing anatomy and structures alive. From the pollen basket to the hairy eyes, bees are creatures that inspire wonder and curiosity. Although each of the 20,000 species of bees in the world has something in common with the next, this lesson focuses on honey bees: the only insects that produce food for humans. In order to survive, thrive, and perform their work in the world, honey bees have evolved with a fascinating anatomy and specific adaptations. This detailed, up-close look at both the structures and the functions of honey bee anatomy will help students understand the bee’s place in the world. Honey bees have many parts that are easily recognizable: a head, thorax, abdomen, legs, antennae, eyes, wings, etc. They also have a corbiculae (or pollen basket), tiny hairs on their eyes, a proboscis, and hooks (or hamuli) that hold their wings together in flight. -
Podalonia Affinis on the Sefton Coast in 2019
The status and distribution of solitary bee Stelis ornatula and solitary wasp Podalonia affinis on the Sefton Coast in 2019 Ben Hargreaves The Wildlife Trust for Lancashire, Manchester & North Merseyside October 2019 1 ACKNOWLEDGEMENTS Thanks to Tanyptera Trust for funding the research and to Natural England, National Trust and Lancashire Wildlife Trust for survey permissions. 2 CONTENTS Summary………………………………………………………………………………………………………….4 Introduction…………………………………………………………………………………………………….5 Aims and objectives………………………………………………………………………….6 Methods…………………………………………………………………………………………..6 Results……………………………………………………………………………………………..7 Discussion………………………………………………………………………………………..9 Follow-up work………………………………………………………………………………11 References……………………………………………………………………………………..11 3 SUMMARY The Wildlife Trust for Lancashire, Manchester & North Merseyside (Lancashire Wildlife Trust) were commissioned by Liverpool Museum’s Tanyptera project to undertake targeted survey of Nationally Rare (and regionally rare) aculeate bees and wasps on various sites on the Sefton Coast. Podalonia affinis is confirmed as extant on the Sefton Coast; it is definitely present at Ainsdale NNR and is possibly present at Freshfield Dune Heath. Stelis ornatula, Mimesa bruxellensis and Bombus humilis are not confirmed as currently present at the sites surveyed for this report. A total of 141 records were made (see attached data list) of 48 aculeate species. The majority of samples were of aculeate wasps (Sphecidae, Crabronidae and Pompilidae). 4 INTRODUCTION PRIMARY SPECIES (Status) Stelis ornatula There are 9 records of this species for VC59 between 1975 and 2000. All the records are from the Sefton Coast. The host of this parasitic species is Hoplitis claviventris which is also recorded predominantly from the coast (in VC59). All records are from Ainsdale National Nature Reserve (NNR) and Formby (Formby Point and Ravenmeols Dunes). Podalonia affinis There are 15 VC59 records for this species which includes both older, unconfirmed records and more recent confirmed records based on specimens. -
Bees and Wasps of the East Sussex South Downs
A SURVEY OF THE BEES AND WASPS OF FIFTEEN CHALK GRASSLAND AND CHALK HEATH SITES WITHIN THE EAST SUSSEX SOUTH DOWNS Steven Falk, 2011 A SURVEY OF THE BEES AND WASPS OF FIFTEEN CHALK GRASSLAND AND CHALK HEATH SITES WITHIN THE EAST SUSSEX SOUTH DOWNS Steven Falk, 2011 Abstract For six years between 2003 and 2008, over 100 site visits were made to fifteen chalk grassland and chalk heath sites within the South Downs of Vice-county 14 (East Sussex). This produced a list of 227 bee and wasp species and revealed the comparative frequency of different species, the comparative richness of different sites and provided a basic insight into how many of the species interact with the South Downs at a site and landscape level. The study revealed that, in addition to the character of the semi-natural grasslands present, the bee and wasp fauna is also influenced by the more intensively-managed agricultural landscapes of the Downs, with many species taking advantage of blossoming hedge shrubs, flowery fallow fields, flowery arable field margins, flowering crops such as Rape, plus plants such as buttercups, thistles and dandelions within relatively improved pasture. Some very rare species were encountered, notably the bee Halictus eurygnathus Blüthgen which had not been seen in Britain since 1946. This was eventually recorded at seven sites and was associated with an abundance of Greater Knapweed. The very rare bees Anthophora retusa (Linnaeus) and Andrena niveata Friese were also observed foraging on several dates during their flight periods, providing a better insight into their ecology and conservation requirements. -
Tips on Using a Native Bee Collection at a Public Event by Addison Deboer and Andony Melathopoulos, Oregon State University Extension
Tips on Using a Native Bee Collection at a Public Event By Addison DeBoer and Andony Melathopoulos, Oregon State University Extension Native Bee Displays: Each Oregon Bee Atlas team will get a wooden display box with bees grouped by Family and Genus. These boxes cannot be shipped, so need to be transferred when Rich, Sarah or Andony travel to your community. You will be given a basic complement of bees that you can supplement as you gather your own specimens. The base case will contain specimens from the following groups: Family: genus Colletidae: Hylaeus Halictidae: Agapostemon, Halictus, Lasioglossum Apidae: Ceratina, Bombus, Nomada, Melissodes, Apis mellifera Megachilidae: Osmia, Stelis, Heriades, Megachile, Anthidium Andrenidae: Andrena Bee look-alikes: flies, wasps The following manual will provide you with tips on how to use these displays for public tabling events. Activities are broken up into short “attention getters” that are designed to get people interested at high volume events and “longer conversations” if you end up with someone with a lot more interest. Also, included are some natural history notes on all the bees, so you can dive in a little deeper if you have someone who is keen. Attention-getters (10 second conversation): 1. Most bees are like gophers, 70% of all bees live in the ground: • Point to Andrena and the Hallitcitidae as two families that nest almost exclusively underground – these two families make up the bulk of Oregon bees. 2. Hylaeus secrete cellophane-like material to line their nest cells • Point out that bees line their nests to protect their young from the environment, but also from parasites – the pollen ball they collect is a valuable resource.