(Native) Bee Basics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Conservation and Ecology of Native Bees and Other Pollinators
The conservation and ecology of native bees and other pollinators Colleen Smith [email protected] Rutgers University New Brunswick, New Jersey Outline • Overview of pollination and bee biodiversity • My research on forest bees at Rutgers University • What you can do to support native bees • Bee ID! Outline • Overview of pollination and bee biodiversity • My research on forest bees at Rutgers University • What you can do to support native bees • Bee ID! Pollination: Transfer of pollen grains from anther to stigma ~ 87% of all flowering plants Ollerton et al. 2011 Oikos >2/3 crop species use animal- mediated pollination Klein et al. 2006 J. Applied Ecology Bees Native bees are important pollinators for many crops globally Garibaldi et al 2013 Science 3 bee life history strategies Solitary Social Parasitic • 77% of bee species • 10% of bee • 13% of bee species species 3 bee life history strategies Solitary Social Parasitic • 77% of bee species • 10% of bee • 13% of bee species species Bee life histories: solitary The vast majority of bees! Andrena erigeniae Colletes inaequalis Augochlora pura Pupa Adult bee Egg winter spring fall summer Pre-pupa Pupa Adult bee Egg winter spring fall summer Pre-pupa Pupa Adult bee Only 2 to 3 weeks of a solitary bees’ life! Egg winter spring fall summer Pre-pupa Pupa Adult bee Egg winter spring fall summer Pre-pupa How a solitary bee spends most of its life 3 bee life history strategies Solitary Social Parasitic • 77% of bee species • 10% of bee • 13% of bee species species Cuckoo bees Nomada bee 3 bee life history strategies Solitary Social Parasitic • 77% of bee species • 10% of bee • 13% of bee species species Bombus, Lasioglossum, Halictus Bombus impatiens Lasioglossum spp. -
Sensory and Cognitive Adaptations to Social Living in Insect Societies Tom Wenseleersa,1 and Jelle S
COMMENTARY COMMENTARY Sensory and cognitive adaptations to social living in insect societies Tom Wenseleersa,1 and Jelle S. van Zwedena A key question in evolutionary biology is to explain the solitarily or form small annual colonies, depending upon causes and consequences of the so-called “major their environment (9). And one species, Lasioglossum transitions in evolution,” which resulted in the pro- marginatum, is even known to form large perennial euso- gressive evolution of cells, organisms, and animal so- cial colonies of over 400 workers (9). By comparing data cieties (1–3). Several studies, for example, have now from over 30 Halictine bees with contrasting levels of aimed to determine which suite of adaptive changes sociality, Wittwer et al. (7) now show that, as expected, occurred following the evolution of sociality in insects social sweat bee species invest more in sensorial machin- (4). In this context, a long-standing hypothesis is that ery linked to chemical communication, as measured by the evolution of the spectacular sociality seen in in- the density of their antennal sensillae, compared with sects, such as ants, bees, or wasps, should have gone species that secondarily reverted back to a solitary life- hand in hand with the evolution of more complex style. In fact, the same pattern even held for the socially chemical communication systems, to allow them to polymorphic species L. albipes if different populations coordinate their complex social behavior (5). Indeed, with contrasting levels of sociality were compared (Fig. whereas solitary insects are known to use pheromone 1, Inset). This finding suggests that the increased reliance signals mainly in the context of mate attraction and on chemical communication that comes with a social species-recognition, social insects use chemical sig- lifestyle indeed selects for fast, matching adaptations in nals in a wide variety of contexts: to communicate their sensory systems. -
Honey Bee Immunity — Pesticides — Pests and Diseases
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Distance Master of Science in Entomology Projects Entomology, Department of 2017 A GUIDEBOOK ON HONEY BEE HEALTH: Honey Bee Immunity — Pesticides — Pests and Diseases Joey Caputo Follow this and additional works at: https://digitalcommons.unl.edu/entodistmasters Part of the Entomology Commons This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Distance Master of Science in Entomology Projects by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Photo by David Cappaert, Bugwood.org 1 A GUIDEBOOK ON HONEY BEE HEALTH Honey Bee Immunity — Pesticides— Pests and Diseases By Joey Caputo A graduate degree project submitted as partial fulfillment of the Option III requirements for the de- gree of Masters of Science in Entomology at the graduate school of the University of Nebraska- Lincoln, 2017. Last updated April 2017 — Version 1.2 i Contents Introduction 1 Honey Bee Immune System 2 Mechanical and Biochemical Immunity 2 Innate and Cell-Mediated Immunity 2 Humoral Immunity 2 Social Immunity 3 Detoxification Complexes 5 Problems in Beekeeping 5 Colony Collapse Disorder (CCD) 5 Bacterial, Fungal and Microsporidian Diseases 6 American foulbrood 6 European foulbrood 7 Nosemosis 8 Chalkbrood 10 Crithidia 10 Stonebrood 11 Varroa Mite and Viruses 11 Varroa Biology and Life Cycle 12 Varroa Mite Damage and Parasitic Mite -
The Chemical Ecology and Evolution of Bee–Flower Interactions: a Review and Perspectives1
668 REVIEW / SYNTHE` SE The chemical ecology and evolution of bee–flower interactions: a review and perspectives1 S. Do¨ tterl and N.J. Vereecken Abstract: Bees and angiosperms have shared a long and intertwined evolutionary history and their interactions have re- sulted in remarkable adaptations. Yet, at a time when the ‘‘pollination crisis’’ is of major concern as natural populations of both wild and honey bees (Apis mellifera L., 1758) face alarming decline rates at a worldwide scale, there are important gaps in our understanding of the ecology and evolution of bee–flower interactions. In this review, we summarize and dis- cuss the current knowledge about the role of floral chemistry versus other communication channels in bee-pollinated flow- ering plants, both at the macro- and micro-evolutionary levels, and across the specialization–generalization gradient. The available data illustrate that floral scents and floral chemistry have been largely overlooked in bee–flower interactions, and that pollination studies integrating these components along with pollinator behaviour in a phylogenetic context will help gain considerable insights into the sensory ecology and the evolution of bees and their associated flowering plants. Re´sume´ : Les abeilles et les angiospermes partagent une grande partie de leur histoire e´volutive, et leurs interactions ont produit de remarquables exemples d’adaptations mutuelles. Cependant, a` une e´poque ou` la « crise de la pollinisation » de- vient une pre´occupation majeure et ou` les populations d’abeilles sauvages et mellife`res (Apis mellifera L., 1758) font face a` des de´clins massifs a` l’e´chelle mondiale, notre compre´hension de l’e´cologie et de l’e´volution des relations abeilles- plantes demeure fragmentaire. -
Male and Female Bees Show Large Differences in Floral Preference
bioRxiv preprint doi: https://doi.org/10.1101/432518; this version posted November 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Male and female bees show large differences in floral preference 2 3 Michael Roswell [email protected] 4 Graduate program in ecology and evolution, Rutgers University 5 14 College Farm Road, New Brunswick, NJ 08904 6 7 Jonathan Dushoff 8 Department of biology, McMaster University 9 1280 Main St. West, Hamilton, Ontario ON L8S 4K1 10 11 Rachael Winfree 12 Department of ecology, evolution, and natural resources, Rutgers University 13 14 College Farm Road, New Brunswick, NJ 08904 1 bioRxiv preprint doi: https://doi.org/10.1101/432518; this version posted November 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Abstract 15 16 1. Intraspecific variation in foraging niche can drive food web dynamics and 17 ecosystem processes. Field studies and theoretical analysis of plant-pollinator 18 interaction networks typically focus on the partitioning of the floral community 19 between pollinator species, with little attention paid to intraspecific variation 20 among plants or foraging bees. In other systems, male and female animals 21 exhibit different, cascading, impacts on interaction partners. -
Southwestern Rare and Endangered Plants
Preliminary Report on the Reproductive Biology of the Threatened Chisos Mountain Hedgehog Cactus BONNIE B. AMOS and CHRISTOS VASSILIOU Angelo State University, Texas Abstract: The Chisos Mountain hedgehog cactus (Echinocereus chisoensis, Cactaceae) is a narrow endemic restricted to an approximately 100 square mile area in Big Bend National Park, Texas. It was listed as threatened in 1987 as Echinocereus chisoensis var. chisoensis. An investigation of the reproductive biology and pollination ecology conducted in 1999 and 2000 revealed the taxon to be homogamous, self-incompatible, xenogamous, and heavily dependent upon the cactus oligolectic bee, Diadasia rinconis (Anthophoridae) for pollination. Despite infrequent bee visitation, fruit set from open pollination is high and fruits produce large numbers of seeds. Predation in 2002, probably from rodents as a result of severe drought conditions, was severe on plants, flower buds, and fruits. The Chisos Mountain hedgehog cactus, or Chisos jillo (Opuntia leptocaulis DC.), ocotillo (Fouquieria pitaya (Echinocereus chisoensis W. Marshall), is 1 of splendens K. Kunth), leatherstem (Jatropha dioica V. 20 threatened or endangered cacti listed by the de Cervantes), lechuguilla (Agave lechuguilla J. U.S. Fish and Wildlife Service for Region 2 (http: Torrey), and ceniza (Leucophyl1umf)zltescens (J. Ber- // ecos. fws.gov/ webpage/ webpage-lead.htrnl? landier) I. M. Johnston). An earlier study (Hender- lead_region=2&type=L&listings=l).In 1987 it was shott et al. 1992) did not show specific E. chisoen- added to the federal lists (53 FR 38453) of en- sis-nurse plant associations, but rather showed dangered and threatened wildlife and plants as associations as a consequence of soil conditions threatened because of its restricted distribution, that provide a hospitablL environment for a diver- low numbers, loss of viability in existing popula- sity of species or the exploitation by E. -
The Buzz About Bees: Honey Bee Biology and Behavior
4-H Honey Bee Leaders Guide Book I The Buzz About Bees: 18 U.S.C. 707 Honey Bee Biology and Behavior Publication 380-071 2009 To the 4-H Leader: The honey bee project (Books Grade 5 1 - 4) is intended to teach young people the basic biology and behavior of honey bees in addition to Living Systems 5.5 hands-on beekeeping management skills. The honey The student will investigate and understand that bee project books begin with basic honey bee and organisms are made up of cells and have distin- insect information (junior level) and advance to guishing characteristics. Key concepts include: instruction on how to rear honey bee colonies and • vertebrates and invertebrates extract honey (senior level). These project books are intended to provide in-depth information related Grade 6 to honey bee management, yet they are written for the amateur beekeeper, who may or may not have Life Science 5 previous experience in rearing honey bees. The student will investigate and understand how organisms can be classified. Key concepts include: Caution: • characteristics of the species If anyone in your club is known to have severe Life Science 8 allergic reactions to bee stings, they should not The student will investigate and understand that participate in this project. interactions exist among members of a population. The honey bee project meets the following Vir- Key concepts include: ginia State Standards of Learning (SOLs) for the • competition, cooperation, social hierarchy, and fourth, fifth, and sixth grades: territorial imperative Grade 4 Acknowledgments Authors: Life Processes 4.4 Dini M. -
(Diptera: Bombyliidae), a Parasite of the Alkali Bee
Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1960 The Biology of Heterostylum rubustum (Diptera: Bombyliidae), a Parasite of the Alkali Bee George E. Bohart Utah State University W. P. Stephen R. K. Eppley Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Entomology Commons Recommended Citation Bohart, G. E., W. P. Stephen, and R. K. Eppley. 1960. The Biology of Heterostylum rubustum (Diptera: Bombyliidae), a Parasite of the Alkali Bee. Ann. Ent. Soc. Amer. 53(3): 425-435. This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ( Reprinted from fu'<NALS OF THE ENTOMOLOGICAL SOCIETY OF rumRJCA Vol. 53, No. 3, May, 1960 THE BIOLOGY OF HETEROSTYLUM ROBUSTUM (DIPTERA: BOMBYLIIDAE), A PARASITE OF THE ALKALI BEE1 G . E. BOHART,' W. P. STEPHEN, Ai\ID R. K. EPPLEY3 ABSTRACT H eterostylum robustu m. (Osten Sacken) is the principal very brief second ins ta r, and a soft, helpless third ins tar , parasite of the a lkali bee (Nomia mela11deri Ckll.) in the to a tough, more active fourth instar. Some lat vae Northwestern States. It also parasitizes other species apparently mature on a single host, but others pa rt ially of Nomia and at least one species of both Nomadopsis and drain the fluids from a second as well. In the late Halictus. It eject-s eggs into and near the nest mounds summer or fall the mature larva makes an overwin tet ing of its host, but does not readily discr iminate between nest cell in the upper few inches of soil. -
Classification of the Apidae (Hymenoptera)
Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes, -
A Review of Sampling and Monitoring Methods for Beneficial Arthropods
insects Review A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems Kenneth W. McCravy Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; [email protected]; Tel.: +1-309-298-2160 Received: 12 September 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: Beneficial arthropods provide many important ecosystem services. In agroecosystems, pollination and control of crop pests provide benefits worth billions of dollars annually. Effective sampling and monitoring of these beneficial arthropods is essential for ensuring their short- and long-term viability and effectiveness. There are numerous methods available for sampling beneficial arthropods in a variety of habitats, and these methods can vary in efficiency and effectiveness. In this paper I review active and passive sampling methods for non-Apis bees and arthropod natural enemies of agricultural pests, including methods for sampling flying insects, arthropods on vegetation and in soil and litter environments, and estimation of predation and parasitism rates. Sample sizes, lethal sampling, and the potential usefulness of bycatch are also discussed. Keywords: sampling methodology; bee monitoring; beneficial arthropods; natural enemy monitoring; vane traps; Malaise traps; bowl traps; pitfall traps; insect netting; epigeic arthropod sampling 1. Introduction To sustainably use the Earth’s resources for our benefit, it is essential that we understand the ecology of human-altered systems and the organisms that inhabit them. Agroecosystems include agricultural activities plus living and nonliving components that interact with these activities in a variety of ways. Beneficial arthropods, such as pollinators of crops and natural enemies of arthropod pests and weeds, play important roles in the economic and ecological success of agroecosystems. -
Wisconsin Bee Identification Guide
WisconsinWisconsin BeeBee IdentificationIdentification GuideGuide Developed by Patrick Liesch, Christy Stewart, and Christine Wen Honey Bee (Apis mellifera) The honey bee is perhaps our best-known pollinator. Honey bees are not native to North America and were brought over with early settlers. Honey bees are mid-sized bees (~ ½ inch long) and have brownish bodies with bands of pale hairs on the abdomen. Honey bees are unique with their social behavior, living together year-round as a colony consisting of thousands of individuals. Honey bees forage on a wide variety of plants and their colonies can be useful in agricultural settings for their pollination services. Honey bees are our only bee that produces honey, which they use as a food source for the colony during the winter months. In many cases, the honey bees you encounter may be from a local beekeeper’s hive. Occasionally, wild honey bee colonies can become established in cavities in hollow trees and similar settings. Photo by Christy Stewart Bumble bees (Bombus sp.) Bumble bees are some of our most recognizable bees. They are amongst our largest bees and can be close to 1 inch long, although many species are between ½ inch and ¾ inch long. There are ~20 species of bumble bees in Wisconsin and most have a robust, fuzzy appearance. Bumble bees tend to be very hairy and have black bodies with patches of yellow or orange depending on the species. Bumble bees are a type of social bee Bombus rufocinctus and live in small colonies consisting of dozens to a few hundred workers. Photo by Christy Stewart Their nests tend to be constructed in preexisting underground cavities, such as former chipmunk or rabbit burrows. -
Seasonal and Spatial Patterns of Mortality and Sex Ratio in the Alfalfa
Seasonal and spatial patterns of mortality and sex ratio in the alfalfa leafcutting bee, Megachile rotundata (F.) by Ruth Pettinga ONeil A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Ruth Pettinga ONeil (2004) Abstract: Nests from five seed alfalfa sites of the alfalfa leafcutting bee Megachile rotundata (F.) were monitored over the duration of the nesting season in 2000 and 2001, from early July through late August. Cells containing progeny of known age and known position within the nest were subsequently analyzed for five commonly encountered categories of pre-diapause mortality in this species. Chalkbrood and pollen ball had the strongest seasonal relationships of mortality factors studied. Chalkbrood incidence was highest in early-produced cells. Pollen ball was higher in late-season cells. Chalkbrood, parasitism by the chalcid Pteromalus venustus, and death of older larvae and prepupae , due to unknown source(s) exhibited the strongest cell-position relationships. Both chalkbrood and parasitoid incidence were highest in the inner portions of nests. The “unknown” category of mortality was highest in outer portions of nests. Sex ratio was determined for a subset of progeny reared to adulthood. The ratio of females to males is highest in cells in inner nest positions. Sex ratio is female-biased very early in the nesting season, when all cells being provisioned are the inner cells of nests, due to the strong positional effect on sex ratio. SEASONAL AND SPATIAL PATTERNS OF MORTALITY AND SEX RATIO IN THE ALFALFA LEAFCUTTING BEE, Megachile rotundata (F.) by .