Characteristics and Availability of Commercially Important Woods Regis B

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics and Availability of Commercially Important Woods Regis B Chapter 1 Characteristics and Availability of Commercially Important Woods Regis B. Miller hroughout history, the unique characteristics and Contents T comparative abundance of wood have made it a natural material for homes and other structures, furniture, tools, vehicles, and decorative objects. Today, for Timber Resources and Uses 1–2 the same reasons, wood is prized for a multitude of uses. All wood is composed of cellulose, lignin, hemicelluloses, Hardwoods and Softwoods 1–2 and minor amounts (5% to 10%) of extraneous materials Commercial Sources of Wood Products 1–2 contained in a cellular structure. Variations in the characteris- tics and volume of these components and differences in cellu- Use Classes and Trends 1–3 lar structure make woods heavy or light, stiff or flexible, and hard or soft. The properties of a single species are relatively Species Descriptions 1–3 constant within limits; therefore, selection of wood by spe- cies alone may sometimes be adequate. However, to use U.S. Wood Species 1–3 wood to its best advantage and most effectively in engineer- ing applications, specific characteristics or physical properties Hardwoods 1–3 must be considered. Softwoods 1–10 Historically, some species filled many purposes, while other less available or less desirable species served only one or two Imported Woods 1–17 needs. For example, because white oak is tough, strong, and durable, it was highly prized for shipbuilding, bridges, Hardwoods 1–17 cooperage, barn timbers, farm implements, railroad crossties, fence posts, and flooring. Woods such as black walnut and Softwoods 1–33 cherry were used primarily for furniture and cabinets. Hickory was manufactured into tough, hard, and resilient striking-tool References 1–34 handles, and black locust was prized for barn timbers. What the early builder or craftsman learned by trial and error be- came the basis for deciding which species were appropriate for a given use in terms of their characteristics. It was com- monly accepted that wood from trees grown in certain loca- tions under certain conditions was stronger, more durable, more easily worked with tools, or finer grained than wood from trees in other locations. Modern research on wood has substantiated that location and growth conditions do significantly affect wood properties. The gradual reductions in use of old-growth forests in the United States has reduced the supply of large clear logs for lumber and veneer. However, the importance of high-quality logs has diminished as new concepts of wood use have been introduced. Second-growth wood, the remaining old-growth forests, and imports continue to fill the needs for wood in the quality required. Wood is as valuable an engineering mate- rial as ever, and in many cases, technological advances have made it even more useful. 1–1 The inherent factors that keep wood in the forefront of raw or sap in the tree. Typically, hardwoods are plants with materials are many and varied, but a chief attribute is its broad leaves that, with few exceptions in the temperate re- availability in many species, sizes, shapes, and conditions to gion, lose their leaves in autumn or winter. Most imported suit almost every demand. Wood has a high ratio of strength tropical woods are hardwoods. Botanically, softwoods are to weight and a remarkable record for durability and perform- Gymnosperms or conifers; the seeds are naked (not enclosed ance as a structural material. Dry wood has good insulating in the ovary of the flower). Anatomically, softwoods are properties against heat, sound, and electricity. It tends to nonporous and do not contain vessels. Softwoods are usually absorb and dissipate vibrations under some conditions of cone-bearing plants with needle- or scale-like evergreen use, and yet it is an incomparable material for such musical leaves. Some softwoods, such as larches and baldcypress, instruments as the violin. The grain patterns and colors of lose their needles during autumn or winter. wood make it an esthetically pleasing material, and its appearance may be easily enhanced by stains, varnishes, Major resources of softwood species are spread across the lacquers, and other finishes. It is easily shaped with tools United States, except for the Great Plains where only small and fastened with adhesives, nails, screws, bolts, and dow- areas are forested. Softwood species are often loosely grouped els. Damaged wood is easily repaired, and wood structures in three general regions, as shown in Table 1–1. Hardwoods are easily remodeled or altered. In addition, wood resists also occur in all parts of the United States, although most oxidation, acid, saltwater, and other corrosive agents, has grow east of the Great Plains. Hardwood species are shown high salvage value, has good shock resistance, can be treated by region in Table 1–2. with preservatives and fire retardants, and can be combined with almost any other material for both functional and Commercial Sources esthetic uses. of Wood Products Timber Resources and Uses Softwoods are available directly from the sawmill, wholesale and retail yards, or lumber brokers. Softwood lumber and In the United States, more than 100 wood species are avail- plywood are used in construction for forms, scaffolding, able to the prospective user, but all are unlikely to be avail- framing, sheathing, flooring, moulding, paneling, cabinets, able in any one locality. About 60 native woods are of major poles and piles, and many other building components. Soft- commercial importance. Another 30 species are commonly woods may also appear in the form of shingles, sashes, imported in the form of logs, cants, lumber, and veneer for doors, and other millwork, in addition to some rough prod- industrial uses, the building trade, and crafts. ucts such as timber and round posts. A continuing program of timber inventory is in effect in the Hardwoods are used in construction for flooring, architectural United States through the cooperation of Federal and State woodwork, interior woodwork, and paneling. These items agencies, and new information on wood resources is pub- are usually available from lumberyards and building supply lished in State and Federal reports. Two of the most valuable dealers. Most hardwood lumber and dimension stock are sourcebooks are An Analysis of the Timber Situation in the remanufactured into furniture, flooring, pallets, containers, United States 1989–2040 (USDA 1990) and The 1993 RPA dunnage, and blocking. Hardwood lumber and dimension Timber Assessment Update (Haynes and others 1995). Current information on wood consumption, production, Table 1–1. Major resources of U.S. softwoods according imports, and supply and demand is published periodically to region by the Forest Products Laboratory (Howard 1997) and is available from the Superintendent of Documents, U.S. Western Northern Southern Government Printing Office, Washington, DC. Incense-cedar Northern white-cedar Atlantic white-cedar Port-Orford-cedar Balsam fir Baldcypress Hardwoods and Softwoods Douglas-fir Eastern hemlock Fraser fir White firs Fraser fir Southern Pine Trees are divided into two broad classes, usually referred to Western hemlock Jack pine Eastern redcedar as hardwoods and softwoods. These names can be confusing Western larch Red pine since some softwoods are actually harder than some hard- Lodgepole pine Eastern white pine woods, and conversely some hardwoods are softer than some Ponderosa pine Eastern redcedar softwoods. For example, softwoods such as longleaf pine and Sugar pine Eastern spruces Douglas-fir are typically harder than the hardwoods basswood and aspen. Botanically, hardwoods are Angiosperms; the Western white pine Tamarack seeds are enclosed in the ovary of the flower. Anatomically, Western redcedar hardwoods are porous; that is, they contain vessel elements. Redwood A vessel element is a wood cell with open ends; when vessel Engelmann spruce elements are set one above another, they form a continuous Sitka spruce tube (vessel), which serves as a conduit for transporting water Yellow-cedar 1–2 Table 1–2. Major resources of U.S. hardwoods according to region Species Descriptions Northern and In this chapter, each species or group of species is described Southern Appalachia Western in terms of its principal location, characteristics, and uses. More detailed information on the properties of these and Ash Ash Red alder other species is given in various tables throughout this Basswood Aspen Oregon ash handbook. Information on historical and traditional uses is American beech Basswood Aspen provided for some species. Common and botanical names Butternut Buckeye Black cottonwood follow the Checklist of United States Trees (Little 1979). Cottonwood Butternut California black oak Elm American beech Oregon white oak Hackberry Birch Bigleaf maple U.S. Wood Species Pecan hickory Black cherry Paper birch True hickory American chestnuta Tanoak Hardwoods Honeylocust Cottonwood Alder, Red Black locust Elm Magnolia Hackberry Red alder (Alnus rubra) grows along the Pacific coast be- Soft maple True hickory tween Alaska and California. It is the principal hardwood for Red oaks Honeylocust commercial manufacture of wood products in Oregon and White oaks Black locust Washington and the most abundant commercial hardwood Sassafras Hard maple species in these two states. Sweetgum Soft maple The wood of red alder varies from almost white to pale American sycamore Red oaks pinkish brown, and there is no visible boundary between Tupelo White oaks heartwood and sapwood. Red alder is moderately light in Black walnut American sycamore weight and intermediate in most strength properties but low Black willow Black walnut in shock resistance. It has relatively low shrinkage. Yellow-poplar Yellow-poplar aAmerican chestnut is no longer harvested, but chestnut The principal use of red alder is for furniture, but it is also lumber from salvaged timbers can still be found on the used for sash and door panel stock and other millwork. market. Ash (White Ash Group) Important species of the white ash group are American white stock are available directly from the manufacturer, through ash (Fraxinus americana), green ash (F.
Recommended publications
  • Pije 14 Jeffrey Pine-Incense
    PIJE 14 JEFFREY PINE-INCENSE-CEDAR/HUCKLEBERRY OAK Pinus jeffreyi-Calocedrus decurrens/Quercus vaccinifolia PIJE-CADE27/QUVA (N=13; FS=13) Distribution. This Association occurs on the Applegate and Ashland Ranger Districts, Rogue River National Forest and the Galice and Illinois Valley Ranger Districts, Siskiyou National Forest. It may also occur on the Ashland and Grants Pass Resource Areas, Medford District, Bureau of Land Management. Distinguishing Characteristics. This is a relatively high elevation Jeffrey pine association and is the coolest of the Jeffrey pine associations. Huckleberry oak and incense-cedar are usually present. Soils. Parent material is serpentine, with one occurrence of peridotite. Surface gravel and rock content averages 26 and 36 percent cover, respectively, while exposed bedrock cover averages 5 percent. Based on two plots sampled, soils are deep (greater than 40 inches) and well drained. Surface texture is silty clay loam, with 8 to 25 percent gravel, 35 to 50 percent cobbles and stones, and 32 percent PIJE 15 clay. Subsurface texture is silty clay loam, with 5 percent gravel, 40 percent cobbles and stones, and 32 to 35 percent clay. The soil moisture regime is probably xeric and the soil temperature regime is probably frigid. Soils classify to the following subgroups: Dystric Xerochrept and Typic Xerochrept. Environment. Elevation averages 3990 feet. Aspect is variable, although generally not northerly. Slope averages 33 percent with a range of 5 to 68 percent. Slope position ranges from ridgetops down to the middle one-third of the slope. Vegetation Composition and Structure. Total species richness is low for the Series, averaging 27 species.
    [Show full text]
  • Proceedings of the 56 Annual Western International Forest Disease Work
    Proceedings of the 56th Annual Western International Forest Disease Work Conference October 27-31, 2008 Missoula, Montana St. Marys Lake, Glacier National Park Compiled by: Fred Baker Department of Wildland Resources College of Natural Resources Utah State University Proceedings of the 56th Annual Western International Forest Disease Work Conference October 27 -31, 2008 Missoula, Montana Holiday Inn Missoula Downtown At The Park Compiled by: Fred Baker Department of Wildland Resources College of Natural Resources Utah State University & Carrie Jamieson & Patsy Palacios S.J. and Jessie E. Quinney Natural Resources Research Library College of Natural Resources Utah State University, Logan 2009, WIFDWC These proceedings are not available for citation of publication without consent of the authors. Papers are formatted with minor editing for formatting, language, and style, but otherwise are printed as they were submitted. The authors are responsible for content. TABLE OF CONTENTS Program Opening Remarks: WIFDWC Chair Gregg DeNitto Panel: Climate Change and Forest Pathology – Focus on Carbon Impacts of Climate Change for Drought and Wildfire Faith Ann Heinsch 3 Carbon Credit Projects in the Forestry Sector: What is Being Done to Manage Carbon? What Can Be Done? Keegan Eisenstadt 3 Mountain Pine Beetle and Eastern Spruce Budworm Impacts on Forest Carbon Dynamics Caren Dymond 4 Climate Change’s Influence on Decay Rates Robert L. Edmonds 5 Panel: Invasive Species: Learning by Example (Ellen Goheen, Moderator) Is Firewood Moving Tree Pests? William
    [Show full text]
  • Back Grou Di Formatio O the Co Servatio Status of Bubi Ga Ad We Ge Tree
    BACK GROUD IFORMATIO O THE COSERVATIO STATUS OF BUBIGA AD WEGE TREE SPECIES I AFRICA COUTRIES Report prepared for the International Tropical Timber Organization (ITTO). by Dr Jean Lagarde BETTI, ITTO - CITES Project Africa Regional Coordinator, University of Douala, Cameroon Tel: 00 237 77 30 32 72 [email protected] June 2012 1 TABLE OF COTET TABLE OF CONTENT......................................................................................................... 2 ACKNOWLEDGEMENTS................................................................................................... 4 ABREVIATIONS ................................................................................................................. 5 ABSTRACT.......................................................................................................................... 6 0. INTRODUCTION ........................................................................................................10 I. MATERIAL AND METHOD...........................................................................................11 1.1. Study area..................................................................................................................11 1.2. Method ......................................................................................................................12 II. BIOLOGICAL DATA .....................................................................................................14 2.1. Distribution of Bubinga and Wengé species in Africa.................................................14
    [Show full text]
  • Download This PDF File
    CHARACTERISTICS OF TEN TROPICAL HARDWOODS FROM CERTIFIED FORESTS IN BOLIVIA PART I WEATHERING CHARACTERISTICS AND DIMENSIONAL CHANGE R. Sam Williams Supervisory Research Chemist Regis Miller Botanist and John Gangstad Technician USDA Forest Service Forest Products Laboratory1 Madison, WI 53705-2398 (Received July 2000) ABSTRACT Ten tropical hardwoods from Bolivia were evaluated for weathering performance (erosion rate, dimensional stability, warping, surface checking, and splitting). The wood species were Amburana crarensis (roble), Anudenanthera macrocarpa (curupau), Aspidosperma cylindrocarpon Cjichituriqui), Astronium urundeuva (cuchi), Caesalpinia cf. pluviosa (momoqui), Diplotropis purpurea (sucupira), Guihourriu chodatiuna (sirari), Phyllostylon rhamnoides (cuta), Schinopsis cf. quebracho-colorudo (soto), and Tabeb~liuspp. (lapacho group) (tajibo or ipe). Eucalyptus marginatu Cjarrah) from Australia and Tectonu grandis (teak), both naturally grown from Burma and plantation-grown from Central America, were included in the study for comparison. The dimensional change for the species from Bolivia, commensurate with a change in relative humidity (RH) from 30% to 90%, varied from about 1.6% and 2.0% (radial and tangential directions) for Arnburunu cer~ren.risto 2.2% and 4.1% (radial and tangential) for Anadenanthera macrocarpu. The dimensional change for teak was 1.3% and 2.5% (radial and tangential) for the same change in relative humidity. None of the Bolivian species was completely free of warp or surface checks; however, Anadenanthera macrocarpu, Aspidosperma cy- lindrocurpon, and Schinopsis cf. quebracho-colorado performed almost as well as teak. The erosion rate of several of the wood species was considerably slower than that of teak, and there was little correlation between wood density and erosion rate. Part 2 of this report will include information on the decay resistance (natural durability) of these species.
    [Show full text]
  • Section 061053 - Miscellaneous Rough Carpentry
    SECTION 061053 - MISCELLANEOUS ROUGH CARPENTRY PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. 1.2 SUMMARY A. This Section includes the following: 1. Wood framing, blocking, and nailers 2. Wood battens, shims, and furring (for wall panel attachment). 3. Plywood sheathing for miscellaneous structures and replacement of deteriorated roof sheathing. B. Related Sections include the following: 1. Section 075216 "SBS Modified Bituminous Membrane Roofing" for adhesively applied 2-ply, SBS bituminous membrane roofing, with self-adhered base ply sheet. 2. Section 076200 "Sheet Metal Flashing and Trim" for installing sheet metal flashing and trim integral with roofing. 1.3 DEFINITIONS A. Dimension Lumber: Lumber of 2-inches nominal or greater but less than 5-inches nominal in least dimension. B. Lumber grading agencies, and the abbreviations used to reference them, include the following: 1. NLGA: National Lumber Grades Authority. 2. WCLIB: West Coast Lumber Inspection Bureau. 3. WWPA: Western Wood Products Association. 1.4 QUALITY ASSURANCE A. Testing Agency Qualifications: For testing agency providing classification marking for fire- retardant treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested. PRSD – Thompson Elementary School Roof Replacement 061053 – MISCELLANEOUS ROUGH CARPENTRY July, 2012 Page 1 of 7 B. Forest Certification: For the following wood products, provide materials produced from wood obtained from forests certified by an FSC-accredited certification body to comply with FSC 1.2, "Principles and Criteria": 1.
    [Show full text]
  • The Condensed Tannins of Okoume (Aucoumea Klaineana Pierre)
    www.nature.com/scientificreports OPEN The condensed tannins of Okoume (Aucoumea klaineana Pierre): A molecular structure and thermal stability study Starlin Péguy Engozogho Anris 1,2*, Arsène Bikoro Bi Athomo1,2, Rodrigue Safou Tchiama2,3, Francisco José Santiago-Medina4, Thomas Cabaret1, Antonio Pizzi4 & Bertrand Charrier1 In order to promote convenient strategies for the valorization of Aucoumea klaineana Pierre (Okoume) plywood and sawmill wastes industry in the felds of adhesives and composites, the total phenolic content of Okoume bark, sapwood and heartwood was measured. The molecular structure of tannins extracted from the bark was determined by Matrix Assisted Laser Desorption/Ionization Time-Of-Flight (Maldi-ToF) mass spectrometry and Fourier transform infrared spectroscopy (FTIR). The total phenolic content displayed signifcant diference (p = 0.001) between the bark, sapwood and heartwood which decreased as follows: 6 ± 0.4, 2 ± 0.8 and 0.7 ± 0.1% respectively. The pro-anthocyanidins content was also signifcantly diferent (p = 0.01) among the three wood wastes, and the bark was the richest in condensed tannins (4.2 ± 0.4%) compared to the sapwood (0.5 ± 0.1%) and heartwood (0.2 ± 0.2%). Liquid chromatography coupled mass spectroscopy (LC-MS) and Maldi-ToF analysis of the bark showed for the frst time that Okoume condensed tannins are fsetinidin, gallocatechin and trihydroxyfavan based monomers and complex polymers obtained with glycosylated units. No free catechin or robitinidin units were detected, whereas distinctive dihydroxy or trihydroxyfavan-3-benzoate dimers were observed in the investigated condensed tannin extracts. FTIR analysis showed the occurrence of glucan- and mannan-like sugars in the condensed tannins, and Maldi-ToF highlighted that these sugars should account for ten glycosylated units chemically bonded with two fsetinidins and one gallocatechin trimer.
    [Show full text]
  • CITES Appendix II
    PC20 Inf. 7 Annex 9 INTRODUCTION TO CITES AND AGARWOOD OVERVIEW Asian Regional Workshop on Agarwood; 22-24 November 2011 By Milena Sosa Schmidt, CITES Secretariat: [email protected] A bit of history Several genera from the family Thymeleaceae are agarwood producing taxa. These are: Aquilaria, Enkleia, Aetoxylon, Gonystylus, Wikstroemia, Gyrinops. They produce different qualities of agarwood from which Aquilaria seems to be the best (see Indonesia report of 2003). From these six genera we have currently three listed on CITES Appendix II. The history of these listings is as follows: THYMELAEACEAE (AQUILARIACEAE) (E) Agarwood, ramin; (S) Madera de Agar, ramin; (F) Bois d'Agar, ramin Aquilaria spp. II 12/01/05 #1CoP13 II/r AE 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II/r KW 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II/r QA 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II/r SY 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II 13/09/07 #1CoP14 II 23/06/10 #4CoP15 Aquilaria malaccensis II 16/02/95 #1CoP9 II 12/01/05 Included in Aquilaria spp. Incluida en Aquilaria spp. Inclus dans Aquilaria spp. Gonystylus spp. III ID 06/08/01 #1CoP11 III/r MY 17/08/01 II 12/01/05 #1CoP13 II/r MY 12/01/05 II/w MY 07/06/05 II 13/09/07 #1CoP14 II 23/06/10 #4CoP15 Gyrinops spp. II 12/01/05 #1CoP13 II/r AE 12/01/05 II/r KW 12/01/05 II/r QA 12/01/05 II/r SY 12/01/05 II 13/09/07 #1CoP14 II 23/06/10 #4CoP15 The current annotation for these taxa is #4 and reads: All parts and derivatives, except: 1 PC20 Inf.
    [Show full text]
  • Seasoning and Handling of Ramin1
    U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON,WIS. In Cooperation with the University of Wisconsin U. S. FOREST SERVICE RESEARCH NOTE FPL- 0172 SEPTEMBER 1967 SEASONING AND HANDLING OF RAMIN1 By JOHN M. McMILLEN, Technologist Forest Products Laboratory, Forest Service U.S. Department of Agriculture Abstract One of the imported woods that is finding increasing use for specific purposes is ramin (Gonystylus spp.). It originates in the Southwest Pacific and has seasoning properties somewhat like oak. Many importers, custom dryers, and users are not aware of the special seasoning and handling requirements of this wood. As a result, some firms have experienced heavy losses. This note brings together suggestions that should greatly reduce or eliminate these losses. Ramin--Production and Properties Ramin (pronounced ray-min) is the common name used in the United States for wood from Gonystylus spp., principally G. bancanus growing in Sarawak, Malaysia. Another common name used in Malaya is melawis. The trees grow 1 Partly based on information from experienced importers, custom dryers, and users of ramin. in fresh water swamp forests and have straight, clean boles averaging 60 feet long and 2 feet in diameter near the base. Principal sources are the river valleys of Sarawak and the west coast of Malaya. In the Philippines, G. macrophyllus is common in the primary forests. An undetermined species is fairly comon in the Solomon Islands, Ramin is an attractive, high-class utility hardwood having about the same weight as sycamore or paper birch. Both the sapwood and the heartwood are white to pale straw in color.
    [Show full text]
  • Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607)
    Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607) by Nancy Ross Preface Since it was published in 1984, Tropical Timbers of the World has proven to be an extremely valuable reference to the properties and uses of tropical woods. It has been particularly valuable for the selection of species for specific products and as a reference for properties information that is important to effective pro- cessing and utilization of several hundred of the most commercially important tropical wood timbers. If a user of the book has only a common or trade name for a species and wishes to know its properties, the user must use the index of common names beginning on page 451. However, most tropical timbers have numerous common or trade names, depending upon the major region or local area of growth; furthermore, different species may be know by the same common name. Herein lies a minor weakness in Tropical Timbers of the World. The index generally contains only the one or two most frequently used common or trade names. If the common name known to the user is not one of those listed in the index, finding the species in the text is impossible other than by searching the book page by page. This process is too laborious to be practical because some species have 20 or more common names. This supplement provides a complete index of common or trade names. This index will prevent a user from erroneously concluding that the book does not contain a specific species because the common name known to the user does not happen to be in the existing index.
    [Show full text]
  • Araceae), with P
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326850; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Taxonomic revision of the threatened African genus Pseudohydrosme Engl. (Araceae), with P. ebo, a new, Critically Endangered species from Ebo, Cameroon. Martin Cheek¹, Barthelemy Tchiengue2, Xander van der Burgt¹ ¹Science, Royal Botanic Gardens, Kew, Richmond, Surrey, U.K. 2 IRAD-Herbier National Camerounais, Yaoundé, BP 1601, Cameroon Corresponding author: Martin Cheek¹ Email address: [email protected] ABSTRACT This is the first revision in nearly 130 years of the African genus Pseudohydrosme, formerly considered endemic to Gabon. Sister to Anchomanes, Pseudohydrosme is distinct from Anchomanes because of its 2–3-locular ovary (not unilocular), peduncle concealed by cataphylls at anthesis and far shorter than the spathe (not exposed, far exceeding the spathe), stipitate fruits and viviparous (vegetatively apomictic) roots (not sessile, roots non-viviparous). Three species, one new to science, are recognised, in two sections. Although doubt has previously been cast on the value of recognising Pseudohydrosme buettneri, of Gabon, it is here accepted and maintained as a distinct species in the monotypic section, Zyganthera. However, it is considered to be probably globally extinct. Pseudohydrosme gabunensis, type species of the genus, also Gabonese, is maintained in Sect. Pseudohydrosme together with Pseudohydrosme ebo sp.nov. of the Ebo Forest, Littoral, Cameroon, the first addition to the genus since the nineteenth century, and which extends the range of the genus 450 km north from Gabon, into the Cross-Sanaga biogeographic area.
    [Show full text]
  • UFGS 06 10 00 Rough Carpentry
    ************************************************************************** USACE / NAVFAC / AFCEC / NASA UFGS-06 10 00 (August 2016) Change 2 - 11/18 ------------------------------------ Preparing Activity: NAVFAC Superseding UFGS-06 10 00 (February 2012) UNIFIED FACILITIES GUIDE SPECIFICATIONS References are in agreement with UMRL dated July 2021 ************************************************************************** SECTION TABLE OF CONTENTS DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES SECTION 06 10 00 ROUGH CARPENTRY 08/16, CHG 2: 11/18 PART 1 GENERAL 1.1 REFERENCES 1.2 SUBMITTALS 1.3 DELIVERY AND STORAGE 1.4 GRADING AND MARKING 1.4.1 Lumber 1.4.2 Structural Glued Laminated Timber 1.4.3 Plywood 1.4.4 Structural-Use and OSB Panels 1.4.5 Preservative-Treated Lumber and Plywood 1.4.6 Fire-Retardant Treated Lumber 1.4.7 Hardboard, Gypsum Board, and Fiberboard 1.4.8 Plastic Lumber 1.5 SIZES AND SURFACING 1.6 MOISTURE CONTENT 1.7 PRESERVATIVE TREATMENT 1.7.1 Existing Structures 1.7.2 New Construction 1.8 FIRE-RETARDANT TREATMENT 1.9 QUALITY ASSURANCE 1.9.1 Drawing Requirements 1.9.2 Data Required 1.9.3 Humidity Requirements 1.9.4 Plastic Lumber Performance 1.10 ENVIRONMENTAL REQUIREMENTS 1.11 CERTIFICATIONS 1.11.1 Certified Wood Grades 1.11.2 Certified Sustainably Harvested Wood 1.11.3 Indoor Air Quality Certifications 1.11.3.1 Adhesives and Sealants 1.11.3.2 Composite Wood, Wood Structural Panel and Agrifiber Products SECTION 06 10 00 Page 1 PART 2 PRODUCTS 2.1 MATERIALS 2.1.1 Virgin Lumber 2.1.2 Salvaged Lumber 2.1.3 Recovered Lumber
    [Show full text]
  • The Joinery Collection About Us Howdens Joinery Is the UK’S Largest Manufacturer and Supplier of Fitted Kitchens, Appliances and Joinery Products
    The Joinery Collection About Us Howdens Joinery is the UK’s largest manufacturer and supplier of fitted kitchens, appliances and joinery products. We are a trusted, trade-only business that has been selling to trade professionals since 1995. Last year we supplied over 400,000 kitchens, 2.5 million doors and 770,000 appliances to UK homes. Our products are available from stock in over 650 depots throughout the UK, and in each depot, trained designers are on hand to support you and your builder. We do not endorse trade professionals directly, but to find a builder near you, talk to your local Howdens Joinery depot or visit www.howdens.com/about-us/find-a-local-builder Our product range We have over 75 door styles to choose from including internal, sliding wardrobe, external, French and garage doors. We also offer quality joinery products, from hardware and stair parts, to skirting and timber or laminate flooring - plus the tools, fixings and accessories that you need to install them. There is an enormous choice of joinery products for all kinds of renovation, refurbishment and new build projects. To find out more about Howdens Joinery, contact your local builder or visit www.howdens.com Pricing and Aftersales To see our Pricing and Aftersales policy, please visit: www.howdens.com/about-us/howdens-pricing-and-aftersales-policy Copyright © 2018 Howden Joinery Ltd. All rights reserved. Contents A truly local business 02 Flooring 144 Howdens & the history of doors 03 Flooring accessories 165 Howdens door visualiser 04 The Burford joinery collection
    [Show full text]