<<

Spin-Orbit Mott Insulators: Magnetism, Order, and Excitations

George Jackeli Max-Planck Institute & University of Stuttgart, Germany Andronikashvili Institute of Physics, Tbilisi, Georgia

Winter School “Computational Magnetism’ Vienna, 20-23 Feb , 2017

1 Thanks to

Judit Romhanyi Leon Balents (MPI -> OIST) (KITP)

H. Takagi (MPI Stuttgart & Uni Tokyo)

BJ. Kim (MPI Stuttgart), V. Kataev (IFW Dresden)

2 ‘There is no learning without having to pose a question’

Richard Feynman (’65)

3 Transition metal oxides: many challenges

d- electrons are partially filled and not very extended Interactions dominate over kinetic energy Many degrees of freedom are at work

Orbital

Spin Charge

Lattice

Metal to Magnetic Insulator High-Tc Superconductivity Colossal Magnetoresistance

Unexpected variety of phases and transitions between them 4 Most of the elements are Transition metals

5 Relativistic in origin, Coulomb force Spin-orbit coupling

Orbital

Spin Charge

Lattice

Enhance interplay by going to heavy TM elements: A Route to Novel Collective States & Phenomena

6 Symmetry breaking by various multipoles

Monopole

charge order broken sym. translational

7 Symmetry breaking by various multipoles

Monopole Dipole

charge order ferroelectricity broken sym. magnetism translational inversion time reversal rotations

8 Symmetry breaking by various multipoles

Monopole Dipole Quadrupole

charge order ferroelectricity broken sym. magnetism orbital order translational inversion spin nematics time reversal rotations rotations

9 Symmetry breaking by various multipoles

Monopole Dipole Quadrupole Octupole

charge order ferroelectricity broken sym. magnetism orbital order translational inversion spin nematics hidden order time reversal rotations inversion rotations time reversal

10 No Symmetry breaking: Quantum Liquid

plain

11 No Symmetry breaking: Quantum Liquid

plain full bodied

12 Outline

Introduction Mott insulator, Orbital degeneracy, Spin-orbital exchange interactions Spin-orbit coupled Mott insulators Local electronic structure, Exchange in total angular momentum j-basis

Experimental implications: j=1/2 systems: Iridates and Ruthenates, j=3/2 systems: Vanadates, Molybdates,and Osmates

13 Mott Insulator one electron per site

14 Mott Insulator one electron per site half-filled band: metal

DOS

E

15 Mott Insulator one electron per site half-filled band: metal

DOS

U t E

16 Mott Insulator

one electron per site half-filled band: insulator

DOS

gap U t E

Coulomb repulsion U>>t Kinetic energy, Charges become localized and gapped Sir Nevill Mott (Nobel prize’77)

17 Mott Insulator

one electron per site half-filled band: insulator

DOS

gap U t E

Coulomb repulsion U>>t Kinetic energy, Charges become localized and gapped Sir Nevill Mott (Nobel prize’77) Low energy degrees are magnetic: Spins interacting via Heisenberg exchange

Werner Heisenberg (Nobel prize’32) 18 Ferro and Antiferromagnetism

19 Ferro and Antiferromagnetism

known to ancient Greek tribe Ferromagnet near town Magneisa

20 Ferro and Antiferromagnetism

known to ancient Greek tribe Ferromagnet near town Magneisa

Antiferromagnet proposed by

Louis Neel (Nobel prize’70)

21 Ferro and Antiferromagnetism

known to ancient Greek tribe Ferromagnet near town Magneisa

Antiferromagnet proposed by

Louis Neel (Nobel prize’70)

22 Ferro and Antiferromagnetism

known to ancient Greek tribe Ferromagnet near town Magneisa

Antiferromagnet proposed by

Louis Neel (Nobel prize’70) criticized by

Lev Landau (Nobel prize’62)

AFM order parameter was hidden 23 Ferro and Antiferromagnetism

known to ancient Greek tribe Ferromagnet near town Magneisa

Antiferromagnet proposed by

Louis Neel (Nobel prize’70) detected by neutron scattering criticized by

Lev Landau (Nobel prize’62)

AFM order parameter was hidden Bertram Brockhouse (Nobel prize’94) (Nobel prize’94) 24 Orbital Degeneracy

eg Z2 X2-Y2

d-level t2g XY XZ Transition metal ion YZ

25 Three different couplings & regimes in spin-orbital systems

Jahn-Teller coupling-EJT

EJT

orbitals are rigidly ordered: spin-only Heisenberg model

26 Three different couplings & regimes in spin-orbital systems

Jahn-Teller coupling-EJT exchange interactions- J

EJT spin exchange depends on orbital occupancy: directional character of orbitals are rigidly ordered: orbitals induces frustration spin-only Heisenberg model

?

27 Coupled spin-orbital exchange (Kugel-Khomskii type models)

Cambridge University Press 2014 28 Coupled spin-orbital exchange (Kugel-Khomskii model)

weaker FM

29 Coupled spin-orbital exchange (Kugel-Khomskii model)

weaker FM

stronger AFM

30 Coupled spin-orbital exchange (Kugel-Khomskii model)

weaker FM

stronger AFM

Exchange couplings:

Orbital degrees are static Pott’s-like! 31 Directional orbitals on a family of lattices

XY XZ

YZ

32 Ground state manifold: Hard core dimers

GJ & Ivanov PRB (2007) GJ & Khomskii PRL (2008)

Ground state manifold is spanned by hard-core dimer coverings

Spins are bound into spin-singlet on dimer bonds: Spin gaped phase = Extensive orientational degeneracy infinitely many ways of covering Different coverings are orthogonal due to orbitals

33 Three different couplings & regimes in spin-orbital systems

Jahn-Teller coupling-EJT exchange interactions- J spin-orbit coupling-λ

EJT spin exchange depends on orbital occupancy: directional character of spins & orbitals locally orbitals induces frustration orbitals are rigidly ordered: entangled: spin-only Heisenberg model orbital frustration & directional character are converted to isospins

?

34 Orbital Degeneracy

eg Z2 X2-Y2 d-level

t2g L=2 XY YZ XZ l=1

35 Orbital Degeneracy

eg Z2 X2-Y2 d-level

t2g L=2 XY YZ XZ l=1

L=-l=1

36 spin-orbit 37 77 Ir= Ir= Ising Ising couplings - (lucky (lucky number) Heisenberg vs

bond correlations spin-orbit 38 77 Ir= Ir= Ising Ising couplings - (lucky (lucky number) Heisenberg vs bond V= 23 (V+Ir=100)

octupolar octupolar order correlations spin-orbit 39 77 Ir= Ir= Ising Ising couplings - (lucky (lucky number) Heisenberg vs bond Mo=42 valence valence glass bond (answer to ultimate question…) (answer ultimate to V= 23 (V+Ir=100)

octupolar octupolar order correlations spin-orbit 40 77 Ir= Ir= Ising Ising couplings - (lucky (lucky number) Heisenberg vs bond Mo=42 valence valence glass bond 76 (???) (answer to ultimate question…) (answer ultimate to Os= unusual ‘spin’ unusual textures‘spin’ V= 23 (V+Ir=100)

octupolar octupolar order correlations Spin-orbit coupling in t2g shell

Cambridge University Press 1970 41 Spin-orbit coupling in t2g shell A. Abragam and B. Bleaney (1970)

42 Spin-orbit coupling in t2g shell A. Abragam and B. Bleaney (1970)

3λ/2

43 j=1/2 systems: Iridates and Ruthenates

44 Spin-orbit coupling in t2g shell A. Abragam and B. Bleaney (1970)

d5 (Ir4+, Ru3+…) g=2

3λ/2∼600µες

45 ’Zoo’ of Iridate compounds

A2IrO4 A3Ir2O7 A2BIrO6

, , - A IrO α β γ 2 3 A4Ir3O8

46 ’Zoo’ of Iridate compounds

A2IrO4 A3Ir2O7 A2BIrO6

, , - A IrO α β γ 2 3 A4Ir3O8

47 ’Zoo’ of Iridate compounds

A2IrO4 A3Ir2O7 A2BIrO6

, , - A IrO α β γ 2 3 A4Ir3O8

48 ’Zoo’ of Iridate compounds

A2IrO4 A3Ir2O7 A2BIrO6

, , - A IrO α β γ 2 3 A4Ir3O8

All of them are Mott insulators! 49 Spin-Orbit assisted Mott transition 50 Kramers doublet of Ir4+

Isospin exchange inherit the bond symmetry

51 Kramers doublet of Ir4+ GJ & Khaliullin PRL (2009)

Isospin exchange inherit the bond symmetry

52 Kramers doublet of Ir4+ GJ & Khaliullin PRL (2009)

Isospin exchange inherit the bond symmetry

53 Kramers doublet of Ir4+ GJ & Khaliullin PRL (2009)

Isospin exchange inherit the bond symmetry

+

_

Destructive quantum interference Heisenberg term is suppressed 54 Kramers doublet of Ir4+ GJ & Khaliullin PRL (2009)

Isospin exchange inherit the bond symmetry

X

Destructive quantum interference Heisenberg term is suppressed 55 Kramers doublet of Ir4+ GJ & Khaliullin PRL (2009)

Isospin exchange inherit the bond symmetry

JH

X

56 Crystal structure of Sr2IrO4

Staggered rotation of octahedra around c-axis by α∼11ο

57 Magnetic structure of Sr2IrO4

Cao et al., PRB ‘98

FM moment MFM~0.1µB : too small for a saturated FM

too large for a weak FM -2 [e.g. in La2CuO4: 0.2x10 µB]

Canted AFM in xy-plane ? Spin canting angle φ∼α

58 Microscopic Hamiltonian of Sr2IrO4 GJ & Khaliullin PRL (2009) Dominant interactions (no Hund’s coupling)

φ

59 Microscopic Hamiltonian of Sr2IrO4 GJ & Khaliullin PRL (2009) Dominant interactions (no Hund’s coupling)

φ No true anisotropy (Heisenberg model in rotated basis):

-if spins are confined in xy-plane they are canted -if not they form collinear Neel order along z-axis

60 Microscopic Hamiltonian of Sr2IrO4 GJ & Khaliullin PRL (2009) Dominant interactions (no Hund’s coupling)

φ No true anisotropy (Heisenberg model in rotated basis):

-if spins are confined in xy-plane they are canted -if not they form collinear Neel order along z-axis Hund’s coupling selects in-plane canted structure 61 62 Heisenberg-like Magnetism of Sr2IrO4

Kim et al, PRL’12

63 Heisenberg-like Magnetism of Sr2IrO4

Kim et al, PRL’12 Fujiyama et al, PRL’12

64 Heisenberg-like Magnetism of Sr2IrO4

Kim et al, PRL’12 Fujiyama et al, PRL’12 Takayama, GJ, et al PRB’16

65 Hexagonal Iridates A2IrO3 (A=Na, Li)

66 Pseudospins on a Honeycomb layer of A2IrO3 GJ & Khaliullin PRL (2009)

O z

x y Ir

67 Pseudospins on a Honeycomb layer of A2IrO3 GJ & Khaliullin PRL (2009)

Kitaev Model O z Ann. Phys’06

x y Ir

Fundamental Physics Prize’14

68 Kitaev Honeycomb Model

A. Kitaev, Ann. Phys’06

exactly soluble 2D quantum model spin liquid ground-state zz Fractional excitations: xx yy Majorana Fermions, Dirac spectrum only NN two-spin correlations (Baskaran et al PRL’07) Exact dynamic spin structure factor (Knolle et al PRL’14) Raman spectra (Knolle et al PRL’15)

69 Kitaev Honeycomb Model

A. Kitaev, Ann. Phys’06

exactly soluble 2D quantum model spin liquid ground-state zz Fractional excitations: xx yy Majorana Fermions, Dirac spectrum only NN two-spin correlations zz (Baskaran et al PRL’07) Exact dynamic spin structure factor (Knolle et al PRL’14) Raman spectra (Knolle et al PRL’15)

70 Kitaev Honeycomb Model

A. Kitaev, Ann. Phys’06

exactly soluble 2D quantum model spin liquid ground-state zz Fractional excitations: yy xx yy Majorana Fermions, Dirac spectrum only NN two-spin correlations zz (Baskaran et al PRL’07) Exact dynamic spin structure factor xx yy (Knolle et al PRL’14) Raman spectra (Knolle et al PRL’15)

71 Experimental Findings (more in later slides)

Susceptibility & Thermodynamics: Singh and Gegenwart, PRB’10; Singh et al PRL’12

Ordering ~ 15K in both Na2IrO3 (θ=-125K) & Li2IrO3 (θ =-33K)

Zig-Zag order in Na2IrO3 XRS : Liu et al, PRB’11 INS: Choi, Coldea et al, PRL’12 N&XR Difraction: Ye et al PRB’12

72 Phase Diagram of Kitaev-Heisenberg Model

J.Chaloupka, GJ & G.Khaliullin PRL 2010 & 2013 73 Spin-wave dispersions of Zigzag phase

Finite intensity Bragg Peak

Zero intensity Soft mode

74 α, β, γ- A2IrO3 α-RuCl3 Sr2IrO4

Isotropic: Bond directional Ising: Heisenberg-like ‘Kitaev-like’ High-Tc SC? Quantum Spin Liquid? 75 ‘The great tragedy of Science is the slaying of a beautiful hypothesis by an ugly fact.’ theoretical

Tomas Henry Huxley 19th century British biologist

76 77 Sr2IrO4

Fermi arcs

78 Sr2IrO4

Fermi arcs

79 Sr2IrO4

Fermi arcs

80 81 A2IrO3 α-RuCl3

QSL?

82 A2IrO3 α-RuCl3

QSL?

83 A2IrO3 α-RuCl3

QSL?

84 H3LiIr2O6 (Takagi’s Group)

QSL

85 j=3/2 systems: Vanadates, Molybdates,and Osmates

86 Spin-orbit coupling in t2g shell A. Abragam and B. Bleaney, “EPR of Transition Ions”

d5 (Ir4+, Ru3+…) g=2

3λ/2

d1 (V4+,Mo5+, Os7+…) g=0 87 Spin-orbit coupling in t2g shell A. Abragam and B. Bleaney, “EPR of Transition Ions”

d5 (Ir4+, Ru3+…) g=2

Magnetic field mixes j=1/2 with 3/2 3λ/2 and induces van Vleck magnetism

1 4+ 5+ 7+ d (V ,Mo , Os …) g=0 88 (Nobel prize’77) Octupolar order in Sr2VO4

GJ & G.Khaliullin PRL (2010)

y

x y

x

89 Elementary vs Magnetic Excitations

X Inter-doublet (MY) continuum M

Isospins

„pseudo-

„octupon“

octupolar Bragg peak

GJ & G.Khaliullin PRL (2010) 90 double perovskites A2LnMoO6

Ln3+ 5+ Mo each sublattice forms FCC

91 92 Rln4

M(H) at 5 (2.3)K: fit Brillouin func, accounting for 7 (2)% of the Mo s=1/2.

, 93 NMR 1/T1 - two component response: paramagnetic & gapped (~ 140 K) 94 broad gapped mode ~ 28 meV (bandwidth ~4 meV) in-gap continuum 9-17 mev 95 96 Overlap of Mo - Mo t2g orbitals

97 Superexchange Spin-Orbital Model

98 Exact ground state manifold: spanned by spin-singlet dimer coverings

Constraint: No neighbouring dimers can lie in the same plane 99 Extensive orientational degeneracy: infinitely many ways of covering

100 Extensive orientational degeneracy: infinitely many ways of covering

101 Low energy excitations & defects,

102 Low energy excitations & defects,

~J

103 Low energy excitations & defects,

104 Low energy excitations & defects,

~J

~J/2

105 ~J

~J/2

106 Low energy excitations & defects,

local singlet to triplet exc: J local SO exc: J/2 non-local SO exc:

Pseudogap rather than a Hard Gap 107 Low energy excitations & defects,

local singlet to triplet exc: J local SO exc: J/2 non-local SO exc:

Pseudogap rather than a Hard Gap 108 J. Romhanyi, L. Balents & GJ arXiv (2016)

Ba2NaOsO6 (FM? small net moment ~0.2MB, easy axis [110])

Ba2LiOsO6

Ba2LnMoO6

109 110 Summary

Mott insulators with strong spin-orbit coupling: a new class of frustrated systems

Orbital frustration directly manifested in magnetic interactions

unusual interactions and exotic states

111 Optimistic Outlook

Il est bon de savoir que l’utopie n’est jamais rien d’autre que la réalité de demain et que la réalité d’aujourd’hui était l’utopie d’hier.

Le Corbusier Swiss-French architect

112 T H A N K Y O U

113