Universidade Federal Do Amazonas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gondwanan Origin of Major Monocot Groups Inferred from Dispersal-Vicariance Analysis Kåre Bremer Uppsala University
Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 3 2006 Gondwanan Origin of Major Monocot Groups Inferred from Dispersal-Vicariance Analysis Kåre Bremer Uppsala University Thomas Janssen Muséum National d'Histoire Naturelle Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Bremer, Kåre and Janssen, Thomas (2006) "Gondwanan Origin of Major Monocot Groups Inferred from Dispersal-Vicariance Analysis," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/3 Aliso 22, pp. 22-27 © 2006, Rancho Santa Ana Botanic Garden GONDWANAN ORIGIN OF MAJOR MONO COT GROUPS INFERRED FROM DISPERSAL-VICARIANCE ANALYSIS KARE BREMERl.3 AND THOMAS JANSSEN2 lDepartment of Systematic Botany, Evolutionary Biology Centre, Norbyvagen l8D, SE-752 36 Uppsala, Sweden; 2Museum National d'Histoire Naturelle, Departement de Systematique et Evolution, USM 0602: Taxonomie et collections, 16 rue Buffon, 75005 Paris, France 3Corresponding author ([email protected]) ABSTRACT Historical biogeography of major monocot groups was investigated by biogeographical analysis of a dated phylogeny including 79 of the 81 monocot families using the Angiosperm Phylogeny Group II (APG II) classification. Five major areas were used to describe the family distributions: Eurasia, North America, South America, Africa including Madagascar, and Australasia including New Guinea, New Caledonia, and New Zealand. In order to investigate the possible correspondence with continental breakup, the tree with its terminal distributions was fitted to the geological area cladogram «Eurasia, North America), (Africa, (South America, Australasia») and to alternative area cladograms using the TreeFitter program. -
Zi[ EN BIODIVERSIDAD)? 11I
_ ---------- -i _l_ - ________ _ _ .. ~~~_._.G=.:_.__ _ _ ._.._,_,___,_____ _,_,o_ssw__ r____I_____.-- ,.................. ,,. 15_ j s - -- ,,.nn......................................... == -- -_: _: . -. - . = -- LO NI~~~- Public Disclosure Authorized CIP)~~ ~ ~~- = I 7 i s s s Public Disclosure Authorized - i, z 2. L ~LLj t1~ t !- (9~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~L Public Disclosure Authorized 0E 0 . _ - . _ _ - . r~ ~ ~ ~ .. Public Disclosure Authorized . I''U' "71111 ;:01i11:Ii 1^/]N: 1 I 1 HO1riON INVESTMENTS: I diversity Funding in H i J the Caribbean I ( Z t rt .I 'I ussell, L. Cornwell and E. Fajer zI[ EN BIODIVERSIDAD)? 11i. lEvwili I liento para la Biodiversidad ri c I 1:i na y el Caribe (: ( Linv c ) 1 Russell, L. Cornwell y E. Fajer 35111 Biodiversity Support Program Washington, DC 'l t 1 DII" World Bank -~W .~ ~ ~ ~ ~ ~ ~ ~~~~~. IA11I.E (! ) iTi NTrs TABLA DE CONTENIDOS Ackrio' v eil I ntsri 5 Reconocimientos 5 Exerut ve r via ryt 7 Resumen Ejecutivo 7 I i -,)du I c- to Introduccion Io 're\ c:l', ( ' w tion Funri v k ;essn mnt 12 Evaluaciones Previas sobre Financiamiento Bloc vn r! j r dme Asscs i 1 i i )r LA 13 para la Conservaci6n 12 Evaluacion del Financiamiento para la Mle t iod i 14 Biodiversidad en LAC 13 Metodos '4 Info nia: ( ^ llected 14 Encuesta 14 IPot( ] la ii m-sof Errot 15 Informacion Recolectada 14 Re5zu Its et id t ssicn 1 Fuentes Potenciales de Error 15 Gen r:il t .I s i6 Resultados y Discusi6n 16 Fun itig 1 nor Type 20 Resultados Generales i6 Funi itig ) r jecl Caategoi 21 Financiamiento por Tipo de Donante 20 -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version Available for Download From
Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Beatriz de Aquino Ribeiro - Bióloga - Analista Ambiental / [email protected], (95) Designation date Site Reference Number 99136-0940. Antonio Lisboa - Geógrafo - MSc. Biogeografia - Analista Ambiental / [email protected], (95) 99137-1192. Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio Rua Alfredo Cruz, 283, Centro, Boa Vista -RR. CEP: 69.301-140 2. -
Lowland Rainforests
Glime, J. M. 2019. Tropics: Lowland Rainforests. Chapt. 8-7. In: Glime, J. M. Bryophyte Ecology. Volume 4. Habitat and Role. 8-7-1 Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 22 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology4/>. CHAPTER 8-7 TROPICS: LOWLAND RAINFORESTS TABLE OF CONTENTS Lowland Rainforests ........................................................................................................................................... 8-7-2 Amazonia Lowlands ............................................................................................................................................ 8-7-7 Terra Firme ................................................................................................................................................ 8-7-11 Dense Forest ....................................................................................................................................... 8-7-14 Open Forest without Palms ................................................................................................................. 8-7-14 Open Forest with Palms ...................................................................................................................... 8-7-14 Liana Forest ........................................................................................................................................ 8-7-16 Dry Forest .......................................................................................................................................... -
Pollen Morphology of Rapateaceae Sherwin Carlquist Claremont Graduate School
Aliso: A Journal of Systematic and Evolutionary Botany Volume 5 | Issue 1 Article 7 1961 Pollen Morphology of Rapateaceae Sherwin Carlquist Claremont Graduate School Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1961) "Pollen Morphology of Rapateaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 5: Iss. 1, Article 7. Available at: http://scholarship.claremont.edu/aliso/vol5/iss1/7 ALISO VoL. 5, No. 1, pp. 39-66 MAY 15, 1961 POLLEN MORPHOLOGY OF RAPATEACEAE SHERWIN CARLQUIST1 Claremont Graduate School, Claremont, California INTRODUCTION Several circumstances prompt the presentation of studies on pollen morphology of Rapa teaceae at this time. First, recent explorations in the Guayana Highland region of northern South America have amassed excellent collections in this interesting monocotyledonous family. The family is restricted to South America with the exception of a monotypic genus in western tropical Africa (Maguire et al., 1958). Although there is no reason to believe that all new species in the family have been described, the remarkable collections of material certainly do furnish an extensive basis for pollen study which has not been available previ ously. Of great significance in this regard are the collections of Maguire and his associates at the New York Botanical Garden. Many of these collections included liquid-preserved portions. A second reason for presentation of pollen studies is the excellent condition in which pollen-bearing material of many species was preserved. Because the delicate nature of pollen grains of Rapateaceae, as described below, makes preparation of pollen-grain slides from dried material often unsatisfactory, liquid-preserved material is especially im portant. -
Novelties in Rapatea (Rapateaceae) from Colombia Gerardo A
Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 40(157):644-652, octubre-diciembre de 2016 doi: http://dx.doi.org/10.18257/raccefyn.403 Artículo original Ciencias Naturales Novelties in Rapatea (Rapateaceae) from Colombia Gerardo A. Aymard C.1,2,*, Henry Arellano-Peña1,3 1Compensation International Progress S. A. –Ciprogress Greenlife– , Bogotá, Colombia 2UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Mesa de Cavacas, Estado Portuguesa, Venezuela 3Grupo de Investigación en Biodiversidad y Conservación, Instituto de Ciencias Naturales,Universidad Nacional de Colombia, Bogotá, Colombia Abstract Rapatea isanae, from the upper Isana [Içana] river, Guianía Department, Colombia, is described and illustrated, and its morphological relationships with allied species are discussed. This taxon is remarkable for Rapatea in its small stature (15–30 cm tall) and leaves, and it is only the second species with white petals in a genus that otherwise has only yellow petals. It is most closely R. spruceana, with the base of the leaf blade gradually tapering from the intergrading into the petiole, and the bractlet of the spikelet and sepal shape. However, this new species differs from R. spruceana in its shorter size, sparse verrucose on the lower surface, the length of the attenuate portion of the involucral bracts, and the shape and color of the petals. It also has similarities to R. longipes and R. modesta in its ventricose sheath-leaf, inflorescence shape, and bractlets equal in length. A previously described species from Colombia is restablished (i.e., R. modesta), and one variety is elevated to the rank of species (i.e., R. -
Generic Additions to the Rapateaceae of Rondônia, Brazil
ACTA AMAZONICA http://dx.doi.org/10.1590/1809-4392201700691 Generic additions to the Rapateaceae of Rondônia, Brazil Rodrigo Schütz RODRIGUES1* 1 Universidade Federal de Roraima, Centro de Estudos da Biodiversidade, Av. Ene Garcez 2413, 69304-000, Boa Vista, RR, Brazil. * Corresponding author: [email protected] ABSTRACT Rapateaceae is a monocot family centered in the Guiana Shield region of South America. This article reports four generic additions to the Rapateaceae of Rondônia, a state in northern Brazil. Cephalostemon gracilis (Poepp. & Endl.) R.H.Schomb., Duckea cyperaceoidea (Ducke) Maguire, Monotrema xyridoides Gleason, and Schoenocephalium cucullatum Maguire were recorded in lowland savannas and open white-sand ecosystems in the state. These findings extend significantly the known diversity of the Rapateaceae taxa occurring in Rondônia, and represent an extension of their geographical distribution to a Brazilian state with no part of its territory in the Guiana Shield. KEYWORDS: Amazonia, floristics, Guiana Shield, new record Novos registros genéricos de Rapateaceae para Rondônia, Brasil RESUMO Rapateaceae é uma família de monocotiledôneas centrada na região do Escudo das Guianas da América do Sul. Este artigo relata o registro de quatro gêneros de Rapateaceae para o estado de Rondônia, norte do Brasil. Cephalostemon gracilis (Poepp. & Endl.) R.H.Schomb., Duckea cyperaceoidea (Ducke) Maguire, Monotrema xyridoides Gleason e Schoenocephalium cucullatum Maguire são registrados em áreas de baixa altitude, ocorrendo em savanas e ecossistemas de campinas e campinaras no estado. Estas descobertas aumentam significativamente a diversidade conhecida de táxons de Rapateaceae para Rondônia, bem como representam uma extensão de sua distribuição geográfica para um estado que não tem nenhuma parte de seu território incluído no Escudo das Guianas. -
Acta Botanica Brasilica - 35(1): 22-36
Acta Botanica Brasilica - 35(1): 22-36. January-March 2021. doi: 10.1590/0102-33062020abb0188 Predicting the potential distribution of aquatic herbaceous plants in oligotrophic Central Amazonian wetland ecosystems Aline Lopes1, 2* , Layon Oreste Demarchi2, 3 , Augusto Cesar Franco1 , Aurélia Bentes Ferreira2, 3 , Cristiane Silva Ferreira1 , Florian Wittmann2, 4 , Ivone Neri Santiago2 , Jefferson da Cruz2, 5 , Jeisiane Santos da Silva2, 3 , Jochen Schöngart2, 3 , Sthefanie do Nascimento Gomes de Souza2 and Maria Teresa Fernandez Piedade2, 3 Received: May 25, 2020 Accepted: November 13, 2020 ABSTRACT . Aquatic herbaceous plants are especially suitable for mapping environmental variability in wetlands, as they respond quickly to environmental gradients and are good indicators of habitat preference. We describe the composition of herbaceous species in two oligotrophic wetland ecosystems, floodplains along black-water rivers (igapó) and wetlands upon hydromorphic sand soils (campinarana) in the Parque Nacional do Jaú and the Reserva de Desenvolvimento Sustentável Uatumã in Central Amazonia, both protected areas. We tested for the potential distribution range (PDR) of the most frequent species of these ecosystems, which are the ones that occurred in at least two of the sampled wetlands, using species distribution models (SDMs). In total, 98 aquatic herbaceous species were recorded, of which 63 occurred in igapós and 44 in campinaranas. Most igapó species had ample PDRs across the Neotropics, while most campinaranas species were restricted to the Amazon Basin. These results are congruent with studies that described similar distribution patterns for tree and bird species, which emphasizes a high degree of endemism in Amazonian campinarana. However, we also found differences in the potential distribution of species between the two protected areas, indicating high environmental variability of oligotrophic ecosystems that deserve further investigation to develop effective measures for their conservation and protection. -
Lowland Vegetation of Tropical South America -- an Overview
Lowland Vegetation of Tropical South America -- An Overview Douglas C. Daly John D. Mitchell The New York Botanical Garden [modified from this reference:] Daly, D. C. & J. D. Mitchell 2000. Lowland vegetation of tropical South America -- an overview. Pages 391-454. In: D. Lentz, ed. Imperfect Balance: Landscape Transformations in the pre-Columbian Americas. Columbia University Press, New York. 1 Contents Introduction Observations on vegetation classification Folk classifications Humid forests Introduction Structure Conditions that suppport moist forests Formations and how to define them Inclusions and archipelagos Trends and patterns of diversity in humid forests Transitions Floodplain forests River types Other inundated forests Phytochoria: Chocó Magdalena/NW Caribbean Coast (mosaic type) Venezuelan Guayana/Guayana Highland Guianas-Eastern Amazonia Amazonia (remainder) Southern Amazonia Transitions Atlantic Forest Complex Tropical Dry Forests Introduction Phytochoria: Coastal Cordillera of Venezuela Caatinga Chaco Chaquenian vegetation Non-Chaquenian vegetation Transitional vegetation Southern Brazilian Region Savannas Introduction Phytochoria: Cerrado Llanos of Venezuela and Colombia Roraima-Rupununi savanna region Llanos de Moxos (mosaic type) Pantanal (mosaic type) 2 Campo rupestre Conclusions Acknowledgments Literature Cited 3 Introduction Tropical lowland South America boasts a diversity of vegetation cover as impressive -- and often as bewildering -- as its diversity of plant species. In this chapter, we attempt to describe the major types of vegetation cover in this vast region as they occurred in pre- Columbian times and outline the conditions that support them. Examining the large-scale phytogeographic regions characterized by each major cover type (see Fig. I), we provide basic information on geology, geological history, topography, and climate; describe variants of physiognomy (vegetation structure) and geography; discuss transitions; and examine some floristic patterns and affinities within and among these regions. -
New Species Discoveries in the Amazon 2014-15
WORKINGWORKING TOGETHERTOGETHER TO TO SHARE SCIENTIFICSCIENTIFIC DISCOVERIESDISCOVERIES UPDATE AND COMPILATION OF THE LIST UNTOLD TREASURES: NEW SPECIES DISCOVERIES IN THE AMAZON 2014-15 WWF is one of the world’s largest and most experienced independent conservation organisations, WWF Living Amazon Initiative Instituto de Desenvolvimento Sustentável with over five million supporters and a global network active in more than 100 countries. WWF’s Mamirauá (Mamirauá Institute of Leader mission is to stop the degradation of the planet’s natural environment and to build a future Sustainable Development) Sandra Charity in which humans live in harmony with nature, by conserving the world’s biological diversity, General director ensuring that the use of renewable natural resources is sustainable, and promoting the reduction Communication coordinator Helder Lima de Queiroz of pollution and wasteful consumption. Denise Oliveira Administrative director Consultant in communication WWF-Brazil is a Brazilian NGO, part of an international network, and committed to the Joyce de Souza conservation of nature within a Brazilian social and economic context, seeking to strengthen Mariana Gutiérrez the environmental movement and to engage society in nature conservation. In August 2016, the Technical scientific director organization celebrated 20 years of conservation work in the country. WWF Amazon regional coordination João Valsecchi do Amaral Management and development director The Instituto de Desenvolvimento Sustentável Mamirauá (IDSM – Mamirauá Coordinator Isabel Soares de Sousa Institute for Sustainable Development) was established in April 1999. It is a civil society Tarsicio Granizo organization that is supported and supervised by the Ministry of Science, Technology, Innovation, and Communications, and is one of Brazil’s major research centres. -
Biological Inventories P Rapid
biological R Rapid Biological Inventories apid Biological Inventories rapid inventories 11 Instituciones Participantes / Participating Institutions :11 The Field Museum Perú: Yavarí Centro de Conservación, Investigación y Manejo de Perú: Yavarí Áreas Naturales (CIMA–Cordillera Azul) Wildlife Conservation Society–Peru Durrell Institute of Conservation and Ecology Rainforest Conservation Fund Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos Financiado por / Partial funding by Gordon and Betty Moore Foundation The Field Museum Environmental & Conservation Programs 1400 South Lake Shore Drive Chicago, Illinois 60605-2496, USA T 312.665.7430 F 312.665.7433 www.fieldmuseum.org/rbi THE FIELD MUSEUM PERÚ: Yavarí fig.2 La planicie aluvial del Yavarí es un rico mosaico de bosques inundados y pantanos. Las comunidades de árboles de la reserva propuesta (línea punteada en blanco) se encuentran entre las más diversas del planeta. En esta imagen compuesta de satélite (1999/2001) resaltamos la Reserva Comunal Tamshiyacu-Tahuayo (línea punteada en gris) junto con los ríos y pueblos cercanos a los sitios del inventario biológico rápido. The Yavarí floodplain is a rich mosaic of flooded forest and swamps. Tree communities of the proposed reserve (dotted white line) are among the most diverse on the planet. In this composite satellite image of 1999/2001 we highlight the Reserva Comunal Tamshiyacu-Tahuayo (dotted grey line) along with the rivers and towns close to the rapid inventory sites. Iquitos río Manití río Orosa río Esperanza