Circadian Rhythm Phase Shifts Caused by Timed Exercise Vary with Chronotype in Young Adults

Total Page:16

File Type:pdf, Size:1020Kb

Circadian Rhythm Phase Shifts Caused by Timed Exercise Vary with Chronotype in Young Adults University of Kentucky UKnowledge Theses and Dissertations--Kinesiology and Health Promotion Kinesiology and Health Promotion 2019 CIRCADIAN RHYTHM PHASE SHIFTS CAUSED BY TIMED EXERCISE VARY WITH CHRONOTYPE IN YOUNG ADULTS J. Matthew Thomas University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2019.406 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Thomas, J. Matthew, "CIRCADIAN RHYTHM PHASE SHIFTS CAUSED BY TIMED EXERCISE VARY WITH CHRONOTYPE IN YOUNG ADULTS" (2019). Theses and Dissertations--Kinesiology and Health Promotion. 64. https://uknowledge.uky.edu/khp_etds/64 This Doctoral Dissertation is brought to you for free and open access by the Kinesiology and Health Promotion at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Kinesiology and Health Promotion by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. REVIEW, APPROVAL AND ACCEPTANCE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above. J. Matthew Thomas, Student Dr. Jody L. Clasey, Major Professor Dr. Melinda Ickes, Director of Graduate Studies CIRCADIAN RHYTHM PHASE SHIFTS CAUSED BY TIMED EXERCISE VARY WITH CHRONOTYPE IN YOUNG ADULTS ________________________________________ DISSERTATION ________________________________________ A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Education at the University of Kentucky By J. Matthew Thomas Lexington, Kentucky Director: Dr. Jody L. Clasey, Professor of Kinesiology and Health Promotion Lexington, Kentucky 2019 Copyright © J. Matthew Thomas 2019 ABSTRACT OF DISSERTATION CIRCADIAN RHYTHM PHASE SHIFTS CAUSED BY TIMED EXERCISE VARY WITH CHRONOTYPE IN YOUNG ADULTS The circadian system controls 24-hour cycles of behavior and physiology, such as rest- activity and feeding rhythms. The human circadian system synchronizes with, or entrains to, the light/dark cycle (sunrise/sunset) to promote activity and food consumption during the day and rest at night. However, strict work schedules and nighttime light exposure impair proper entrainment of the circadian system, resulting in chronic circadian misalignment. Numerous studies have shown that chronic circadian misalignment results in poor health. Therefore, therapeutic interventions that could shift circadian rhythms and alleviate circadian misalignment could broadly impact public health. Although light is the most salient time cue for the circadian system, several laboratory studies have shown that exercise can also entrain the internal circadian rhythm. However, these studies were performed in controlled laboratory conditions with physically-active participants. The purpose of this study was to determine whether timed exercise can phase advance (shift earlier) the internal circadian rhythm in sedentary subjects in free-living conditions. Fifty- two young, sedentary adults (16 male, 24.3±0.76 yrs) participated in the study. As a marker of the phase of the internal circadian rhythm, we measured salivary melatonin levels (dim light melatonin onset: DLMO) before and after 5 days of timed exercise. Participants were randomized to perform either morning (10h after DLMO) or evening (20h after DLMO) supervised exercise training for 5 consecutive days. We found that morning exercisers had a significantly greater phase advance than evening exercisers. Importantly, the morning exercisers had a 0.6h phase advance, which could theoretically better align their internal circadian rhythms with the light-dark cycle and with early- morning social obligations. In addition, we also found that baseline DLMO, a proxy for chronotype, influenced the effect of timed exercise. We found that for later chronotypes, both morning and evening exercise advanced the internal circadian rhythm. In contrast, earlier chronotypes had phase advances when they exercised in the morning, but phase delays when they exercised in the evening. Thus, late chronotypes, who experience the most severe circadian misalignment, may benefit from exercise in the morning or evening, but evening exercise may exacerbate circadian misalignment in early chronotypes. Together these results suggest that personalized exercise timing prescriptions based on chronotype could alleviate circadian misalignment in young adults. KEYWORDS: Circadian Rhythms, Chronotype, Circadian Misalignment Exercise, Phase Shift J. Matthew Thomas October 11, 2019 Date CIRCADIAN RHYTHM PHASE SHIFTS CAUSED BY TIMED EXERCISE VARY WITH CHRONOTYPE IN YOUNG ADULTS By J. Matthew Thomas Dr. Jody L. Clasey Director of Dissertation Dr. Melinda Ickes Director of Graduate Studies September 16, 2019 Date Table of Contents List of Tables……………….………..……………………………………..…….………vi List of Figures…………...………………………………..…………………………..….vii Chapter 1: Review of Literature……………………………….………..…………1 1.1 Overview…………………………………………………………….……1 1.2 Circadian rhythms in humans…….………………………..………...……2 1.2.1 What is a circadian rhythm?……..………………………………….2 1.2.2 Fundamental properties………..……………………………….……2 1.2.3 How are circadian rhythms generated?…………...….………….…..4 1.2.3.1 Circadian pacemaker……………...………………..………..4 1.2.3.2 Molecular mechanism…..……………….…..……...……..…5 1.2.3.3 Peripheral circadian oscillators in mammals……..…..…..….7 1.2.4 Modulation of circadian rhythms…………….…….…………….....9 1.2.5 Measuring human circadian rhythms……….…………………..…12 1.2.5.1 Melatonin………….…..…..……………………....……….12 1.2.5.2 Body temperature…………....………………………..…...14 1.2.5.3 Actigraphy…….……...…….……………………….……..15 1.2.5.4 Subjective questionnaires………...………....………….….16 1.2.6 Disruption of human circadian rhythms……………………..…….17 1.2.6.1 Shift work……………..……………………….…………..17 1.2.6.2 Circadian misalignment………....……………..………….18 1.2.6.2.1 Chronotype………………..……………….……19 1.2.6.2.2 Impact of chronotype on human performance and health…………………………………………...….……...21 1.2.6.2.3 Social jetlag…….……………..……….………..23 1.2.6.2.4 Other measures of circadian misalignment…..…24 1.2.7 Interventions targeting the circadian system……………………..26 1.2.7.1 Light therapy…………..…..………….…………….……26 iii 1.2.7.2 Time restricted feeding…………..………………….…...26 1.2.7.3 Melatonin………………………..…..………….………..28 1.2.7.4 Physical activity……………..…………..…………..…...28 1.3 Physical activity and human health……………………………………….29 1.3.1 Importance of physical activity and physical fitness…….……..…..29 1.3.2 Physical activity dose-response……...….…….…..………………..30 1.3.3 Physical activity and sleep……………...………….……………….33 1.3.4 Measurement of physical fitness ……………….…….……………34 1.3.4.1 Cardiorespiratory fitness……..…..………………………..34 1.3.4.2 Body composition……..…….…………………………….35 1.3.4.3 Muscular Fitness………....…………………………..……36 1.3.4.4 Flexibility……………..…………………………..……….36 1.3.5 Measurement of physical activity………....………………..………36 1.3.5.1 Accelerometers………..…..……...……………………….36 1.4 Physical activity and circadian rhythms…………………….……………..37 1.4.1 Phase shifting the circadian clock with exercise……..………....….37 1.4.2 Mechanisms causing exercise phase shifts…….…….…….…...…..44 1.4.3 Exercise timing and performance……………....……………….….44 1.5 Conclusion…………………………………………………….……………46 Chapter 2: Circadian rhythm phase shifts caused by timed exercise vary with chronotype in young adults…………………….…………….…………..……………...47 2.1 Abstract……………………………………………………………………..47 2.2 Introduction…………………..……………………………………………..49 2.3 Results……………………………………………………………………....50 2.3.1 Study Participants…………………………………………………….50 2.3.2 The time of exercise affects the phase of circadian rhythms in young, sedentary adults………………………………………..………….....51 2.3.3 Chronotype is associated with phase shifts in evening exercisers.......55 2.4 Discussion…………………………………………………………………..57 iv 2.5 Methods……………………………………………………………………..61 2.5.1 Participants……………………………………………………………61 2.5.2 Study protocol…………………………………………………………61 2.5.3 Chronotype questionnaires……...……………………………………..62 2.5.4 Anthropometric and body composition measures…….……..………...62 2.5.5 Actigraphy……………………………...…………………………...…63 2.5.6 Circadian phase measure:
Recommended publications
  • A Molecular Perspective of Human Circadian Rhythm Disorders Nicolas Cermakian* , Diane B
    Brain Research Reviews 42 (2003) 204–220 www.elsevier.com/locate/brainresrev Review A molecular perspective of human circadian rhythm disorders Nicolas Cermakian* , Diane B. Boivin Douglas Hospital Research Center, McGill University, 6875 LaSalle boulevard, Montreal, Quebec H4H 1R3, Canada Accepted 10 March 2003 Abstract A large number of physiological variables display 24-h or circadian rhythms. Genes dedicated to the generation and regulation of physiological circadian rhythms have now been identified in several species, including humans. These clock genes are involved in transcriptional regulatory feedback loops. The mutation of these genes in animals leads to abnormal rhythms or even to arrhythmicity in constant conditions. In this view, and given the similarities between the circadian system of humans and rodents, it is expected that mutations of clock genes in humans may give rise to health problems, in particular sleep and mood disorders. Here we first review the present knowledge of molecular mechanisms underlying circadian rhythmicity, and we then revisit human circadian rhythm syndromes in light of the molecular data. 2003 Elsevier Science B.V. All rights reserved. Theme: Neural basis of behavior Topic: Biological rhythms and sleep Keywords: Circadian rhythm; Clock gene; Sleep disorder; Suprachiasmatic nucleus Contents 1 . Introduction ............................................................................................................................................................................................ 205
    [Show full text]
  • No Evidence for a Phase Delay in Human Circadian Rhythms After a Single Morning Melatonin Administration
    J. Pineal Res. 2002; 32:1±5 Copyright ã Munksgaard, 2002 Journal of Pineal Research ISSN 0742-3098 No evidence for a phase delay in human circadian rhythms after a single morning melatonin administration Wirz-Justice A, Werth E, Renz C, MuÈ ller S, KraÈ uchi K. No evidence for a Anna Wirz-Justice, Esther Werth, phase delay in human circadian rhythms after a single morning melatonin Claudia Renz, Simon MuÈ ller and administration. J. Pineal Res. 2002; 32: 1±5. ã Munksgaard, 2002 Kurt KraÈuchi Abstract: Although there is good consensus that a single administration of Centre for Chronobiology, Psychiatric University Clinic, Basel, Switzerland melatonin in the early evening can phase advance human circadian rhythms, the evidence for phase delay shifts to a single melatonin stimulus given in the early morning is sparse. We therefore carried out a double-blind randomized- order placebo-controlled study under modi®ed constant routine (CR) conditions (58 hr bedrest under 8 lux with sleep 23:00±07:00 hr) in nine healthy young men. A single (pharmacological) dose of melatonin (5 mg p.o.) or a placebo was administered at 07:00 hr on the ®rst morning. Core body temperature (CBT) and heart rate (HR) were continuously recorded, and saliva was collected half-hourly for assay of melatonin. Neither the timing of the mid-range crossing times of temperature (MRCT) and HR rhythms, nor dim light melatonin onset (DLMOn) or oset (DLMO) were phase shifted the day after melatonin administration compared with placebo. Key words: human circadian rhythms, morning The only change was an altered wave form of the CBT rhythm: longer melatonin, phase delay duration of higher-than-average temperature after melatonin administration.
    [Show full text]
  • ESRS 40Th Anniversary Book
    European Sleep Research Society 1972 – 2012 40th Anniversary of the ESRS Editor: Claudio L. Bassetti Co-Editors: Brigitte Knobl, Hartmut Schulz European Sleep Research Society 1972 – 2012 40th Anniversary of the ESRS Editor: Claudio L. Bassetti Co-Editors: Brigitte Knobl, Hartmut Schulz Imprint Editor Publisher and Layout Claudio L. Bassetti Wecom Gesellschaft für Kommunikation mbH & Co. KG Co-Editors Hildesheim / Germany Brigitte Knobl, Hartmut Schulz www.wecom.org © European Sleep Research Society (ESRS), Regensburg, Bern, 2012 For amendments there can be given no limit or warranty by editor and publisher. Table of Contents Presidential Foreword . 5 Future Perspectives The Future of Sleep Research and Sleep Medicine in Europe: A Need for Academic Multidisciplinary Sleep Centres C. L. Bassetti, D.-J. Dijk, Z. Dogas, P. Levy, L. L. Nobili, P. Peigneux, T. Pollmächer, D. Riemann and D. J. Skene . 7 Historical Review of the ESRS General History of the ESRS H. Schulz, P. Salzarulo . 9 The Presidents of the ESRS (1972 – 2012) T. Pollmächer . 13 ESRS Congresses M. Billiard . 15 History of the Journal of Sleep Research (JSR) J. Horne, P. Lavie, D.-J. Dijk . 17 Pictures of the Past and Present of Sleep Research and Sleep Medicine in Europe J. Horne, H. Schulz . 19 Past – Present – Future Sleep and Neuroscience R. Amici, A. Borbély, P. L. Parmeggiani, P. Peigneux . 23 Sleep and Neurology C. L. Bassetti, L. Ferini-Strambi, J. Santamaria . 27 Psychiatric Sleep Research T. Pollmächer . 31 Sleep and Psychology D. Riemann, C. Espie . 33 Sleep and Sleep Disordered Breathing P. Levy, J. Hedner . 35 Sleep and Chronobiology A.
    [Show full text]
  • Normal and Delayed Sleep Phases
    1 Overview • Introduction • Circadian Rhythm Sleep Disorders – DSPS – Non-24 • Diagnosis • Treatment • Research Issues • Circadian Sleep Disorders Network © 2014 Circadian Sleep Disorders Network 2 Circadian Rhythms • 24 hours 10 minutes on average • Entrained to 24 hours (zeitgebers) • Suprachiasmatic nucleus (SCN) – the master clock • ipRGC cells (intrinsically photosensitive Retinal Ganglion Cells) © 2014 Circadian Sleep Disorders Network 3 Circadian Rhythm Sleep Disorders • Definition – A circadian rhythm sleep disorder is an abnormality of the body’s internal clock, in which a person is unable to fall asleep at a normal evening bedtime, although he is able to sleep reasonably well at other times dictated by his internal rhythm. • Complaints – Insomnia – Excessive daytime sleepiness • Inflexibility • Coordination with other circadian rhythms © 2014 Circadian Sleep Disorders Network 4 Circadian Sleep Disorder Subtypes* • Delayed Sleep-Phase Syndrome (G47.21**) • Non-24-Hour Sleep-Wake Disorder (G47.24) • Advanced Sleep-Phase Syndrome (G47.22) • Irregular Sleep-Wake Pattern (G47.23) • Shift Work Sleep Disorder (G47.26) • Jet Lag Syndrome * From The International Classification of Sleep Disorders, Revised (ICSD-R) ** ICD-10-CM diagnostic codes in parentheses © 2014 Circadian Sleep Disorders Network 5 Definition of DSPS from The International Classification of Sleep Disorders, Revised (ICSD-R): • Sleep-onset and wake times that are intractably later than desired • Actual sleep-onset times at nearly the same daily clock hour • Little or no reported difficulty in maintaining sleep once sleep has begun • Extreme difficulty awakening at the desired time in the morning, and • A relatively severe to absolute inability to advance the sleep phase to earlier hours by enforcing conventional sleep and wake times.
    [Show full text]
  • The Use of Bright Light in the Treatment of Insomnia
    Chapter e39 The Use of Bright Light in the Treatment of Insomnia Leon Lack and Helen Wright Department of Psychology, Flinders University, Adelaide, South Australia PROTOCOL NAME The use of bright light in the treatment of insomnia. GROSS INDICATION Certain types of insomnia that are associated with abnormal timing of circa- dian rhythms may be treated with bright light therapy. SPECIFIC INDICATION Some individuals with sleep onset insomnia experience difficulty falling asleep at a “normal time” but no difficulty maintaining sleep once it is initi- ated. Individuals with this type of insomnia may have a delayed or later timed circadian rhythm. Bright light therapy timed in the morning after arising can advance or time circadian rhythms earlier and thus would be indicated for sleep onset or initial insomnia. Morning bright light therapy is also indicated for the related problem of delayed sleep phase disorder. Individuals experiencing early morning awakening insomnia have no diffi- culty initiating sleep but their predominant difficulty is waking before intended and not being able to resume sleep. These individuals may have an advanced or early timed circadian rhythm. Bright light therapy in the evening before sleep would be indicated for this type of insomnia as well as for the more extreme version, advanced sleep phase disorder. CONTRAINDICATIONS Bright light therapy would not be recommended in the following cases: ● Insomnia in which there is no indication of abnormal timing of circadian rhythms (e.g. combined problem initiating and maintaining sleep, having no strong morning or evening activity preferences) Behavioral Treatments for Sleep Disorders. DOI: 10.1016/B978-0-12-381522-4.00053-5 © 2011 Elsevier Inc.
    [Show full text]
  • Circadian Phase Sleep and Mood Disorders (PDF)
    129 CIRCADIAN PHASE SLEEP AND MOOD DISORDERS ALFRED J. LEWY CIRCADIAN ANATOMY AND PHYSIOLOGY SCN Efferent Pathways Anatomy Not much is known about how the SCN entrains overt circadian rhythms. We know that the SCN is the master The Suprachiasmatic Nucleus: Locus of the pacemaker, but regarding its regulation of the rest/activity Biological Clock cycle, core body temperature rhythm and cortisol rhythm, Much is known about the neuroanatomic connections of among others, it is not clear if there is a humoral factor or the circadian system. In vertebrates, the locus of the biologi- neural connection that transmits the SCN’s efferent signal; cal clock (the endogenous circadian pacemaker, or ECP) however, a great deal is known about the efferent neural pathway between the SCN and pineal gland. that drives all circadian rhythms is in the hypothalamus, specifically, the suprachiasmatic nucleus (SCN)(1,2).This paired structure derives its name because it lies just above The Pineal Gland the optic chiasm. It contains about 10,000 neurons. The In mammals, the pineal gland is located in the center of molecular mechanisms of the SCN are an active area of the brain; however, it lies outside the blood–brain barrier. research. There is also a great deal of interest in clock genes Postganglionic sympathetic nerves (called the nervi conarii) and clock components of cells in general, not just in the from the superior cervical ganglion innervate the pineal (4). SCN. The journal Science designated clock genes as the The preganglionic neurons originate in the spinal cord, spe- second most important breakthrough for the recent year; cifically in the thoracic intermediolateral column.
    [Show full text]
  • Non-24-Hour Sleep-Wake Disorder Revisited – a Case Study
    CASE REPORT published: 29 February 2016 doi: 10.3389/fneur.2016.00017 Non-24-Hour Sleep-Wake Disorder Revisited – a Case study Corrado Garbazza1,2† , Vivien Bromundt3† , Anne Eckert2,4 , Daniel P. Brunner5 , Fides Meier2,4 , Sandra Hackethal6 and Christian Cajochen1,2* 1 Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland, 2 Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland, 3 Sleep-Wake-Epilepsy-Centre, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland, 4 Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric Hospital of the University of Basel, Basel, Switzerland, 5 Center for Sleep Medicine, Hirslanden Clinic Zurich, Zurich, Switzerland, 6 Charité – Universitaetsmedizin Berlin, Berlin, Germany The human sleep-wake cycle is governed by two major factors: a homeostatic hourglass process (process S), which rises linearly during the day, and a circadian process C, which determines the timing of sleep in a ~24-h rhythm in accordance to the external Edited by: Ahmed S. BaHammam, light–dark (LD) cycle. While both individual processes are fairly well characterized, the King Saud University, Saudi Arabia exact nature of their interaction remains unclear. The circadian rhythm is generated by Reviewed by: the suprachiasmatic nucleus (“master clock”) of the anterior hypothalamus, through Axel Steiger, cell-autonomous feedback loops of DNA transcription and translation. While the phase Max Planck Institute of Psychiatry, Germany length (tau) of the cycle is relatively stable and genetically determined, the phase of Timo Partonen, the clock is reset by external stimuli (“zeitgebers”), the most important being the LD National Institute for Health and Welfare, Finland cycle.
    [Show full text]
  • Control Theory Approach to the Study of Circadian Leaf Movement in Trifolium Repens
    CONTROL THEORY APPROACH TO THE STUDY OF CIRCADIAN LEAF MOVEMENT IN TRIFOLIUM REPENS by G.R. Robinson B..Sc. Hons.) submitted in fulfilment of the requirements for the degree of Doctor of Philosophy. UNIVERSITY OF TASMANIA HOBART JANUARY, 1979 Thithesis.contains.no material which has been laccepted for the award of any.other.degree . or diploma in any university. To.the best of my knowledge and.belief, the thes is contains.no material previously published . or written by another person except where due reference is made in the text. G.R. Robinson CONTENTS Page SUMMARY ACKNOWLEDGEMENTS iv CHAPTER ONE : GENERAL INTRODUCTION CHAPTER TWO : CIRCADIAN RHYTHMS IN BIOLOGICAL SYSTEMS 1.1 Introduction 5 2.2 Occurrence 6 . 2.3 Characteristics of circadian systems. (a) Light effects 8 (b) Temperature effects . 10 (c) Chemical effects 12 2.4 ModelS:, ,-; -14 CHAPTER THREE : CONTROL THEORY AND ITS APPLICATION ' TO BIOLOGICAL SYSTEMS 5.1 Introduction 18 3.2 Basic concepts 18 3.3 Linear systems . 21 :3.4 The Laplace transformand system transfer .function 23 3.5 System frequency response 25 :3.6 .Relationahip.between frequency response and 25 impulse response 3.7 Determination of frequency.response 27 . (1) Transient inputs 27 (2) Continuous inputs :3.8 Matching a . transfer function to the 28 frequency response Page 3.9 Frequency response for a biological system 31 1.10 Examples of application to biological systems -34 1.11Pulse-phase response curves 36 CHAPTER FOUR : ANALYTICAL METHODS 4.1 Introduction 44 4.2 The discrete Fourier transform 45 4.3 Spectral analysis from a least squares viewpoint 47 4.3.1 Estimating amplitude and phase 48 4.3.2 Estimation of frequency 50 4.3.3 Several periodic terms 51 4.4 Properties of the DFT 51 4.4.1 Leakage 52 4.4.2 Aliasing 58 4.5 Reliability of spectral estimates 64 4.5.1 Presence of frequency components 64 4.5.2 Reliability of frequency, amplitude and 66 phase estimates 4.5.3 Combination of estimates 69 4.6 Oscillations with nonstationary parameters 71 4.7 Future developments 72 CHAPTER FIVE : EXPERIMENTAL METHOD .
    [Show full text]
  • An Integrative Chronobiological-Cognitive Approach to Seasonal Affective Disorder Jennifer Nicole Rough University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2016 An integrative chronobiological-cognitive approach to seasonal affective disorder Jennifer Nicole Rough University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Clinical Psychology Commons Recommended Citation Rough, Jennifer Nicole, "An integrative chronobiological-cognitive approach to seasonal affective disorder" (2016). Graduate College Dissertations and Theses. 483. https://scholarworks.uvm.edu/graddis/483 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. AN INTEGRATIVE CHRONOBIOLOGICAL-COGNITIVE APPROACH TO SEASONAL AFFECTIVE DISORDER A Dissertation Presented by Jennifer Nicole Rough to the Faculty of the Graduate College of the University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Clinical Psychology January, 2016 Defense Date: September, 17, 2015 Dissertation Examination Committee: Kelly Rohan, Ph.D., Advisor Terry Rabinowitz, M.D., Chairperson Timothy Stickle, Ph.D. Mark Bouton, Ph.D. Donna Toufexis, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Seasonal affective disorder (SAD) is characterized by annual recurrence of clinical depression in the fall and winter months. The importance of SAD as a public health problem is underscored by its high prevalence (an estimated 5%) and by the large amount of time individuals with SAD are impaired (on average, 5 months each year).
    [Show full text]
  • A Three Pulse Phase Response Curve to Three Milligrams of Melatonin in Humans
    J Physiol 586.2 (2008) pp 639–647 639 A three pulse phase response curve to three milligrams of melatonin in humans Helen J. Burgess1,VictoriaL.Revell2 and Charmane I. Eastman1 1Biological Rhythms Research Laboratory, Department of Behavioural Sciences, Rush University Medical Center, Chicago, IL, USA 2Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK Exogenousmelatoninisincreasinglyusedforitsphaseshiftingandsoporificeffects.Wegenerated a three pulse phase response curve (PRC) to exogenous melatonin (3 mg) by administering it to free-running subjects. Young healthy subjects (n = 27) participated in two 5 day laboratory sessions,eachprecededbyatleastaweekofhabitual,butfixedsleep.Each5 daylaboratorysession started and ended with a phase assessment to measure the circadian rhythm of endogenous melatonin in dim light using 30 min saliva samples. In between were three days in an ultradian dim light (< 150 lux)–dark cycle (LD 2.5 : 1.5) during which each subject took one pill per day at the same clock time (3 mg melatonin or placebo, double blind, counterbalanced). Each individual’s phase shift to exogenous melatonin was corrected by subtracting their phase shift to placebo (a free-run). The resulting PRC has a phase advance portion peaking about 5 h before the dim light melatonin onset, in the afternoon. The phase delay portion peaks about 11 h after the dim light melatonin onset, shortly after the usual time of morning awakening. A dead zone of minimal phase shifts occurred around the first half of habitual sleep. The fitted maximum advance and delay shifts were 1.8 h and 1.3 h, respectively. This new PRC will aid in determining the optimal time to administer exogenous melatonin to achieve desired phase shifts and demonstrates that using exogenous melatonin as a sleep aid at night has minimal phase shifting effects.
    [Show full text]
  • Chronophilia; Or, Biding Time in a Solar System
    Chronophilia; or, Biding Time in a Solar System MARCUS HALL Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland Abstract Having evolved in a dynamic solar system, all life on earth has adapted to and de- pends on recurring and repeating cycles of light, heat, and gravity. Our sleep cycles, repro- ductive cycles, and emotional cycles are all linked in varying ways to planetary motion even though we continually disrupt, modify, or extend these cycles to go about our personal and collective business. This essay explores how our sense of time is both physiological and cul- tural, with deep ramifications for confronting such challenges as jet lag, navigation, calendar construction, shift work, and even life span. Although chronobiologists have posited the existence of a Zeitgeber, or external master clock that serves to reset our internal clocks, it hasbecomeclearthatanymasterclockreliesasmuchonnaturalelements(suchasarising sun) as cultural elements (such as an alarm clock). Moreover the “circa” of circadian rhythms, suggests that our activities and emotions recur, not in exact twenty-four-hour cycles, but in more plastic and approximate cycles that, according to circumstance and individual, may span somewhat longer or shorter periods than one earthly rotation. Or as one chronobiolo- gist explains, “Any one physiologic variable is characterized by a spectrum of rhythms that aregeneticallyanchored,sociologicallysynchronized...andinfluenced by heliogeophysical effects.” As we contemplate faster and further travel and other activities that disrupt our biorhythms, we need to develop greater awareness of chronophilia, our attachment to rhythm, our love of familiar time. Keywords chronobiology, biorhythm, circadian, desynchrony, jet lag, shift work, sense of time ven before the newborn infant takes his or her first gasps of air, he or she has settled E into recurring patterns of rest and activity.
    [Show full text]
  • Toward an Understanding of Dreams As Mythological and Cultural-Political Communication
    Toward an Understanding of Dreams as Mythological and Cultural-Political Communication by John Hughes M.A., University of Louisiana, Monroe, 2012 Diploma of Technology, British Columbia Institute of Technology, 2005 B. A., University of British Columbia, 2002 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the School of Communication Faculty of Communication, Art and Technology © John Hughes 2020 SIMON FRASER UNIVERSITY Spring 2020 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Approval Name: John Hughes Degree: Doctor of Philosophy (Communication) Title of Thesis: Toward an Understanding of Dreams as Mythological and Political Communication Examining Committee: Chair: Stuart Poyntz, Associate Professor ___________________________________________ Gary McCarron Senior Supervisor Associate Professor __________________________________________ Jerry Zaslove Supervisor Professor Emeritus _______________________________________________ Martin Laba Supervisor Associate Professor _______________________________________________ Michael Kenny Internal/External Examiner Professor Emeritus Department of Sociology and Anthropology _______________________________________________ David Black External Examiner Associate Professor School of Communication and Culture Royal Roads University Date Defended/ Aril 20, 2020 Approved: ii Abstract The central argument of this dissertation is that the significance of both myths and dreams, as framed by cultural politics, is not reducible to polarities of truth or falsehood, or superstition in opposition to science. It is the socio-political webs that myths and dreams often weave that this dissertation explores.
    [Show full text]