United States Patent to 11, 4,020,010 Vogt Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent to 11, 4,020,010 Vogt Et Al United States Patent to 11, 4,020,010 Vogt et al. 45 Apr. 26, 1977 54) TIN TITANIUM COMPLEXES As (56) References Cited ESTERIFICATION/TRANSESTERIFICA. TON CATALYSTS UNITED STATES PATENTS 3,056,818 10/1962 Werber .......................... 252/431 C (75) Inventors: Herwart C. Vogt, Grosse Ile; Manher 3,714,234 i? 1973 White ............................ 252/431 R 3,716,523 2/1973 Cook ...... ... 260/75 M Parekh, Woodhaven; John T. Patton, Jr., Wyandotte, all of Mich. 3,884,832 5/1975 Pullukat ......................... 252/43 R Primary Examiner-Winston A. Douglas (73) Assignee: BASF Wyandotte Corporation, Assistant Examiner-John F. Niebling Wyandotte, Mich. Attorney, Agent, or Firm-Norbert M. Lisicki; Bernhard R. Swick; Robert E. Dunn 22) Filed: Dec. 29, 1975 57 ABSTRACT (21) Appl. No.: 644,357 Complexes of stannous carboxylate and tetraalkyl tita nate are effective esterification and transesterification (52) U.S. C. ........................ 252/431 C; 252/431 R catalysts. (51) int. C.’............................................ B01J 31/2 (58) Field of Search .................... 252/431 R, 431 C 7 Claims, No Drawings 4,020,010 1. 2 tetraaryl titanate will result in complexes which are TIN TITANIUM COMPLEXES AS more efficient than the individual metal components as ESTERIFICATION/TRANSESTERIFICATION esterification/transesterification catalysts. The com CATALYSTS plexes may be used for any type of mono- or polycar boxylic acid and anhydride to be esterified with any BACKGROUND OF THE INVENTION suitable hydroxyl containing material. 1. Field of the Invention This invention relates to the preparation of tin DESCRIPTION OF THE PREFERRED titanium complexes. More specifically, this invention EMBODIMENTS relates to a process of preparing esters and polyesters in 10 The tin-titanium complex may be described by the an improved manner by using these novel complexes as following general formula: esterification/transesterification catalysts. 2. Prior Art The preparation of esters and polyesters is well known in the art. These materials are prepared by es 15 terifying mono- and/or polyhydric alcohols with mono Ti(OR), Sn OCR' U , and/or polycarboxylic acids. In many instances it is desirable to prepare such esters or polyesters having a very low acid number, i.e., less than two. However, the wherein R is a radical selected from the group consist attainment of an ester or polyester having a low acid 20 ing of an aliphatic radical having from 1 to 18 carbon number is extremely difficult to achieve. For example, atoms, an alicyclic radical having between l and 3 during the last stage of the esterification of the reac rings, between 5 and 6 carbon atoms per ring and be tion, the reaction proceeds extremely slowly and hence tween 5 and 18 carbon atoms per molecule, and an in order to reduce the acid value it is necessary to heat aromatic radical having between l and 3 rings and for a lengthy period of time at relatively high tempera 25 between 6 and 18 carbon atoms per molecule, R' is an tures. This, in many instances, tends to bring about organic radical having from 1 to 18 carbon atoms and formation of a darkened ester or polyester which is x and y are whole numbers in the ratio of 1:1 to 1:8. unsuitable for further use. Various attempts have been The complexes of this invention are prepared by made to reduce the time of the esterification reaction. reacting together, under anhydrous conditions, and in For instance, British Pat. No. 792,011 describes the use 30 the absence of air, at room temperature, the desired of iron, cadmium, cobalt, lead, zinc, antimony and concentration of stannous carboxylates with the de manganese in the form of the metal, its oxide or its salt sired amount of tetraalkyl or tetraaryl titanate. It may with a bibasic acid. Other catalyst types are more reac also be desired to heat the reactants if shorter reaction tive. For example, stannous compounds of the type times are desired and to assure completeness of reac Sn(OOCR), wherein R is selected from the group con 35 tion. The reaction of these two clear liquids is often sisting of saturated and unsaturated aliphatic hydrocar accompanied by orange, light yellow, or red color for bon constituents having from about 7 to about 17 car mation and the liberation of heat. Sometimes it is desir bon atoms have been described in U.S. Pat. No. able to carry out this preparation in a suitable inert 3,162,616 and U.S. Pat. No. 3,716,523. Organo tita solvent to permit easier handling of the complex. Sol nium or organo zirconium compounds have been dis 40 vents such as anhydrous xylene may be employed. In closed by U.S. Pat. No. 3,056,818 as being suitable as addition to the color formation and heat evolution esterification catalysts. Titanium compounds are often which indicate a new complex compound has been insoluble in the product and must be removed by filtra formed, it has been found that the tin-titanium complex tion or other tedious procedures. The technical litera has improved hydrolytic stability. It is well known that ture also notes that esterification is usually effected by 45 stannous salts of organic acids and titanium alkylates refluxing the acid and alcohol with a small amount of are very susceptible to trace amounts of moisture acid catalyst such as sulfuric acid, hydrochloric acid, which leads to rapid hydrolysis, catalyst deactivation, and sulfonic acids or boron trifluoride. Acid catalyst and often solid formation. For example, tetrabutyl tita often causes color formation and must be removed to nate is immediately decomposed by water forming insure a stable low acid number product. 50 titanic acid. Atmospheric moisture may produce high Esters may also be prepared by transesterification molecular weight condensation products which pro reactions. These transesterification reactions include ceed until titanium dioxide or the hydrous titanium the reactions between two esters to yield two new es dioxide is formed. Stannous octoate undergoes similar ters or the reaction between an ester and an alcohol to hydrolysis type reactions with water and precautions form a new ester and liberate an alcohol. Included also 55 must be taken to prevent the destruction of the cata are the transesterification reactions where the compo lyst. nents of the esters involved are polyhydroxy alcohols Any suitable stannous salt of a carboxylic acid may and polybasic acids. These reactions may, in some be used to prepare the complex. These may be de instances, be catalyzed by those substances which are scribed by the following formula: employed for the esterification procedure. We have 60 discovered that polyesters having an acid number less Sn(OOCR) than two can be prepared in relatively short period of time with tin-titanium catalyst complexes employing wherein R is a saturated or unsaturated, straight or either esterification or transesterification procedures. branched chain, aliphatic or aromatic substituent hav 65 ing from about 1 to about 18 carbon atoms in its chain. SUMMARY OF THE INVENTION Stannous octoate and stannous oleate are preferred. It has been discovered that certain unique combina Other suitable stannous salts are stannous naphthenate, tions between a tin carboxylate and a tetraalkyl or stannous acetate, stannous butyrate, stannous ethyl 4,020,010 3 4 hexoate, stannous laurate, stannous palmitate, and removal at the later stages of esterification, a vacuum StanOuS Stearate. of 0.1-100 mm Hg is employed. The time of reaction The titanium compounds which are employed can be will depend on the reactivity of the reactants, the stoi represented by the general formula: chiometry, temperature, and pressure employed in the 5 reaction, the molecular weight of the resulting polyes Ti(OR) ter, the rapidity with which the water of esterification is removed, and the activity of the catalyst employed, if wherein R is a radical selected from the group consist any. ing of an aliphatic radical having from 1 to 18 carbon Any mono- or polycarboxylic acid and anhydrides atoms, an alicyclic radical having between l and 3 () thereof may be employed for the preparation of esters. rings, between 5 and 6 carbon atoms per ring, and Thus, the acids undergoing esterification can be ali between 5 and 18 carbon atoms per molecule, and an phatic, cycloaliphatic or aromatic and they can be aromatic radical having between l and 3 rings and substituted or unsubstituted. Among the acids which between 6 and 8 carbon atoms, per molecule. may be employed include acetic, acrylic, propionic, Examples of these compounds include tetramethyl propiolic, isobutyric, methacrylic, n-butyric, pivalic, titanate, tetraethyl titanate, tetraally titanate, tetrapro ethylmethylacetic, isovaleric, chloroacetic, o-chloro pyl titanate, tetraisopropyl titanate, tetrabutyl titanate, propionic, n-valeric, dichloroacetic, diethylacetic, tetraisobutyl titanate, tetraamyl titanate, tetracyclo isocaproic, o-ethyl-n-butyric, methoxyacetic, n pentyl titanate, tetrahexyl titanate, tetracyclohexyl caproic, ethoxyacetic, bromoacetic, heptoic, o-ethyl-n- titanate, tetrabenzyl titanate, tetraoctyl titanate, tetrae () caproic, a-bromoisovaleric, hexahydrobenzoic, di thylhexyl titanate, tetranonyl titanate, tetradecyl tita bromoacetic, n-caprylic, a-phenylpropionic, un nate, and tetraoleyl titanate. decanoic, g-phenylpropionic, mesity lenic, tricarbally Mixed alkyl titanate compounds wouid include lic, o,6-dibromosuccinic, tartaric, 3,5-dinitrosalicyclic, trimethylbutyl titanate, dimethyldibutyl titanate, trie p-toluic, acetylenedicarboxylic,
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Visible-Light-Driven Photooxidation of Alcohols Using Surface-Doped Graphitic Carbon Nitride
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017 Visible-Light-Driven Photooxidation of alcohols using surface-doped graphitic carbon nitride Wuyuan Zhang, Anna Bariotaki, Ioulia Smonou, and Frank Hollmann* Material and Methods Materials Unless stated otherwise all chemicals were purchased from Sigma-Aldrich, Fluka, Acros or Alfa-Aesar with the highest purity available and used without further treatment. Synthesis of g-C3N4 and carbon nanodots doped (CD-C3N4) The g-C3N4 was synthesized via the simple calcination (Carbolite furnace; CWF 12/5, 2400 W) of urea (10.0 g) at 600 °C for 4 h (5 °C/min), a yellowish powder was obtained after the cooling to room temperature.1 The carbon nanodots were synthesized via the thermal decomposition of sucrose with slight modification.2 Briefly, 0.75 g of sucrose was dissolved in 30 mL of MilliQ water and stirred at room temperature for 0.5 h. The solution was transferred into a 45 mL Teflon-lined stainless steel autoclave reactor, and heated at 180 °C for 5 h (10 °C/min). After cooling the reactor to room temperature, a brown mixture was obtained. The mixture was centrifuged (8000 rpm for 20 min), and the pellet was washed with water (3×) and freeze-dried. 3 In order to deposit carbon nanodots to the surface of g-C3N4, Liu et al’s procedures were adopted. Firstly, a stock solution of carbon nanodots (1 mg in 25mL water) was prepared. 15.0 mL of this stock solution was mixed with 15.0 mL of NH4OH (28 %) and sealed in a 45 mL Teflon-lined autoclave reactor.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,576,170 B2 Perry Et Al
    US00757617OB2 (12) United States Patent (10) Patent No.: US 7,576,170 B2 Perry et al. (45) Date of Patent: Aug. 18, 2009 (54) CYCLIC SILOXANE COMPOSITIONS FOR 6,046,156 A 4/2000 Perry THE RELEASE OF ACTIVE INGREDIENTS 6,054,547 A 4/2000 Perry et al. 6,063,365 A 5, 2000 Schefer et al. (75) Inventors: Robert J. Perry, Niskayuna, NY (US); 6,075,111 A 6/2000 Perry et al. Mark D. Leatherman, Elmsford, NY 6,077.923 A 6/2000 Perry et al. (US); Shahid Murtuza, Albany, NY 6,083,901 A 7/2000 Perry et al. (US) 6,121,343 A 9/2000 Hongo et al. 6,143,309 A 11/2000 Legrow et al. (73) Assignee: Momentive Performance Materials, 6,153,578 A 11/2000 Perry Albany, NY (US) 6,200,949 B1 3/2001 Reijmer et al. 6,228,380 B1 5, 2001 LeGrow et al. (*) Notice: Subject to any disclaimer, the term of this 6,262,287 B1 7/2001 Anderson et al. patent is extended or adjusted under 35 6,267,977 B1 7/2001 LeGrow et al. U.S.C. 154(b) by 993 days. 6,309,715 B1 10/2001 Lindauer et al. 6,322,777 B1 1 1/2001 Perry et al. (21) Appl. No.: 10/742,415 6,325,274 B2 12/2001 Esumi et al. 6,325,859 B1 12/2001 De Roos et al. (22) Filed: Dec. 19, 2003 6,435,423 B2 8/2002 Hurry et al. (65) Prior Publication Data 6,624,136 B2 9, 2003 Guerinet al.
    [Show full text]
  • Akshi Bansal* B. K. Dangarh ABSTRACT KEYWORDS
    ORIGINAL RESEARCH PAPER Volume-7 | Issue-1 | January-2018 | PRINT ISSN No 2277 - 8179 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH OXIDATION STUDY OF 4-METHOXYBENZYL ALCOHOL BY CR (VI) OXIDANTS IN PARTIAL AQUEOUS MEDIUM- A COMPARATIVE STUDY Chemistry Research Scholar, Pacific academy of Higher Education and Research University, Akshi Bansal* Udaipur *Corresponding Author B. K. Dangarh Asstt. Prof. of Chemistry, Govt. P. G. College, Neemuch, M.P. ABSTRACT Oxidation of 4-Methoxybenzyl alcohol by different Cr (VI) oxidants [PDC and PCC] has been studied in acetic acid-H2O medium in the presence of PTSA spectrophotometrically. The reactions are found first order with respect to both the oxidants, [H+], and [substrate].Michaelis-Menten type kinetics is observed. The reaction rate decreases with increasing volume percentage of acetic acid in reaction mixture. The reaction was studied at different temperature [298-318 K] and activation parameters were computed. The oxidation product was identified as Cr (III) and corresponding aldehyde. The oxidation rate order was found with respect to the oxidants are: PCC > PDC KEYWORDS Oxidation, 4-Methoxybenzyl alcohol, PTSA, PCC and PDC. 1. INTRODUCTION The kinetics run were followed for more than 60-70% completion of 4-Methoxybenzyl alcohol (Anisyl alcohol) is used as a fragrance and the reaction and good first order kinetics were observed. flavouring. It occurs naturally but is produced by reduction of anisaldehyde. 3. RESULTS AND DISCUSSION: 3.1 Stoichiometry and product analysis: Kinetics and mechanism of the oxidation of substituted benzyl To determine the stoichiometry of a reaction a known slight excess of alcohols by pyridinium chlorochromate studied by Banerji[1] et al.
    [Show full text]
  • European Patent Office of Opposition to That Patent, in Accordance with the Implementing Regulations
    (19) TZZ __T (11) EP 2 416 766 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/045 (2006.01) A61K 45/06 (2006.01) 09.04.2014 Bulletin 2014/15 A61K 8/34 (2006.01) A61P 17/00 (2006.01) A61P 17/16 (2006.01) A61Q 19/00 (2006.01) (2006.01) (2006.01) (21) Application number: 09701247.0 A23L 1/30 A23L 2/02 A23L 2/39 (2006.01) A23C 9/13 (2006.01) A23C 11/10 (2006.01) A61Q 5/02 (2006.01) (22) Date of filing: 09.04.2009 A61Q 11/00 (2006.01) A61Q 15/00 (2006.01) A61Q 17/04 (2006.01) A61Q 19/02 (2006.01) A61K 8/02 (2006.01) A61Q 19/04 (2006.01) (86) International application number: PCT/EP2009/054336 (87) International publication number: WO 2009/087242 (16.07.2009 Gazette 2009/29) (54) COMPOSITIONS COMPRISING TRANS-TERT-BUTYL CYCLOHEXANOL AS SKIN IRRITATION- REDUCING AGENT ZUSAMMENSETZUNGEN MIT TRANS-TERT-BUTYL-CYCLOHEXANOL ALS MITTEL ZUR REDUZIERUNG VON HAUTREIZUNGEN COMPOSITIONS COMPRENANT DU TRANS-TERT-BUTYL CYCLOHEXANOL EN TANT QU’AGENT RÉDUISANT L’IRRITATION CUTANÉE (84) Designated Contracting States: • KROHN, Michael AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 64653 Lorsch (DE) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • ZINKE, Holger PT RO SE SI SK TR 64646 Heppenheim (DE) (43) Date of publication of application: (74) Representative: Eisenführ Speiser 15.02.2012 Bulletin 2012/07 Patentanwälte Rechtsanwälte PartGmbB Postfach 10 60 78 (73) Proprietor: Symrise AG 28060 Bremen (DE) 37603 Holzminden (DE) (56) References cited: (72) Inventors: EP-A2- 0 755 910 WO-A1-97/22332 • VIELHABER, Gabriele WO-A1-2008/117254 US-A- 2 927 127 75008 Paris (FR) • OERTLING, Heiko • SYMRISE GMBH & CO KG ET AL: "Trans-tert- 1012 Lausanne (CH) butyl cyclohexanol as skin irritation-reducing • GÖMANN, Claudia agent" RESEARCH DISCLOSURE, MASON 37640 Warbsen (DE) PUBLICATIONS, HAMPSHIRE, GB, vol.
    [Show full text]
  • Food and Drug Administration, HHS § 172.515
    Food and Drug Administration, HHS § 172.515 Common name Scientific name Limitations Tolu ................................................................ Myroxylon balsamum (L.) Harms. Turpentine ...................................................... Pinus palustris Mill. and other Pinus spp. which yield terpene oils exclusively. Valerian rhizome and roots ............................ Valeriana officinalis L. Veronica ......................................................... Veronica officinalis L .................................................. Do. Vervain, European ......................................... Verbena officinalis L ................................................... Do. Vetiver ............................................................ Vetiveria zizanioides Stapf ......................................... Do. Violet, Swiss ................................................... Viola calcarata L. Walnut husks (hulls), leaves, and green nuts Juglans nigra L. or J. regia L. Woodruff, sweet ............................................. Asperula odorata L ..................................................... In alcoholic beverages only Yarrow ............................................................ Achillea millefolium L .................................................. In beverages only; fin- ished beverage thujone free1 Yerba santa .................................................... Eriodictyon californicum (Hook, et Arn.) Torr. Yucca, Joshua-tree ........................................ Yucca brevifolia Engelm. Yucca,
    [Show full text]
  • Cigarette Additives, Carcinogens and Chemicals Nicotine
    Cigarette Additives, Carcinogens and Chemicals Nicotine A Destructive Natural Pesticide Which ... Is extremely addictive when smoked Is extremely addictive when chewed Causes addiction as permanent as Is harder to quit than heroin or cocaine alcoholism Is not medicine and its use not therapy Is ineffective as a stand-alone quitting aid Prevents pre-cancerous cells from dying Accelerates cancer tumor growth rates Contributes to artery hardening Has a metabolite which may cause cancer May kill brain cells and impair memory Is linked to lung cancer Likely causes brain damage and Is also a fetus destroying teratogen depression Kills half of adult smokers 13-14 years Is beat by never taking another puff or early chew! 81 Cancer Causing Chemicals Have So Far Been Identified in Cigarettes Acetaldehyde Acetamide Acrylamide Acrylonitrile 2-Amino-3,4-dimethyl-3H-imidazo[4,5-f]quinoline (MeIQ) 3-Amino-1,4-dimethyl-5H-pyrido [4,3-b]indole (Trp-P-1) 2-Amino-l-methyl-6-phenyl-1H-imidazo [4,5-b]pyridine (PhlP) 2-Amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) 3-Amino-l-methyl-5H-pyrido {4,3-b]indole (Trp-P-2 2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAaC) 2-Amino-9H-pyrido[2,3-b]indole (AaC) 4-Aminobiphenyl 2-Aminodipyrido[1,2-a:3',2'-d]imidazole (Glu-P-2) 0-Anisidine Arsenic Benz[a]anthracene Benzene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[j]fluoranthene Benzo[k]fluoranthene Benzo[b]furan Beryllium 1,3-Butadiene Cadmium Catechol (1,2-benzenediol) p-Chloroaniline Chloroform Cobalt p,p'-DDT Dibenz[a,h]acridine Dibenz[a,j]acridine Dibenz(a,h)anthracene
    [Show full text]
  • Third Supplement, FCC 11 Index / All-Trans-Lycopene / I-1
    Third Supplement, FCC 11 Index / All-trans-Lycopene / I-1 Index Titles of monographs are shown in the boldface type. A 2-Acetylpyridine, 20 Alcohol, 80%, 1524 3-Acetylpyridine, 21 Alcohol, 90%, 1524 Abbreviations, 6, 1726, 1776, 1826 2-Acetylpyrrole, 21 Alcohol, Absolute, 1524 Absolute Alcohol (Reagent), 5, 1725, 2-Acetyl Thiazole, 18 Alcohol, Aldehyde-Free, 1524 1775, 1825 Acetyl Valeryl, 562 Alcohol C-6, 579 Acacia, 556 Acetyl Value, 1400 Alcohol C-8, 863 ªAccuracyº, Defined, 1538 Achilleic Acid, 24 Alcohol C-9, 854 Acesulfame K, 9 Acid (Reagent), 5, 1725, 1775, 1825 Alcohol C-10, 362 Acesulfame Potassium, 9 Acid-Hydrolyzed Milk Protein, 22 Alcohol C-11, 1231 Acetal, 10 Acid-Hydrolyzed Proteins, 22 Alcohol C-12, 681 Acetaldehyde, 10 Acid Calcium Phosphate, 219, 1838 Alcohol C-16, 569 Acetaldehyde Diethyl Acetal, 10 Acid Hydrolysates of Proteins, 22 Alcohol Content of Ethyl Oxyhydrate Acetaldehyde Test Paper, 1535 Acidic Sodium Aluminum Phosphate, Flavor Chemicals (Other than Acetals (Essential Oils and Flavors), 1065 Essential Oils), 1437 1395 Acidified Sodium Chlorite Alcohol, Diluted, 1524 Acetanisole, 11 Solutions, 23 Alcoholic Potassium Hydroxide TS, Acetate C-10, 361 Acidity Determination by Iodometric 1524 Acetate Identification Test, 1321 Method, 1437 Alcoholometric Table, 1644 Aceteugenol, 464 Acid Magnesium Phosphate, 730 Aldehyde C-6, 571 Acetic Acid Furfurylester, 504 Acid Number (Rosins and Related Aldehyde C-7, 561 Acetic Acid, Glacial, 12 Substances), 1418 Aldehyde C-8, 857 Acetic Acid TS, Diluted, 1524 Acid Phosphatase
    [Show full text]
  • 56 Subpart F—Flavoring Agents and Related Substances
    § 172.510 21 CFR Ch. I (4–1–11 Edition) needed to produce its intended effect (a) They are used in the minimum but not in excess of 13 parts per million quantity required to produce their in- calculated as anhydrous sodium ferro- tended physical or technical effect and cyanide. in accordance with all the principles of [42 FR 14491, Mar. 15, 1977, as amended at 58 good manufacturing practice. FR 17098, Apr. 1, 1993] (b) In the appropriate forms (plant parts, fluid and solid extracts, con- Subpart F—Flavoring Agents and centrates, absolutes, oils, gums, bal- Related Substances sams, resins, oleoresins, waxes, and dis- tillates) they consist of one or more of § 172.510 Natural flavoring substances the following, used alone or in com- and natural substances used in con- bination with flavoring substances and junction with flavors. adjuvants generally recognized as safe Natural flavoring substances and in food, previously sanctioned for such natural adjuvants may be safely used use, or regulated in any section of this in food in accordance with the fol- part. lowing conditions. Common name Scientific name Limitations Aloe ................................................................ Aloe perryi Baker, A. barbadensis Mill., A. ferox Mill., and hybrids of this sp. with A. africana Mill. and A. spicata Baker. Althea root and flowers .................................. Althea officinalis L. Amyris (West Indian sandalwood) ................. Amyris balsamifera L. Angola weed .................................................. Roccella fuciformis
    [Show full text]
  • Reactions of Alcohols in Acetic Anhydride-Mineral Acid Mixtures
    REACTIONS OF ALCOHOLS IN ACETIC ANHYDRIDE-MINERAL ACID MIXTURES A thesis presented for the degree of Doctor of Philosophy in Chemistry in the University of Canterbury, Christchurch, New Zealand by M.' J. ;Hardman 1967 CONTENTS Page ;}~~ABSTRACT GENERAL INTRODUCTION • • • • • • •. • • • • • • • • e • • • • • • • • • • • • • • • • • 1 Equilibria between Acetic Anhydride and Inorganic Acids Reactions of Alcohols with Acetic Anhydride and Inorganic Acids .. .. .. .. ..... ...... .. 8 Steroidal Alcohols - The Westphalen Rearrangement 9 PART I: REACTIONS OF ALCOHOLS WITH SULPHURIC ACID AND ACETIC ANHYDRIDE INTRODUCTION ......................................... 14 EXPERIMENTAL ......................................... 15 Kinetics ...................................... 18 Introduction .. .. .. .. .. 18 Theory . .. .. .. .. .. .. 20 Preparation of reagents . .. .. .. .. 21 Experimental procedure . .. .. .. .. .. 27 Calculation of results . .. .. .. .. .. 29 Typical kinetic runs .. .. .. .. .. .. .. .. .. 32 Discussion of kinetic methods . .. .. .. .. 39 KINETIC RESULTS . .. .. .. .. .. .. .. 44 18 MASS SPECTROMETRIC STUDIES USING o .....•............ 64 Experimental and Results .. .. .. .. .. .. 64 Preparation of solvent . .. .. .. .. .. 64 Experimental procedure . .. .. .. .. .. .. 65 Page Calculation of results .. .. .. .. .. .. 65 Results . .. .. .. .. .. .. .. 68 DISCUSSION . .. .. .. .. 71 Reaction of Cholestanol with Sulphuric Acid-· Acetic Anhydride . • . 71 Reaction of Cyclohexanol with Sulphuric Acid- Acetic Anhydride ••••.•••.••.•••..•.•.•••.••.,
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Flavor
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for FLavor Chemical Dosage (+)-BORNYL-ISOVALERATE FEMA <1-2 (+)-CAMPHOR FEMA 2-25 (4,1)-HEPTANOLIDE FEMA 2-40 1,8-CINEOLE FEMA 1-200 1-DECANOL FEMA <1 1-HEPTANOL FEMA 1-5 2,6-DIMETHYL-OCTANAL FEMA 2-AMYL-5-KETO-1,4-DIOXAN FEMA <1-5 ppm 2-BUTYL-5-KETO-1,4-DIOXAN FEMA 2-8 2-BUTYL-6-KETO-1,4-DIOXAN FEMA 2-8 2-ETHYL-2-HEPTENAL FEMA 0.03-2 2-ETHYL-BUTYL-ACETATE FEMA 5-8 2-ETHYL-BUTYRIC-ACID FEMA 3-35 2-ETHYL-HEPTOATE FEMA 30-500 2-FURYL-2-PROPANONE FEMA 2-20 2-HEXYL-4-ACETOXY-TETRAHYDROFURAN FEMA <1-1 2-METHOXY-4-VINYL-PHENOL FEMA 0.2-10 3-HEPTANOL FEMA 3-OCTANOL FEMA 3-PHENYL-PROPYL-ACETATE FEMA 0.5-10 4,4-DIBUTYL-GAMMA-BUTYROLACTONE FEMA 3-15 4-TERPINEOL FEMA 20-100 ACETYL-ISOBUTYRYL FEMA 1-10 ACETYL-VALEDRYL FEMA 1-10 ALLYL-ISOVALERATE FEMA 1-50 ppm ALLYL-TIGLATE FEMA <1 ppm ALLYL-UNDECYLENATE FEMA 1-2 ppm Chemical Dosage ALPHA-ETHYL-BENZYL-BUTYRATE FEMA<1-1 ALPHA-ETHYL-FURFUR-ACROLEIN FEMA 0.5-6 ALPHA-FURFURYL-MERCAPTAN FEMA 0.1-2 ALPHA-HEXYLIDENE-CYCLOPENTANONE FEMA <1 ALPHA-METHYL-BUTYRIC-ACID FEMA 0.5-5 ALPHA-N-BUTYL-CINNAMIC-ALDEHYDE FEMA ALPHA-PHELLANDRENE FEMA 10-130 ALPHA-PINENE FEMA 15-150 ALPHA-SANTALOL FEMA 1-10 ALPHA-TERPINENE FEMA 1-40 ALPHA-TERPINEOL FEMA 5-40 AMBRETTOLIDE FEMA 0.01-0.7 ppm AMYL-ALCOHOL FEMA 35-3,500 ppm AMYL-BENZOATE FEMA 8-200 AMYL-BUTYRATE FEMA 70-800 AMYL-CAPROATE FEMA 50-100 AMYL-CAPRYLATE FEMA 1-7 AMYL-CINNAMIC-ALCOHOL FEMA <1 AMYL-CINNAMIC-ALDEHYDE FEMA <1-15 AMYL-CINNAMIC-ALDEHYDE-DIMETHYL-ACETAL FEMA <1 AMYL-CINNAMYL-ACETATE FEMA
    [Show full text]
  • Vf Chem-Iq Program 2016 Appendix
    CHEM-IQSM Chemistry Innovation and Quality Program Appendix: Substances to Avoid List VF CHEM-IQSM Program 2019 - Appendix: Substances to Avoid List Page 1 of 19 ©2019 VF Corporation. All Rights Reserved Appendix: Substances to Avoid List NOTE: All concentration thresholds are in reference to the substance concentration within a chemical formulation (i.e. a factory purchased trade name chemical formulation). The listed concentrations do not relate in any way to the concentration of the corresponding substance on a consumer product. * Further professional review of identified concentrations of marked substances in the “ORANGE” category is required to determine if such substances result in a “RED” or "ORANGE" classification, defined as "Requiring due diligence in handling and process control." CHEM-IQSM CATEGORY CONCENTRATION THRESHOLDS Prohibited / Requiring due Preferred Allowed Substance Name CAS No. phase out diligence* (mg/kg) (mg/kg) (mg/kg) (mg/kg) Acetaldehyde 75-07-0 <2000 2000-50000 >50000 - Acetic acid 64-19-7 <2000 2000-50000 - >50000 Acetone 67-64-1 <2000 2000-50000 - >50000 Acetophenone 98-86-2 <250 250-1000 - >1000 Acrolein 107-02-8 <250 250-1000 >1000 - Acrylamide 79-06-1 <10 10-500 >500 - Acrylic acid 79-10-7 <250 250-1000 >1000 - Acrylonitrile 107-13-1 <10 10-500 >500 - 2-(2-)-Aminoethylamino ethanol (AEEA, and 111-41-1 <10 10-500 - >500 related fatty acid esters and amides) 2-Amino-4-Chlorophenol 95-85-2 <10 10-500 >500 - Amyl cinnamal 122-40-7 <250 250-1000 >1000 - Amylcinnamyl alcohol 101-85-9 <250 250-1000 >1000 -
    [Show full text]