AER Journal Volume 3, Issue 2, Pp. 134-144, 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Specificity in Legume-Rhizobia Symbioses
International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). -
Vegetation of the Koobi Fora Region Northeast of Lake Turkana, Marsabit County, Northern Kenya
Journal of East African Natural History 105(1): 21–50 (2016) VEGETATION OF THE KOOBI FORA REGION NORTHEAST OF LAKE TURKANA, MARSABIT COUNTY, NORTHERN KENYA John Kimeu Mbaluka East African Herbarium, National Museums of Kenya P.O. Box 40658, Nairobi, Kenya [email protected] Francis H. Brown Department of Geology & Geophysics, University of Utah 115 South 1460 East, Room 205, Salt Lake City, Utah 84112, USA [email protected] ABSTRACT The Koobi Fora region east of Lake Turkana in northern Kenya ranges in elevation from ca. 360 to 560 m, has a mean annual temperature of ca. 32ºC, and rainfall of ca. 130 mm per year. The area, much of which lies within Sibiloi National Park, supports a diverse flora. Here we provide a list of 367 plant species (361 angiosperms) collected from an area of about 2600 km2 between 2012 and 2014, compare the region’s angiosperm flora with the only other documented floras nearby, discuss the principal vegetation types in the study area, and highlight occurrences of some less common plants and plants of restricted distribution. Some 137 plant species (131 angiosperms) are newly documented in this region, none of which have been recorded in the Marsabit region to the east-southeast or in the lower Omo Valley to the northwest. Comparison of the flora of this region with reported floras of the Omo Valley and the Marsabit region show that only 98 species are common to all three areas, and that each area has unique taxa that make up about one-third of its angiosperm flora. -
The Australian Centre for International Agricultural Research (ACIAR) Was Established in June 1982 by an Act of the Australian Parliament
The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this does not constitute endorsement of nor discrimination against any product by the Centre. ACIAR PROCEEDINGS This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distrib uted internationally to selected individuals and scientific institutions. Previous numbers in the series are listed on the inside back cover. © Australian Centre for International Agricultural Research G.P.O. Box 1571, Canberra, A.C.T. 2601 Turnbull, John W. 1987. Australian acacias in developing countries: proceedings of an international workshop held at the Forestry Training Centre, Gympie, Qld., Australia, 4-7 August 1986. ACIAR Proceedings No. 16, 196 p. ISBN 0 949511 269 Typeset and laid out by Union Offset Co. Pty Ltd, Fyshwick, A.C.T. Printed by Brown Prior Anderson Pty Ltd, 5 Evans Street Burwood Victoria 3125 Australian Acacias in Developing Countries Proceedings of an international workshop held at the Forestry Training Centre, Gympie, Qld., Australia, 4-7 August 1986 Editor: John W. Turnbull Workshop Steering Committee: Douglas 1. Boland, CSIRO Division of Forest Research Alan G. Brown, CSIRO Division of Forest Research John W. Turnbull, ACIAR and NFTA Paul Ryan, Queensland Department of Forestry Cosponsors: Australian Centre for International Agricultural Research (ACIAR) Nitrogen Fixing Tree Association (NFTA) CSIRO Division of Forest Research Queensland Department of Forestry Contents Foreword J . -
Floral Volatiles Controlling Ant Behaviour
Functional Ecology 2009, 23, 888–900 doi: 10.1111/j.1365-2435.2009.01632.x FLORAL SCENT IN A WHOLE-PLANT CONTEXT Floral volatiles controlling ant behaviour Pat G. Willmer*,1, Clive V. Nuttman1, Nigel E. Raine2, Graham N. Stone3, Jonathan G. Pattrick1, Kate Henson1, Philip Stillman1, Lynn McIlroy1, Simon G. Potts4 and Jeffe T. Knudsen5 1School of Biology, University of St Andrews, Fife KY16 9TS, Scotland, UK; 2Research Centre for Psychology, School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK; 3Institute of Evolutionary Biology, School of Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JT, Scotland, UK; 4Centre for Agri-Environmental Research, University of Reading, Reading, RG6 6AR, UK; and 5Department of Ecology, Lund University, Solvegatan 37, SE-223 62 Lund, Sweden Summary 1. Ants show complex interactions with plants, both facultative and mutualistic, ranging from grazers through seed predators and dispersers to herders of some herbivores and guards against others. But ants are rarely pollinators, and their visits to flowers may be detrimental to plant fitness. 2. Plants therefore have various strategies to control ant distributions, and restrict them to foliage rather than flowers. These ‘filters’ may involve physical barriers on or around flowers, or ‘decoys and bribes’ sited on the foliage (usually extrafloral nectaries - EFNs). Alternatively, volatile organic compounds (VOCs) are used as signals to control ant behaviour, attracting ants to leaves and ⁄ or deterring them from functional flowers. Some of the past evidence that flowers repel ants by VOCs has been equivocal and we describe the shortcomings of some experimental approaches, which involve behavioural tests in artificial conditions. -
Phylogenetic Position and Revised Classification of Acacia S.L. (Fabaceae: Mimosoideae) in Africa, Including New Combinations in Vachellia and Senegalia
Kyalangalilwa, B. et al. (2013). Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Botannical Journal of the Linnean Society, 172(4): 500 – 523. http://dx.doi.org/10.1111/boj.12047 Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia Bruce Kyalangalilwa, James S. Boatwright, Barnabas H. Daru, Olivier Maurin and Michelle van der Bank Abstract Previous phylogenetic studies have indicated that Acacia Miller s.l. is polyphyletic and in need of reclassification. A proposal to conserve the name Acacia for the larger Australian contingent of the genus (formerly subgenus Phyllodineae) resulted in the retypification of the genus with the Australian A. penninervis. However, Acacia s.l. comprises at least four additional distinct clades or genera, some still requiring formal taxonomic transfer of species. These include Vachellia (formerly subgenus Acacia), Senegalia (formerly subgenus Aculeiferum), Acaciella (formerly subgenus Aculeiferum section Filicinae) and Mariosousa (formerly the A. coulteri group). In light of this fragmentation of Acacia s.l., there is a need to assess relationships of the non-Australian taxa. A molecular phylogenetic study of Acacia s.l and close relatives occurring in Africa was conducted using sequence data from matK/trnK, trnL-trnF and psbA-trnH with the aim of determining the placement of the African species in the new generic system. The results reinforce the inevitability of recognizing segregate genera for Acacia s.l. and new combinations for the African species in Senegalia and Vachellia are formalized. -
A Palaeoecological Approach to Savanna Dynamics and Shrub Encroachment in Namibia ______
A palaeoecological approach to savanna dynamics and shrub encroachment in Namibia _____________________________________________ Ximena Tabares Univ. Dissertation zur Erlangung des akademischen Grades "doctor rerum naturalium" (Dr. rer. nat.) in der Wissenschaftsdisziplin "Geowissenschaften/Paläoökologie" eingereicht als kumulative Arbeit an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam und dem Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung Potsdam 26.01.2021 Hauptbetreuerin: Prof. Dr. Ulrike Herzschuh Betreuer: Prof. Dr. Florian Jeltsch weitere Gutachter: PD. Dr. Niels Blaum Prof. Dr. Hermann Behling Published online on the Publication Server of the University of Potsdam: https://doi.org/10.25932/publishup-49281 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-492815 Abstract Abstract The spread of shrubs in Namibian savannas raises questions about the resilience of these ecosystems to global change. This makes it necessary to understand the past dynamics of the vegetation, since there is no consensus on whether shrub encroachment is a new phenomenon, nor on its main drivers. However, a lack of long-term vegetation datasets for the region and the scarcity of suitable palaeoecological archives, makes reconstructing past vegetation and land cover of the savannas a challenge. To help meet this challenge, this study addresses three main research questions: 1) is pollen analysis a suitable tool to reflect the vegetation change associated with shrub encroachment in savanna environments? 2) Does the current encroached landscape correspond to an alternative stable state of savanna vegetation? 3) To what extent do pollen-based quantitative vegetation reconstructions reflect changes in past land cover? The research focuses on north-central Namibia, where despite being the region most affected by shrub invasion, particularly since the 21st century, little is known about the dynamics of this phenomenon. -
Effects of Bush Encroachment on Plant Composition, Diversity and Carbon Stock in Borana Rangelands, Southern Ethiopia
Vol. 10(5), pp. 230-245, May 2018 DOI: 10.5897/IJBC2017.1143 Article Number: 04EE3B356674 International Journal of Biodiversity and ISSN 2141-243X Copyright © 2018 Conservation Author(s) retain the copyright of this article http://www.academicjournals.org/IJBC Full Length Research Paper Effects of bush encroachment on plant composition, diversity and carbon stock in Borana rangelands, Southern Ethiopia Siraj Kelil Gobelle1* and Abdella Gure2 1Department of Agroforestry, Oromia Agricultural Research Institute, Yaballo Pastoral and Dryland Agriculture Research Center, P. O. Box 85, Yaballo, Ethiopia. 2Department of Forestry, Hawassa University, Wondo Genet College of Forestry and Natural resource, P. O. Box 128, Shashemene, Ethiopia. Received 23 August, 2017; Accepted 5 March, 2018 Bush encroachment is reducing rangeland productivity in Borana rangelands. This study was conducted in Teltele Woreda of Borana zone, to evaluate the effects of bush encroachment on plant species composition, diversity and its contribution to carbon stock. Bush encroached, non-encroached and bush thinned rangeland types were selected for the study. Nested plots for collecting tree, shrub, herbaceous and soil data were placed systematically along the geographic gradient within each of the rangeland types. Herbaceous plants were clipped to the ground, collected, oven dried, and their carbon stock was estimated. The tree/shrub biomass was estimated using allometric models, and converted to per hectare. A total of 53 vascular plant species belonging to 19 families were identified. Poaceae and Fabaceae families dominated the site. Bush encroachment had reduced diversity and species richness of herbaceous plants, but did not affect other tree/shrub plant diversity and richness. Although bush thinning improved herbaceous diversity and richness, it reduced tree/shrub richness. -
Lake Turkana Wind Power Project
LAKE TURKANA WIND POWER PROJECT ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT STUDY REPORT July 2009 ACKNOWLEDGEMENTS ....................................................................................... viii ABBREVIATIONS AND ACRONYMS ...................................................................... ix 0. EXECUTIVE SUMMARY ....................................................................................... 1 0.1 Introduction ...................................................................................................... 1 0.2 Project Description ........................................................................................... 1 0.3 Project Rationale and Justification .................................................................... 2 0.4 Policy, Legal and Administrative Framework .................................................... 2 0.5 Description of the Project Environment ............................................................. 4 0.6 Project Alternatives .......................................................................................... 9 0.7 Potential Impacts and Mitigation/Enhancement Measures.............................. 10 0.8 Environmental Hazard Management .............................................................. 13 0.9 Environmental and Social Management / Monitoring Plan .............................. 14 0.9 Public Consultations and Disclosure .............................................................. 15 1.0 Complementary Initiatives ............................................................................. -
The Diversity and Multiple Uses of Southern African Legumes
CSIRO PUBLISHING Australian Systematic Botany, 2019, 32, 519–546 https://doi.org/10.1071/SB19028 The diversity and multiple uses of southern African legumes Ben-Erik Van Wyk Department of Botany and Plant Biotechnology, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa. Email: [email protected] Abstract. Southern Africa has a rich legume flora comprising 133 indigenous genera and 1620 indigenous species, of which 1059 species (65%) are endemic to the flora of southern Africa region. An additional 128 non-indigenous species have become naturalised, of which 59 are invasive, resulting in 1748 species from 165 genera. There are 22 (17%) endemic genera, one endemic tribe (Hypocalyptieae) and one near-endemic tribe (Podalyrieae, with 122 of the 123 species endemic). The diversity of uses (given as total/indigenous spp.) include food and beverages (127/115 spp.), medicine (338/291 spp.), magic and charms (113/104 spp.), timber (59/55 spp.), firewood (43/31 spp.) and 10 more minor use categories. Regression analyses showed that the levels of endemism in subfamilies and tribes are directly related to the numbers of species but that the number of useful species is not related to species numbers, except for the non-papilionoid subfamilies (all uses) and non- genistoid papilionoids (medicinal uses only). The Phaseoleae and Millettieae showed high residual values in several analyses, indicating that they have been favoured in the selection of useful plants. Diversity in habit and chemistry seems to explain at least partly the use patterns. Additional keywords: commercial legumes, endemism, Fabaceae, genistoid legumes, least-square regression analysis, Leguminosae, ornamental legumes, pasture legumes, flora of southern Africa. -
Phylogenetic Position and Revised Classification of Acacia S.L
bs_bs_banner Botanical Journal of the Linnean Society, 2013, 172, 500–523. With 1 figure Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia BRUCE KYALANGALILWA1, JAMES S. BOATWRIGHT2, BARNABAS H. DARU1, OLIVIER MAURIN1 and MICHELLE VAN DER BANK1,* 1African Centre for DNA Barcoding, University of Johannesburg, APK Campus, PO Box 524, Auckland Park 2006, Johannesburg, South Africa 2Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag x17, Bellville, 7535, Cape Town, South Africa Received 9 July 2012; revised 5 October 2012; accepted for publication 27 February 2013 Previous phylogenetic studies have indicated that Acacia Miller s.l. is polyphyletic and in need of reclassification. A proposal to conserve the name Acacia for the larger Australian contingent of the genus (formerly subgenus Phyllodineae) resulted in the retypification of the genus with the Australian A. penninervis. However, Acacia s.l. comprises at least four additional distinct clades or genera, some still requiring formal taxonomic transfer of species. These include Vachellia (formerly subgenus Acacia), Senegalia (formerly subgenus Aculeiferum), Acaciella (formerly subgenus Aculeiferum section Filicinae) and Mariosousa (formerly the A. coulteri group). In light of this fragmentation of Acacia s.l., there is a need to assess relationships of the non-Australian taxa. A molecular phylogenetic study of Acacia s.l and close relatives occurring in Africa was conducted using sequence data from matK/trnK, trnL-trnF and psbA-trnH with the aim of determining the placement of the African species in the new generic system. The results reinforce the inevitability of recognizing segregate genera for Acacia s.l. -
Wood Anatomy of the Mimosoideae (Leguminosae)
Author – Title 1 Wood Anatomy of the Mimosoideae (Leguminosae) Jennifer A. Evans Peter E. Gasson Gwilym P. Lewis IAWA Journal, Supplement 5 Author – Title 1 Wood Anatomy of the Mimosoideae (Leguminosae) by Jennifer A. Evans, Peter E. Gasson and Gwilym P. Lewis Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, United Kingdom IAWA Journal, Supplement 5 — 2006 Published for the International Association of Wood Anatomists at the Nationaal Herbarium Nederland, The Netherlands ISSN 0928-1541 ISBN 90-71236-63-3 ISBN 978-90-71236-63-3 NUR 941 Jennifer A. Evans, Peter E. Gasson and Gwilym P. Lewis Wood Anatomy of the Mimosoideae (Leguminosae) IAWA Journal, Supplement 5 — 2006 Published for the International Association of Wood Anatomists at the Nationaal Herbarium Nederland P.O. Box 9514 – 2300 RA Leiden – The Netherlands Cover: Inga marginata Willd. (Pennington et al. 12527) Contents page Summary .................................................................................................................. 4 Introduction ............................................................................................................. 5 Materials and Methods .......................................................................................... 7 Observations and Discussion ............................................................................... 8 A general wood anatomical description of the Mimosoideae ........................ 28 Observations and Discussion of Characters: .................................................... 28 Porosity -
Rooting Strategies of Savanna Shrubs in the Kalahari
ROOTING STRATEGIES OF SAVANNA SHRUBS IN THE KALAHARI BASIN: IMPLICATIONS FOR THE COEXISTENCE OF WOODY AND HERBACEOUS PLANTS AND SHRUB ENCROACHMENT IN THE AFRICAN SAVANNAS A DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GEOGRAPHY (ECOLOGICAL SCIENCES) OF THE UNIVERSITY OF NAMIBIA BY J. NAKANYALA (200537903) JANUARY 2020 SUPERVISOR: M. HIPONDOKA (PhD) Abstract The savanna biomes are characterised by a coexistence of two antagonist – woody plants and herbaceous plants in defiance of competition theories. Scientific efforts to understand this unique coexistence are still largely inconclusive; various theories have been proposed, but no unanimous theoretical framework exists to date. Among these theories, the root niche-partitioning model offers the most popular, yet the most controversially debated viewpoint. It argues that this coexistence is a result of vertical root niche-partitioning, a natural mechanism by which woody plants develop deeper root systems to avoid competition with herbaceous plants. Despite its prominence and subsequent integration into models of species coexistence and arid eco-hydrology, several shortcomings of this model are evident. For example, it overlooks the critical issue of root plasticity. This study was thus designed to investigate the root systems of various savanna shrubs across a rainfall gradient in the Kalahari to test the aforementioned model. The overall aim was to investigate, compare, and contrast the root system architecture (RSA) of encroaching shrubs and those of non-encroaching shrubs within the proximate environmental setting. Using a direct excavation method, 183 shrubs were sampled, had their roots exposed and were subjected to morphometric measurements. Shrub encroachers were randomly selected and four non-encroaching shrubs surrounding each of the sampled encroacher plant were systematically chosen, using the nearest-neighbour approach.