Rooting Strategies of Savanna Shrubs in the Kalahari

Total Page:16

File Type:pdf, Size:1020Kb

Rooting Strategies of Savanna Shrubs in the Kalahari ROOTING STRATEGIES OF SAVANNA SHRUBS IN THE KALAHARI BASIN: IMPLICATIONS FOR THE COEXISTENCE OF WOODY AND HERBACEOUS PLANTS AND SHRUB ENCROACHMENT IN THE AFRICAN SAVANNAS A DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GEOGRAPHY (ECOLOGICAL SCIENCES) OF THE UNIVERSITY OF NAMIBIA BY J. NAKANYALA (200537903) JANUARY 2020 SUPERVISOR: M. HIPONDOKA (PhD) Abstract The savanna biomes are characterised by a coexistence of two antagonist – woody plants and herbaceous plants in defiance of competition theories. Scientific efforts to understand this unique coexistence are still largely inconclusive; various theories have been proposed, but no unanimous theoretical framework exists to date. Among these theories, the root niche-partitioning model offers the most popular, yet the most controversially debated viewpoint. It argues that this coexistence is a result of vertical root niche-partitioning, a natural mechanism by which woody plants develop deeper root systems to avoid competition with herbaceous plants. Despite its prominence and subsequent integration into models of species coexistence and arid eco-hydrology, several shortcomings of this model are evident. For example, it overlooks the critical issue of root plasticity. This study was thus designed to investigate the root systems of various savanna shrubs across a rainfall gradient in the Kalahari to test the aforementioned model. The overall aim was to investigate, compare, and contrast the root system architecture (RSA) of encroaching shrubs and those of non-encroaching shrubs within the proximate environmental setting. Using a direct excavation method, 183 shrubs were sampled, had their roots exposed and were subjected to morphometric measurements. Shrub encroachers were randomly selected and four non-encroaching shrubs surrounding each of the sampled encroacher plant were systematically chosen, using the nearest-neighbour approach. Results indicated that shrubs in the Kalahari develop diverse root system architecture which exhibits significant inter- and intra-species plasticity. In particular, three bush encroaching shrubs, Terminalia sericea, Senegalia mellifera, and Dichrostachys cinerea, tend to develop root systems essentially composed significantly (p < .001) of lateral roots deployed within shallow soil sub-surfaces; and partly without taproots, i more especially in the drier part of the Kalahari. Overall, the architecture of the savanna shrubs’ root system can be classified into three major architecture groups: i) a fibrous or lateral root system, ii) a dual root system, and iii) a taproot system. These architecture groups are not necessarily unique to any species or environment, which suggests that plants develop their root systems plastically in response to prevailing environmental conditions. These findings are not consistent with the premise that the savanna shrubs are largely deep-rooted. This oversight has major implications for our current understanding of the savanna biomes. Whereas deeper-rooted shrubs may allow for root niche-partitioning with grasses, shallow-rooted shrubs are potentially in direct competition with grasses, suggesting that shrub encroachment is a probable manifestation of this competition. These findings may also explain why the phenomenon of shrub encroachment is largely attributed to shallow-rooted shrubs such as T. sericea. Keywords: plasticity; rainfall gradient; root niche-partitioning; root system architecture; Terminalia sericea ii TABLE OF CONTENTS Abstract ............................................................................................................................. i Table of Contents ........................................................................................................... iii List of Figures ................................................................................................................. vi List of Tables .................................................................................................................. ix List of Acronyms ............................................................................................................. x Acknowledgements ........................................................................................................ xi Dedication ...................................................................................................................... xii Declarations .................................................................................................................. xiii Publications and conference proceedings .................................................................. xiv 1. CHAPTER ONE: GENERAL INTRODUCTION .................................................. 1 1.1 Background .......................................................................................................... 1 1.2 Problem statement ............................................................................................... 7 1.3 Aims and research questions ............................................................................. 11 1.4 Clarification of botanical names and concepts .................................................. 12 1.5 Delimitations ...................................................................................................... 13 1.6 Organisational structure of the dissertation ....................................................... 14 2. CHAPTER TWO: LITERATURE REVIEW ........................................................ 16 2.1 Introduction ........................................................................................................ 16 2.2 Shrub encroachment in Namibia ....................................................................... 16 2.2.1 Geographical setting of shrub encroachment in Namibia ....................... 18 2.2.2 Socio-economic and ecological implications of shrub encroachment..... 24 2.3 The theoretical framework of the study ............................................................. 29 2.3.1 The savannas as equilibrium biomes ....................................................... 30 2.3.1.1 Walter’s two-layer model: an equilibrium model of the savannas .... 33 2.3.2 The savannas as non-equilibrium biomes: a paradigm shift? .................. 39 2.3.2.1 The state and transition model: a non-equilibrium model of the savannas ................................................................................................ 41 2.3.3 The savannas as disequilibrium biomes .................................................. 46 2.3.4 The savannas and the dynamics of atmospheric CO2 .............................. 50 2.4 Root system architecture of plants ..................................................................... 53 2.4.1 Root system architecture of plants and the developmental processes ..... 55 2.4.2 Root depth and lateral spread in semi-arid environments ....................... 63 2.4.3 Water and nutrient uptake by roots ......................................................... 67 2.5 Summary ............................................................................................................ 70 References ............................................................................................................. 73 3. CHAPTER THREE: MANUSCRIPT (I) ............................................................... 99 The root system architecture of encroaching shrubs, Senegalia mellifera subsp. Detinens (Burch.) Brenan and Dichrostachys cinerea (L.) Wight and Arn in the Kalahari Basin: Implications for tree-grass coexistence in the African savannas ............... 99 iii Abstract .................................................................................................................. 100 3.1 Introduction ...................................................................................................... 101 3.2 Materials and methods ..................................................................................... 103 3.2.1 Description of the study area ................................................................. 103 3.2.1.1 The Kalahari Basin ........................................................................... 103 3.2.1.2 Climate, soil and groundwater recharge in the Kalahari .................. 105 3.2.1.3 Vegetation types ............................................................................... 113 3.2.1.4 Anthropogenic disturbances in the Kalahari savannas .................... 117 3.2.2 Data collection and analysis .................................................................. 119 3.3 Results.............................................................................................................. 123 3.3.1 Above-ground morphometric properties of S. mellifera and D. cinerea shrubs ......................................................................................................... 123 3.3.2 The root system architecture of S. mellifera and D. cinerea shrubs ...... 126 3.3.3 Variation in below-ground morphometric properties of S. mellifera and D. cinerea roots ......................................................................................... 127 3.3.4 Lateral root length, diameter and dipping angle .................................... 130 3.4 Discussion ........................................................................................................ 136 3.5 Conclusion ......................................................................................................
Recommended publications
  • GUIDE to CIVIL SOCIETY in NAMIBIA 3Rd Edition
    GUIDE TO CIVIL SOCIETY IN NAMIBIA GUIDE TO 3Rd Edition 3Rd Compiled by Rejoice PJ Marowa and Naita Hishoono and Naita Marowa PJ Rejoice Compiled by GUIDE TO CIVIL SOCIETY IN NAMIBIA 3rd Edition AN OVERVIEW OF THE MANDATE AND ACTIVITIES OF CIVIL SOCIETY ORGANISATIONS IN NAMIBIA Compiled by Rejoice PJ Marowa and Naita Hishoono GUIDE TO CIVIL SOCIETY IN NAMIBIA COMPILED BY: Rejoice PJ Marowa and Naita Hishoono PUBLISHED BY: Namibia Institute for Democracy FUNDED BY: Hanns Seidel Foundation Namibia COPYRIGHT: 2018 Namibia Institute for Democracy. No part of this publication may be reproduced in any form or by any means electronical or mechanical including photocopying, recording, or by any information storage and retrieval system, without the permission of the publisher. DESIGN AND LAYOUT: K22 Communications/Afterschool PRINTED BY : John Meinert Printing ISBN: 978-99916-865-5-4 PHYSICAL ADDRESS House of Democracy 70-72 Dr. Frans Indongo Street Windhoek West P.O. Box 11956, Klein Windhoek Windhoek, Namibia EMAIL: [email protected] WEBSITE: www.nid.org.na You may forward the completed questionnaire at the end of this guide to NID or contact NID for inclusion in possible future editions of this guide Foreword A vibrant civil society is the cornerstone of educated, safe, clean, involved and spiritually each community and of our Democracy. uplifted. Namibia’s constitution gives us, the citizens and inhabitants, the freedom and mandate CSOs spearheaded Namibia’s Independence to get involved in our governing process. process. As watchdogs we hold our elected The 3rd Edition of the Guide to Civil Society representatives accountable.
    [Show full text]
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Investigating the Impact of Fire on the Natural Regeneration of Woody Species in Dry and Wet Miombo Woodland
    Investigating the impact of fire on the natural regeneration of woody species in dry and wet Miombo woodland by Paul Mwansa Thesis presented in fulfilment of the requirements for the degree of Master of Science of Forestry and Natural Resource Science in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof Ben du Toit Co-supervisor: Dr Vera De Cauwer March 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2018 Copyright © 2018 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract The miombo woodland is an extensive tropical seasonal woodland and dry forest formation in extent of 2.7 million km². The woodland contributes highly to maintenance and improvement of people’s livelihood security and stable growth of national economies. The woodland faces a wide range of disturbances including fire that affect vegetation structure. An investigation into the impact of fire on the natural regeneration of six tree species was conducted along a rainfall gradient. Baikiaea plurijuga, Burkea africana, Guibourtia coleosperma, Pterocarpus angolensis, Schinziophyton rautanenii and Terminalia sericea were selected on basis of being an important timber and/or utilitarian species, and the assumed abundance. The objectives of the study were to examine floristic composition, density and composition of natural regeneration; stand structure and vegetation cover within recently burnt (RB) and recently unburnt (RU) sections of the forest.
    [Show full text]
  • Okavango River Basin Groundwater Overview
    Okavango River Basin Groundwater Overview Specialist Report prepared by Interconsult Namibia for : PERMANENT OKAVANGO RIVER BASIN COMMISSION Angola Botswana Namibia Ministério da Energia e Águas Ministry of Mineral Resources and Water Affairs Ministry of Agriculture, Water and Rural Development GABHIC Department of Water Affairs Department of Water Affairs Cx. P. 6695 Private Bag 0029 Private Bag 13193 LUANDA GABORONE WINDHOEK Tel: +244 2 393 681 Tel: +267 360 7100 Tel: +264 61 296 9111 Fax: +244 2 393 687 Fax: +267 303508 Fax: +264 61 232 861 PERMANENT OKAVANGO RIVER BASIN COMMISSION (OKACOM) OKAVANGO RIVER BASIN PREPARATORY ASSESSMENT: GROUNDWATER OVERVIEW Report prepared by: Interconsult Namibia (Pty) Ltd P. O. Box 20690 Windhoek With input from Wellfield Consulting Services, and E. Bereslawski March 1999 TABLE OF CONTENTS 1 INTRODUCTION ............................................................................................................... 1 1.1. BACKGROUND.............................................................................................................. 1 1.2. TERMS OF REFERENCE ................................................................................................ 1 2 OVERVIEW OF THE GEOHYDROLOGY OF THE BASIN .............................................. 2 2.1 BASIN GEOLOGY.............................................................................................................. 2 2.2 GEOHYDROLOGY OVERVIEW ...........................................................................................
    [Show full text]
  • The Ecology of the African Buffalo in the Eastern Kalahari Region, South Africa
    University of Pretoria etd – Cromhout, M (2007) The ecology of the African buffalo in the eastern Kalahari region, South Africa by Marzanne Cromhout Submitted in partial fulfillment of the requirements for the degree MAGISTER SCIENTIAE (WILDLIFE MANAGEMENT) in the Centre for Wildlife Management Department of Animal and Wildlife Sciences Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria Supervisor: Prof. J. du P. Bothma Co-supervisor: Prof. M.W. van Rooyen March 2006 University of Pretoria etd – Cromhout, M (2007) The ecology of the African buffalo in the eastern Kalahari region, South Africa by Marzanne Cromhout Supervisor: Prof. J. du P. Bothma Co-supervisor: Prof. M.W. van Rooyen in the Centre for Wildlife Management Department of Animal and Wildlife Sciences Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria MAGISTER SCIENTIAE (WILDLIFE MANAGEMENT) ABSTRACT This study was conducted on Tswalu Kalahari Reserve in the eastern Kalahari region of South Africa. The long-term sustainability of the valued African or Cape buffalo Syncerus caffer caffer was investigated in an area that falls outside their permanent historical distribution. The habitat utilisation of the buffalo population and their range use patterns were investigated. Seasonal differences were apparent in habitat utilisation and were guided by nutritional needs and climatic variables. Range use patterns revealed an increase in range size during the cold, dry season. The buffalo density on Tswalu was the lowest recorded in the literature to date with 0.15 buffalo/km². The animals showed seasonal changes in their feeding preferences with occasional browsing. During the cold, dry season the population was under severe nutritional stress.
    [Show full text]
  • Local Authority Elections Results and Allocation of Seats
    1 Electoral Commission of Namibia 2020 Local Authority Elections Results and Allocation of Seats Votes recorded per Seats Allocation per Region Local authority area Valid votes Political Party or Organisation Party/Association Party/Association Independent Patriots for Change 283 1 Landless Peoples Movement 745 3 Aranos 1622 Popular Democratic Movement 90 1 Rally for Democracy and Progress 31 0 SWANU of Namibia 8 0 SWAPO Party of Namibia 465 2 Independent Patriots for Change 38 0 Landless Peoples Movement 514 3 Gibeon 1032 Popular Democratic Movement 47 0 SWAPO Party of Namibia 433 2 Independent Patriots for Change 108 1 Landless People Movement 347 3 Gochas 667 Popular Democratic Movement 65 0 SWAPO Party of Namibia 147 1 Independent Patriots for Change 97 1 Landless peoples Movement 312 2 Kalkrand 698 Popular Democratic Movement 21 0 Hardap Rally for Democracy and Progress 34 0 SWAPO Party of Namibia 234 2 All People’s Party 16 0 Independent Patriots for Change 40 0 Maltahöhe 1103 Landless people Movement 685 3 Popular Democratic Movement 32 0 SWAPO Party of Namibia 330 2 *Results for the following Local Authorities are under review and will be released as soon as this process has been completed: Aroab, Koës, Stampriet, Otavi, Okakarara, Katima Mulilo Hardap 2 Independent Patriots for Change 180 1 Landless Peoples Movement 1726 4 Mariental 2954 Popular Democratic Movement 83 0 Republican Party of Namibia 59 0 SWAPO Party of Namibia 906 2 Independent Patriots for Change 320 0 Landless Peoples Movement 2468 2 Rehoboth Independent Town
    [Show full text]
  • Biodiversiteitsopname Biodiversity Assessment
    Biodiversiteitsopname Biodiversity Assessment Bome - Trees (77 sp) Veldblomme - Flowering veld plants (65 sp) Grasse - Grasses (41 sp) Naaldekokers - Dragonflies (46 sp) Skoenlappers - Butterflies (81 sp) Motte - Moths (95 sp) Nog insekte - Other insects (102 sp) Spinnekoppe - Spiders (53 sp) Paddas - Frogs (14 sp) Reptiele - Reptiles (22 sp) Voëls - Birds (185 sp) Soogdiere - Mammals (23 sp) 4de uitgawe: Jan 2015 Plante/Plants Diere/Animals (24 000 spp in SA) Anthropoda Chordata (>150 000 spp in SA) Arachnida Insecta (spinnekoppe/spiders, 2020 spp in SA) Neuroptera – mayflies, lacewings, ant-lions (385 spp in SA) Odonata – dragonflies (164 spp in SA) Blattodea – cockroaches (240 spp in SA) Mantodea – mantids (185 spp in SA) Isoptera – termites (200 spp in SA) Orthoptera – grasshoppers, stick insects (900 spp in SA) Phthiraptera – lice (1150 spp in SA) Hemiptera – bugs (>3500 spp in SA) Coleoptera – beetles (18 000 spp in SA) Lepidoptera – butterflies (794 spp in SA), moths (5200 spp in SA) Diptera – flies (4800 spp in SA) Siphonoptera – fleas (100 spp in SA) Hymenoptera – ants, bees, wasps (>6000 spp in SA) Trichoptera – caddisflies (195 spp in SA) Thysanoptera – thrips (230 spp in SA) Vertebrata Tunicata (sea creatures, etc) Fish Amphibia Reptiles Birds Mammals (115 spp in SA) (255 spp in SA) (858 spp in SA) (244 spp in SA) Bome – Trees (n=77) Koffiebauhinia - Bauhinia petersiana - Dainty bauhinia Rooi-ivoor - Berchemia zeyheri - Red ivory Witgat - Boscia albitrunca - Shepherd’s tree Bergvaalbos - Brachylaena rotundata - Mountain silver-oak
    [Show full text]
  • Vegetation of the Central Kavango Woodlands in Namibia: an Example from the Mile 46 Livestock Development Centre ⁎ B.J
    South African Journal of Botany 73 (2007) 391–401 www.elsevier.com/locate/sajb Vegetation of the central Kavango woodlands in Namibia: An example from the Mile 46 Livestock Development Centre ⁎ B.J. Strohbach a, , A. Petersen b a National Botanical Research Institute, Private Bag 13184, Windhoek, Namibia b Institute for Soil Science, University of Hamburg, Allende-Platz 2, 20146 Hamburg, Germany Received 22 November 2006; accepted 7 March 2007 Abstract No detailed vegetation descriptions are available for the Kavango woodlands — recent descriptions have all been at the broad landscape level without describing any vegetation communities. With this paper the vegetation associations found at and around the Mile 46 Livestock Development Centre (LDC) are described. Two broad classes are recognised: the Acacietea are represented by three Acacia species-dominated associations on nutrient-richer eutric Arenosols, whilst the Burkeo–Pterocarpetea are represented by three associations dominated by broad-leafed phanerophytic species on dystri-ferralic Arenosols. The, for the Kavango woodlands typical, Pterocarpus angolensis–Guibourtia coleosperma bushlands and thickets are further divided into four variants. Fire has been found to be an important factor in determining the structure of the vegetation — exclusion of fire on the LDC itself seems to lead to an increase in shrub (understory) density. © 2007 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Arenosols; Fire; Kavango woodlands; Land-use impact; Namibia; Zambesian Baikiaea woodlands ecoregion 1. Introduction terms. Yet pressure on the land is increasing — Mendelsohn and el Obeid (2003) illustrate this very clearly in their profile on the Very few phytosociological studies have been undertaken in Kavango Region.
    [Show full text]
  • Okavango Delta - 2020 Conservation Outlook Assessment
    IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Okavango Delta - 2020 Conservation Outlook Assessment Okavango Delta 2020 Conservation Outlook Assessment SITE INFORMATION Country: Botswana Inscribed in: 2014 Criteria: (vii) (ix) (x) This delta in north-west Botswana comprises permanent marshlands and seasonally flooded plains. It is one of the very few major interior delta systems that do not flow into a sea or ocean, with a wetland system that is almost intact. One of the unique characteristics of the site is that the annual flooding from the River Okavango occurs during the dry season, with the result that the native plants and animals have synchronized their biological cycles with these seasonal rains and floods. It is an exceptional example of the interaction between climatic, hydrological and biological processes. The Okavango Delta is home to some of the world’s most endangered species of large mammal, such as the cheetah, white rhinoceros, black rhinoceros, African wild dog and lion. © UNESCO SUMMARY 2020 Conservation Outlook Finalised on 01 Dec 2020 GOOD WITH SOME CONCERNS The nature of the Okavango Delta – a vast inaccessible wetland on the fringes of a sparsely populated desert – gives it a high degree of natural protection. The values of the site remain in good condition overall, largely due to the sites large size and inaccessibility, allowing the site to maintain its largely unaltered, pristine condition through low human impact. Threats to the site are generally of low concern but for a few issues which remain challenging to address. Whilst tourism has some negative impacts, there are very few roads and the industry is built around a high-cost low-volume business model with small lodge facilities accessed by private charter aircraft.
    [Show full text]
  • An Invasive Species Assessment in Zambia
    Public Document Clearing Kariba weed (Salvinia molesta) from Lukanga Swamp, central Zambia (Image courtesy of BirdLife International) Action on Invasives An invasive species system assessment in Zambia Kate Constantine, Joyce Mulila-Mitti and Frances Williams December 2020 KNOWLEDGE FOR LIFE An invasive species assessment in Zambia Acknowledgements The authors would like to acknowledge the critical contributions of Noah Phiri, Judith Chowa and Ivan Rwomushana towards facilitating this work. CABI is an international intergovernmental organisation, and we gratefully acknowledge the core financial support from our member countries (and lead agencies) including the United Kingdom (Foreign, Commonwealth and Development Office), China (Chinese Ministry of Agriculture and Rural Affairs), Australia (Australian Centre for International Agricultural Research), Canada (Agriculture and Agri-Food Canada), Netherlands (Directorate-General for International Cooperation), and Switzerland (Swiss Agency for Development and Cooperation). The Action on Invasives Programme is supported by the United Kingdom Foreign, Commonwealth and Development Office and The Netherlands Directorate-General for International Cooperation. This report is the Copyright of CAB International, on behalf of the sponsors of this work where appropriate. It presents unpublished research findings, which should not be used or quoted without written agreement from CAB International. Unless specifically agreed otherwise in writing, all information herein should be treated as confidential. 1 Executive summary Invasive species are a serious and growing problem in Zambia. The objective of this study was to understand the current status of the invasive species system in Zambia and describe, evaluate and assess the responsiveness of the system to address the threat of invasive species to the country. A methodology was developed that identifies areas to address to strengthen the system, as well as a baseline against which changes in responsiveness of the system can be assessed at a later date if required.
    [Show full text]
  • Mega Kalahari Geology: Challenges of Kimberlite Exploration in This Medium
    MEGA KALAHARI GEOLOGY: CHALLENGES OF KIMBERLITE EXPLORATION IN THIS MEDIUM Clint Williams1, Brett van Coller1, Tom Nowicki2 and John Gurney1 1 Mineral Services South Africa Pty Ltd, Cape Town.; 2 Mineral Services Canada Inc, Vancouver. obstacles and challenges to the kimberlite explorationist INTRODUCTION attempting to locate bedrock-hosted diamondiferous kimberlite bodies. The paper presents the complexities of this cover sequence, with a view to formulating In southern Africa the name Kalahari refers to a improved kimberlite exploration strategies in this structural basin, a group of terrestrial continental environment. sediments and an ill-defined desert, all of which are intimately linked yet also possess distinct characteristics. The surface units of the Kalahari Group CHARACTERISTICS cover represent the worlds largest body of sand covering over 2.5 million km² of central and southern The Mega Kalahari sediments represent an ancient Africa from the Orange River at 29°S to 1°N in the depositional environment with a complex history in western Congo and southern Gabon (Thomas, which the stratigraphy and age of the deposits are not 1988),(Figure 1). Thomas and Shaw (1990) grouped all particularly well constrained or understood. Low fossil these sediments together under the term Mega Kalahari. content, limited exposure, poor differentiation of the This term has been adopted for the review. dominant surficial Kalahari Sand and a limited comprehension of an extensive duricrust suite has delayed the understanding of the sedimentological and environmental history of the basin. Collectively the sediments are referred to as the Kalahari Group (SACS, 1980). SACS (1980) distinguished 6 major lithological types in the Kalahari Group: conglomerate and gravel, marl, sandstone, alluvium and lacustrine deposits, Kalahari Sand, and duricrusts (mainly calcrete and silcrete).
    [Show full text]
  • Effect of Heat Treatment on Antioxidant and Antimicrobial Activity of Croton Gratissimus and Xylopiaaethiopica Spices
    مجلة العلوم الزراعية Journal of Agricultural, Environmental والبيئية والبيطرية and Veterinary Sciences املجلد )4(، العدد )1(: 30 مارس 2020م Volume (4), Issue (1): 30 Mar 2020 ص: P: 84 - 93 ISSN: 2522-3364 93 - 84 Effect of Heat Treatment on Antioxidant and Antimicrobial Activity of Croton gratissimus and Xylopiaaethiopica Spices Afraa Awadallah Ahamed Yassir Salah Ibrahim Adam Amna Mokhtar Hussien Faculty of agricultural Technology & fish science || Alneelain University || Sudan Mohammed Elamin Hassan Sudan Academy of Banking and Financial Sciences || Sudan Abstract: Background and objective Croton gratissimus and Xylopiaaethiopicaare tropical African shrubs or small tree with corky bark. It is traditionally used as a febrifuge, styptic, cathartic and is medic for dropsy. This study was designed to determine antioxidant, antimicrobial and toxicity of local spices Crotongratissimus (A), Xylopiaaethiopica (B) and measure effect of heat process on their characteristics of antioxidant, antimicrobial activity, and toxicity. Materials and methods Samples were purchased from JubelAulia and Klakla Al Lafa Markets, Sudan and prepared samples for analysis in three replicates. All samples were extracted by ethanol (80%) A Crotongratissimus and B Xylopiaaethiopica and extract treated by heat treatment (80°C) C Crotongratissimus and D Xylopiaaethiopica. Antioxidant activity was determined by using (DPPH) detector. Results: There were found the extracts with and without heat treatment (A, B, C and D) were grading from highest to lowest, respectively. Antimicrobial activity of (Croton gratissimus, Xylopiaaethiopica) extracts were determined against Bacillssubtilis, Staphylococcus aureus, Escherichia coli, Pseudomonasaeruginosa, and Candida albicans. Toxicity of extracts (Croton gratissimus, Xylopiaaethiopica) was determined for edible matter by using (MTT) assay method, and there were no toxic in both of them.
    [Show full text]