Functional Characterization of the New 8Q21 Asthma Risk Locus

Total Page:16

File Type:pdf, Size:1020Kb

Functional Characterization of the New 8Q21 Asthma Risk Locus Functional characterization of the new 8q21 Asthma risk locus Cristina M T Vicente B.Sc, M.Sc A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 Faculty of Medicine Abstract Genome wide association studies (GWAS) provide a powerful tool to identify genetic variants associated with asthma risk. However, the target genes for many allergy risk variants discovered to date are unknown. In a recent GWAS, Ferreira et al. identified a new association between asthma risk and common variants located on chromosome 8q21. The overarching aim of this thesis was to elucidate the biological mechanisms underlying this association. Specifically, the goals of this study were to identify the gene(s) underlying the observed association and to study their contribution to asthma pathophysiology. Using genetic data from the 1000 Genomes Project, we first identified 118 variants in linkage disequilibrium (LD; r2>0.6) with the sentinel allergy risk SNP (rs7009110) on chromosome 8q21. Of these, 35 were found to overlap one of four Putative Regulatory Elements (PREs) identified in this region in a lymphoblastoid cell line (LCL), based on epigenetic marks measured by the ENCODE project. Results from analysis of gene expression data generated for LCLs (n=373) by the Geuvadis consortium indicated that rs7009110 is associated with the expression of only one nearby gene: PAG1 - located 732 kb away. PAG1 encodes a transmembrane adaptor protein localized to lipid rafts, which is highly expressed in immune cells. Results from chromosome conformation capture (3C) experiments showed that PREs in the region of association physically interacted with the promoter of PAG1. Furthermore, results from luciferase reporter assays demonstrated that one of these PREs (PRE 3) acted as a transcriptional enhancer on PAG1 exclusively when it carried the rs2370615:C asthma predisposing allele. This variant, which is in complete LD with rs7009110, was found to disrupt the binding of the Foxo3a transcription factor to PRE3. As such, rs2370615 represents a putative functional variant underlying the association between rs7009110 and asthma. In addition to PAG1, other genes in the 8q21 region could be targets of asthma risk variants, despite the lack of evidence for an association between rs7009110 and gene expression. The closest gene is ZBTB10 (75 kb away), a repressor of the specificity proteins (Sp1, Sp3 and SP4), which are transcription factors known to regulate several immune-related genes. Therefore, based on distance to rs7009110 and its known function, we prioritised ZBTB10 to investigate if it could represent an additional target gene of 8q21 asthma risk variants. Results from 3C assays showed that the same PREs that interacted with the PAG1 promoter also interacted with the ZBTB10 promoter. Results from luciferase ii assays for ZBTB10 were inconclusive: PRE 2 enhanced the activity of the ZBTB10 promoter, and this effect was inhibited by an asthma risk allele but these differences were not statistically significant. Together, these results indicate that ZBTB10 is also likely to be a target of 8q21 asthma risk variants. To study the contribution of PAG1 and ZBTB10 to asthma pathophysiology, we performed in vivo experiments using wild type (WT), Pag1-/- and Zbtb10het mice, which included challenging mice with an allergen or virus, both able to induce airway inflammation. Results from these experiments indicate that Pag1 expression might regulate granulocyte, lymphocyte and/or airway epithelial cell function. On the other hand, the expression of Zbtb10 was critical for embryonic development and could play a role in immune cell development as well as activation during the allergen sensitization phase. In conclusion we have identified PAG1 and ZBTB10 as target genes of 8q21 asthma risk variants and showed that both genes play important roles in the immune system and development of airway inflammation. iii Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, financial support and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my higher degree by research candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis and have sought permission from co-authors for any jointly authored works included in the thesis. iv Publications during candidature Peer-reviewed papers: Vicente CT, Edwards SL, Hillman KM, Kaufmann S, Mitchell H, Bain L, Glubb DM, Lee JS, French JD, Ferreira MAR. (2015) “Long-range modulation of PAG1 expression by 8q21 allergy risk variants”. American Journal of Human Genetics 97: 1-8 Ferreira MA, Jansen R, Willemsen G, Penninx B, Bain LM, Vicente CT, Revez JA, Matheson MC, Hui J, Tung JY, Baltic S, Le Souëf P, Montgomery GW, Martin NG, Robertson CF, James A, Thompson PJ, Boomsma DI, Hopper JL, Hinds DA, Werder RB, Phipps S; Australian Asthma Genetics Consortium Collaborators. (2017) “Gene-based analysis of regulatory variants identifies 4 putative novel asthma risk genes related to nucleotide synthesis and signalling”. Journal of Allergy and Clinical Immunology 139(4):1148-1157. Conference abstracts: Vicente C, Edwards S, Hillman K, Kaufmann S, Mitchell H, Bain L, Glubb D, Lee J, French J, Ferreira M. “Long-range modulation of PAG1 expression by 8q21 allergy risk variants”. Annals of Translational Medicine 2015;3(S2):AB013 v Publications included in this thesis Vicente CT, Edwards SL, Hillman KM, Kaufmann S, Mitchell H, Bain L, Glubb DM, Lee JS, French JD, Ferreira MAR. (2015) “Long-range modulation of PAG1 expression by 8q21 allergy risk variants”. American Journal of Human Genetics 97: 1-8 – incorporated as Chapter 2. Contributor Statement of contribution Concept and design: 10% Cristina T. Vicente Analysis and interpretation: 30% Drafting and production: 30% Concept and design: 25% Stacey L. Edwards Analysis and interpretation: 15% Drafting and production: 10% Concept and design: 0% Kristine M. Hillman Analysis and interpretation: 10% Drafting and production: 0% Concept and design: 0% Susanne Kaufmann Analysis and interpretation: 5% Drafting and production: 0% Concept and design: 0% Hayley Mitchell Analysis and interpretation: 3% Drafting and production: 0% Concept and design: 0% Lisa Bain Analysis and interpretation: 3% Drafting and production: 0% Concept and design: 0% Dylan M. Glubb Analysis and interpretation: 3% Drafting and production: 0% Concept and design: 0% Jason S. Lee Analysis and interpretation: 6% Drafting and production: 0% Concept and design: 25% Juliet D. French Analysis and interpretation: 10% Drafting and production: 10% Concept and design: 40% Manuel A.R. Ferreira Analysis and interpretation: 15% Drafting and production: 50% vi Contributions by others to the thesis Overall Thesis The project was conceived and designed with the help of my main supervisor Dr. Manuel Ferreira and co-supervisors Dr. Juliet French and A/Prof. Simon Phipps, who also provided feedback on the interpretation and presentation of the results. Chapter 1: Introduction Review article submitted for publication together with Joana Revez and Dr. Manuel Ferreira. This publication is currently under review. Chapter 2: Identification of PAG1 and ZBTB10 as target genes of 8q21 asthma-risk variants Individual contributions as stated in the “Publication included in this thesis” section. Routine reagents used to perform experiments were prepared by several laboratories, depending on the technique. Contributing laboratories include the following from QIMR Berghofer: Asthma Genetics (Dr. Manuel Ferreira); Functional Genetics (Dr. Juliet French); Functional Cancer Genomics (Dr. Stacey Edwards); and Control of Gene Expression (Professor Frank Gannon). Chapter 3: Mechanisms of regulation of PAG1 and ZBTB10 expression Western blot and hypoxia experiments were done in collaboration with Dr. Jason Lee from the Control of Gene Expression laboratory. The correlation analyses were done by Dr. Manuel Ferreira. Chapter 4: PAG1 and ZBTB10 expression in human and mouse tissues This study makes use of data generated by the Blueprint Consortium. A full list of the investigators who contributed to the generation of the data is available from www.blueprint- epigenome.eu. Funding for the project was provided by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 282510 – BLUEPRINT. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from the GTEx Portal on September 2017. Dr. Vivian Zhang assisted with mouse tissue collection, lung section slide preparation and staining. Dr. Jason Lynch performed mediastinal lymph node collection from experimental vii animals. Ms Rhiannon Werder collected airway epithelial cells from experimental animals.
Recommended publications
  • Role of Tomm40'523 – Apoe Haplotypes in Alzheimer's Disease Etiology
    ROLE OF TOMM40’523 – APOE HAPLOTYPES IN ALZHEIMER’S DISEASE ETIOLOGY – FROM CLINICS TO MITOCHONDRIA RÈMY CARDOSO Tese para obtenção do grau de Doutor em EnvelHecimento e Doenças Crónicas Doutoramento em associação entre: Universidade NOVA de Lisboa (Faculdade de Ciências Médicas | NOVA Medical ScHool - FCM|NMS/UNL) Universidade de Coimbra (Faculdade de Medicina - FM/UC) Universidade do MinHo (Escola de Medicina - EMed/UM) Novembro, 2020 ROLE OF TOMM40’523 – APOE HAPLOTYPES IN ALZHEIMER’S DISEASE ETIOLOGY – FROM CLINICS TO MITOCHONDRIA Rèmy Cardoso Professora Doutora Catarina Resende Oliveira, Professora Catedrática Jubilada da FM/UC Professor Doutor Duarte Barral, Professor Associado da FCM|NMS/UNL Tese para obtenção do grau de Doutor em EnvelHecimento e Doenças Crónicas Doutoramento em associação entre: Universidade NOVA de Lisboa (Faculdade de Ciências Médicas | NOVA Medical ScHool - FCM|NMS/UNL) Universidade de Coimbra (Faculdade de Medicina - FM/UC) Universidade do MinHo (Escola de Medicina - EMed/UM) Novembro, 2020 This thesis was conducted at the Center for Neuroscience and Cell Biology (CNC.CIBB) of University of Coimbra and Coimbra University Hospital (CHUC) and was a collaboration of the following laboratories and departments with the supervision of Catarina Resende Oliveira MD, PhD, Full Professor of FM/UC and the co-supervision of Duarte Barral PhD, Associated professor of Nova Medical School, Universidade Nova de Lisboa: • Neurogenetics laboratory (CNC.CIBB) headed by Maria Rosário Almeida PhD • Neurochemistry laboratory (CHUC)
    [Show full text]
  • Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
    Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts.
    [Show full text]
  • Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach
    Mafalda Rita Avó Bacalhau Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach Tese de doutoramento do Programa de Doutoramento em Ciências da Saúde, ramo de Ciências Biomédicas, orientada pela Professora Doutora Maria Manuela Monteiro Grazina e co-orientada pelo Professor Doutor Henrique Manuel Paixão dos Santos Girão e pela Professora Doutora Lee-Jun C. Wong e apresentada à Faculdade de Medicina da Universidade de Coimbra Julho 2017 Faculty of Medicine Establishing the pathogenicity of novel mitochondrial DNA sequence variations: a cell and molecular biology approach Mafalda Rita Avó Bacalhau Tese de doutoramento do programa em Ciências da Saúde, ramo de Ciências Biomédicas, realizada sob a orientação científica da Professora Doutora Maria Manuela Monteiro Grazina; e co-orientação do Professor Doutor Henrique Manuel Paixão dos Santos Girão e da Professora Doutora Lee-Jun C. Wong, apresentada à Faculdade de Medicina da Universidade de Coimbra. Julho, 2017 Copyright© Mafalda Bacalhau e Manuela Grazina, 2017 Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os direitos de autor são pertença do autor da tese e do orientador científico e que nenhuma citação ou informação obtida a partir dela pode ser publicada sem a referência apropriada e autorização. This copy of the thesis has been supplied on the condition that anyone who consults it recognizes that its copyright belongs to its author and scientific supervisor and that no quotation from the
    [Show full text]
  • Targeting MET Dysregulation in Cancer
    Published OnlineFirst June 12, 2020; DOI: 10.1158/2159-8290.CD-19-1446 MINI REVIEW Targeting MET Dysregulation in Cancer Gonzalo Recondo 1 , Jianwei Che 2 , 3 , Pasi A. Jänne 1 , 4 , and Mark M. Awad 1 ABSTRACT Aberrant MET signaling can drive tumorigenesis in several cancer types through a variety of molecular mechanisms including MET gene amplifi cation, mutation, rear- rangement, and overexpression. Improvements in biomarker discovery and testing have more recently enabled the selection of patients with MET-dependent cancers for treatment with potent, specifi c, and novel MET-targeting therapies. We review the known oncologic processes that activate MET, discuss therapeutic strategies for MET-dependent malignancies, and highlight emerging challenges in acquired drug resistance in these cancers. signifi cance: Increasing evidence supports the use of MET-targeting therapies in biomarker-selected cancers that harbor molecular alterations in MET. Diverse mechanisms of resistance to MET inhibitors will require the development of novel strategies to delay and overcome drug resistance. INTRODUCTION as plexin–semaphorin–integrin (PSI) and the Ig-like, plexins, transcription factors (IPT) domains ( 9 ). Upon ligand binding, The MET proto-oncogene encodes the tyrosine kinase MET homodimerization results in the phosphorylation of key receptor of HGF and regulates embryogenesis, wound heal- intracellular tyrosine residues at positions Y1234/35 within ing, liver regeneration, angiogenesis, and immunomodula- the kinase domain and Y1349/56 in the
    [Show full text]
  • Associated Palmoplantar Keratoderma
    DR ABIGAIL ZIEMAN (Orcid ID : 0000-0001-8236-207X) Article type : Review Article Pathophysiology of pachyonychia congenita-associated palmoplantar keratoderma: New insight into skin epithelial homeostasis and avenues for treatment Authors: A. G. Zieman1 and P. A. Coulombe1,2 # Affiliations: 1Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; 2Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA #Corresponding author: Pierre A. Coulombe, PhD, 3071 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA. Tel: 734-615-7509. Email: [email protected]. Funding Sources: These studies were supported by grant AR044232 issued to P.A.C. from the National Institute of Arthritis, Musculoskeletal and Skin Disease (NIAMS). A.G.Z. received support from grant T32 CA009110 from the National Cancer Institute. Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/BJD.18033 This article is protected by copyright. All rights reserved Conflict of interest disclosures: None declared. Bulleted statements: What’s already known about this topic? Pachyonychia congenita is a rare genodermatosis caused by mutations in KRT6A, KRT6B, KRT6C, KRT16, KRT17, which are normally expressed in skin appendages and induced following injury. Individuals with PC present with multiple clinical symptoms that usually include thickened and dystrophic nails, palmoplantar keratoderma (PPK), glandular cysts, and oral leukokeratosis.
    [Show full text]
  • The Genetic Architecture of Carbon Tetrachloride-Induced Liver Fibrosis in Mice
    UCLA UCLA Previously Published Works Title The Genetic Architecture of Carbon Tetrachloride-Induced Liver Fibrosis in Mice. Permalink https://escholarship.org/uc/item/40w5d3f6 Journal Cellular and molecular gastroenterology and hepatology, 11(1) ISSN 2352-345X Authors Tuominen, Iina Fuqua, Brie K Pan, Calvin et al. Publication Date 2021 DOI 10.1016/j.jcmgh.2020.08.010 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH The Genetic Architecture of Carbon Tetrachloride-Induced Liver Fibrosis in Mice Iina Tuominen,1,a Brie K. Fuqua,2,a Calvin Pan,2 Nicole Renaud,3 Kevin Wroblewski,1 Mete Civelek,2 Kara Clerkin,1 Ashot Asaryan,1 Sara G. Haroutunian,1 Joseph Loureiro,3 Jason Borawski,3 Guglielmo Roma,4 Judith Knehr,4 Walter Carbone,4 Samuel French,5 Brian W. Parks,2 Simon T. Hui,2 Margarete Mehrabian,2 Clara Magyar,5 Rita M. Cantor,6 Chinweike Ukomadu,3 Aldons J. Lusis,2 and Simon W. Beaven1 1Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA and Pfleger Liver Institute, David Geffen School of Medicine at UCLA, Los Angeles, California; 2Departments of Medicine, Microbiology and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California; 3Novartis Institutes for Biomedical Research, Cambridge, Massachusetts; 4Novartis Pharma AG, Basel, Switzerland; 5Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California; and 6Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 1234100 Strain ….. GWAS Fibrosis ….. Correlation Transcripts Modeling SUMMARY were euthanized for liver histology and gene expression.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Detailed Analysis of Focal Chromosome Arm 1Q
    Detailed Analysis of Focal Chromosome Arm 1q and 6p Amplifications in Urothelial Carcinoma Reveals Complex Genomic Events on 1q, and SOX4 as a Possible Auxiliary Target on 6p. Eriksson, Pontus; Aine, Mattias; Sjödahl, Gottfrid; Staaf, Johan; Lindgren, David; Höglund, Mattias Published in: PLoS ONE DOI: 10.1371/journal.pone.0067222 2013 Link to publication Citation for published version (APA): Eriksson, P., Aine, M., Sjödahl, G., Staaf, J., Lindgren, D., & Höglund, M. (2013). Detailed Analysis of Focal Chromosome Arm 1q and 6p Amplifications in Urothelial Carcinoma Reveals Complex Genomic Events on 1q, and SOX4 as a Possible Auxiliary Target on 6p. PLoS ONE, 8(6), [e67222]. https://doi.org/10.1371/journal.pone.0067222 Total number of authors: 6 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Downloaded from JASPAR (JASPAR ID: MA0527.1) Across All Identified Peaks Using the Matrix-Scan Module from RSAT [20]
    bioRxiv preprint doi: https://doi.org/10.1101/585653; this version posted March 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ZBTB33 (Kaiso) methylated binding sites are associated with primed heterochromatin Quy Xiao Xuan Lin1, Khadija Rebbani1, Sudhakar Jha1,2, Touati Benoukraf1,3* 1Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore 2Department of Biochemistry, National University of Singapore, Singapore, Singapore 3Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada *Correspondence to: Touati Benoukraf, Ph.D. Faculty of Medicine, Discipline of Genetics Cancer Science Institute of Singapore Craig L. Dobbin Genetics Research Centre National University of Singapore Room 5M317 Centre for Translational Medicine, Memorial University of Newfoundland 14 Medical Drive, #12-01 St. John's, NL A1B 3V6 Singapore 117599 Canada Phone: +1 (709) 864-6671 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/585653; this version posted March 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Background: ZBTB33, also known as Kaiso, is a member of the zinc finger and BTB/POZ family. In contrast to many transcription factors, ZBTB33 has the ability to bind both a sequence-specific consensus and methylated DNA.
    [Show full text]
  • Accompanies CD8 T Cell Effector Function Global DNA Methylation
    Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer, Benjamin G. Barwick, Benjamin A. Youngblood, Rafi Ahmed and Jeremy M. Boss This information is current as of October 1, 2021. J Immunol 2013; 191:3419-3429; Prepublished online 16 August 2013; doi: 10.4049/jimmunol.1301395 http://www.jimmunol.org/content/191/6/3419 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130139 Material 5.DC1 References This article cites 81 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/191/6/3419.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer,* Benjamin G. Barwick,* Benjamin A. Youngblood,*,† Rafi Ahmed,*,† and Jeremy M.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Eight Novel Mutations Confirm the Role of AAGAB in Punctate Palmoplantar Keratoderma Type 1 (Buschke-Fischer-Brauer) and Show Broad Phenotypic Variability
    Acta Derm Venereol 2016 Epub ahead of print INVESTIGATIVE REPORT Eight Novel Mutations Confirm the Role of AAGAB in Punctate Palmoplantar Keratoderma Type 1 (Buschke-Fischer-Brauer) and Show Broad Phenotypic Variability Kathrin A. GIEHL1,2, Thomas HERZINGER2, Hans WOLFF1,2, Miklós SÁRDY1,2, Tanja VON BRAUNMÜHL2, Valérie DEKEULE- NEER3, Yves SZNAJER4, Dominique TENNSTEDT3, Pascaline BOES4, Stefan RAPPRICH5, Nicola WAGNER5, Regina C. BETZ6, Markus BRAUN-FALCO2, Tim STROM7, Thomas RUZICKA2 and Gertrud N. ECKSTEIN7 1Center for Rare and Genetic Skin Diseases, Department of Dermatology, 2Department of Dermatology, Ludwig-Maximilian University, Munich, Ger- many, 3Department of Dermatology, 4Center for Human Genetics, Cliniques Universitaires St Luc, UCL, Brussels, Belgium, 5Department of Dermatology, Klinikum Darmstadt, Darmstadt, 6Institute of Human Genetics, University of Bonn, Bonn, and 7Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany Punctate palmoplantar keratoderma (PPKP1; Buschke- to the mostly diffuse hyperkeratinization observed in other Fischer-Brauer) is a rare autosomal dominant inherited palmoplantar keratodermas (6, 7). In mechanically irritated skin disease characterized by multiple hyperkeratotic areas, confluent plaques can be found. The lesions usually papules involving the palms and soles. Mutations have develop in early adolescence, but can also occur later in been found at 2 loci, on chromosomes 15q22–15q24 and life (5). The incidence of PPKP1 has not been extensively 8q24.13–8q24.21. We recently identified mutations in 3 evaluated, but has been estimated at 1.17 per 100,000 in- families, in the AAGAB gene on 15q, which encodes the habitants in Croatia (8). There have been reports in which alpha- and gamma-adaptin-binding protein p34.
    [Show full text]