EUROPEAN BISON Bison Bonasus: Current State of the Species and an Action Plan for Its Conservation

Total Page:16

File Type:pdf, Size:1020Kb

EUROPEAN BISON Bison Bonasus: Current State of the Species and an Action Plan for Its Conservation Mammal Research Institute, Polish Academy of Sciences BIA£OWIE¯A EUROPEAN BISON Bison bonasus: Current state of the species and an action plan for its conservation Compiled by: Z. Pucek, I.P. Belousova, M. Krasiñska, Z.A. Krasiñski and W. Olech Edited by: Zdzis³aw Pucek Bia³owie¿a 2002 European bison Authors’ team: Zdzis³aw PUCEK Mammal Research Institute, Polish Academy of Sciences, 17-230 Bia³owie¿a, Poland E-mail: [email protected] Irena P. BELOUSOVA Prioksko-terrasnyi Biosphere Reserve, PO Danki 142274, Moscow Region, Russia E-mail: I.P. Belousova <[email protected]> Zbigniew A. KRASIÑSKI Bia³owie¿a National Park, 17-230 Bia³owie¿a, Poland Ma³gorzata KRASIÑSKA Mammal Research Institute, Polish Academy of Sciences, 17-230 Bia³owie¿a, Poland E-mail: [email protected] Wanda OLECH Department of Genetics and Animal Breeding, Warsaw Agricultural University, Ciszewskiego 8, 02-786 Warsaw, Poland E-mail: [email protected] © Mammal Research Institute, Polish Academy of Sciences, Bia³owie¿a, Poland, 2002. (for pre-print version) 2 European bison Contents Preface ..................................................................... 5 11.3. Seasonal and daily activity rhythms ........ 30 Acknowledgements .................................................. 6 11.4. Reproduction and development .................. 31 1. Executive summary ............................................. 7 11.5. Population structure and organization ........ 32 2. Introduction ......................................................... 9 11.6. Regulation of European bison number in 3. Conservation status ............................................. 12 the population ............................................. 33 4. Origin of the European bison .............................. 13 11.6.1. Mortality ......................................... 33 5. Taxonomy ............................................................ 14 11.6.2. Culling ............................................ 33 6. Genetic structure of the species .......................... 14 12. Actual and potential threats................................ 34 7. Origin and genetic characteristics of breeding 13. Research needs .................................................. 36 lines ..................................................................... 16 14. Conservation strategy and recommended 8. Hybrids of European bison 19 actions ............................................................... 38 9. Distribution ......................................................... 20 15. References ......................................................... 47 9.1. Distribution of the species in historical Appendix I ......................................................... 51 times ............................................................. 20 Origin of the hybrids of North American 9.2. Recent distribution ...................................... 21 and European bison in the Caucasus 9.2.1. Captive breeding ................................ 21 Mountains, by Zablotskaya L.V., 9.2.2. Free-ranging herds .............................. 22 Zablotsky M.A. and Zablotskaya M.M. 10. World population number ................................. 24 Appendix II ...................................................... 55 11. Biology and population ecology ....................... 28 Rautian G. S., Kalabushkin B. A. and 11.1. Environment and habitat (relationship Nemtsev A.S. 2000. A new subspecies of between European bison and habitat the European bison, Bison bonasus available) .................................................. 28 montanus ssp.nov. (Bovidae, Artiodactyla). 11.2. Food and feeding ..................................... 29 Doklady Biological Sciences 375: 636–640 3 European bison 4 European bison Preface The struggle to rescue the European bison from guidelines, and adapted them to the specific problems of extinction began about 80 years ago, immediately after the European bison. The first steps towards preparing an World War I. Although the species no longer existed in Action Plan for the European bison were undertaken nature, a few bison remained in European zoological long ago. The Bison Specialist Group SSC/IUCN gardens. initiated the project in 1990. Soon after, a draft of An Action Plan for North American bison was prepared by Today the danger of extinction to this the largest the late Dr C.G. van Zyll de Jong – deputy chair of the mammal of the European Continent seems to have been Group, at that time. The IUCN had intended to publish averted; however, there remain many problems, as both plans for Bison bison and Bison bonasus in one detailed in this report. European bison breeders appear book. It appeared, however, that further work on an to have been very lucky; with little knowledge of the Action Plan for European bison was required, as well as species genetic structure, and using conservative increased international cooperation as political situations breeding methods, they have managed to rescue the in central eastern Europe and countries of the former species from extinction. This is a great success for USSR were rapidly changing; a factor that continued to nature protection in Central European countries, seriously affect the completion of the work. particularly in Poland. However, in the meantime, some ideas concerning Despite of the unquestionable success in rescuing the European bison conservation strategy have already European bison from extinction, there are however been outlined in a number of publications, concerning many problems concerning its future conservation and the World population (cf. Pucek 1991, 1992, 1994, recovery in contemporary human-managed ecosystems Pucek et al. 1996a), and more recently in regional of Europe; in particular, the incorporation of European aspects (Balèiauskas 1999, Kozlo 1999, Olech and bison into communities of large herbivores managed by Perzanowski 2002), but never completed with full hunters. Until recent history, the European bison was details. In relation to this, the workshop on “Population regarded as a game animal; therefore, its recovery to and Habitat Viability Assessment for the European this status could be regarded as another (further) Bison (Bison bonasus)” was very important. The conservation goal. workshop was organized in Poland (Woliñski National Park) in June 1995 by the Bison Specialist Group The main task of the European bison Action Plan SSC/IUCN and Conservation Breeding Specialist Group and its Conservation Strategy is to conserve this large SSC/IUCN, together with the European Endangered mammal as an integral part of Europe’s native fauna, to Species Programme (EEP) and Poznañ Zoological preserve its genetic variability, and enable free-ranging Garden (cf. Pucek et al. 1996b). The report resulting viable populations to function as a natural component of from this assessment has been also translated into European ecosystems. This goal can only be achieved Polish and Russian. Many results of this workshop are with international co-operation between those countries included in the present Action Plan. During the last few possessing bison on their territories and support from years, conservation strategies for the European bison those international organisations responsible for nature have also been developed in most of the countries conservancy in Europe. Financial assistance from where free-ranging herds exist. We therefore have the relevant funding bodies is essential. possibility to use these documents when published or The purpose of this report is to present up-to-date available. knowledge concerning the status of the European bison The team of compilers divided their roles as follows: and especially its origin, taxonomy, phylogeny, genetic Irina P. Belousova and Wanda Olech responded for structure, historical and recent distribution, population Chapters 6 and 7 (“Genetic structure of the species”, biology and ecology. Furthermore, we discuss the most and “Origin and genetic characteristics of breeding important actual and potential threats and research lines”), and related sections in other chapters, Zbigniew needs. These were prerequisite for outlining the global A. Krasiñski and Ma³gorzata Krasiñska drafted Chapter conservation strategy and necessary action plan for the 11 (“Biology and population ecology”), Wanda Olech species future protection and management. offered statistics concerning European Bison Pedigree During the creation of this report we referred to the Book (EBPB) and European Endangered Species IUCN Status Survey and Conservation Action Plan Programme (EEP). Zdzis³aw Pucek wrote the rest of the report and has edited all the text. As the report is a 5 European bison collective work, authors’ credits in each chapter or We may regard opinions expressed in this report as section are not given. An appendix is included to those that are generally accepted by the Bison Specialist explain origin of the hybrids of North American and Group SSC/IUCN (European part). Exceptions include, European bison in the Caucasus Mountains (Appendix the different views concerning the problem of necessary I) and their contemporary status as.a new subspecies, temporal isolation between genetic lines of Bison bonasus montanus is reported in Chapter 8. contemporary European bison and their strict separation from European and North American bison in Caucasus. The international workshop of the Bison Specialist We decided not to present these different attitudes in Group SSC/IUCN (European part) held in Bia³owie¿a
Recommended publications
  • Bison Literature Review Biology
    Bison Literature Review Ben Baldwin and Kody Menghini The purpose of this document is to compare the biology, ecology and basic behavior of cattle and bison for a management context. The literature related to bison is extensive and broad in scope covering the full continuum of domestication. The information incorporated in this review is focused on bison in more or less “wild” or free-ranging situations i.e.., not bison in close confinement or commercial production. While the scientific literature provides a solid basis for much of the basic biology and ecology, there is a wealth of information related to management implications and guidelines that is not captured. Much of the current information related to bison management, behavior (especially social organization) and practical knowledge is available through local experts, current research that has yet to be published, or popular literature. These sources, while harder to find and usually more localized in scope, provide crucial information pertaining to bison management. Biology Diet Composition Bison evolutional history provides the basis for many of the differences between bison and cattle. Bison due to their evolution in North America ecosystems are better adapted than introduced cattle, especially in grass dominated systems such as prairies. Many of these areas historically had relatively low quality forage. Bison are capable of more efficient digestion of low-quality forage then cattle (Peden et al. 1973; Plumb and Dodd 1993). Peden et al. (1973) also found that bison could consume greater quantities of low protein and poor quality forage then cattle. Bison and cattle have significant dietary overlap, but there are slight differences as well.
    [Show full text]
  • Last Interglacial (MIS 5) Ungulate Assemblage from the Central Iberian Peninsula: the Camino Cave (Pinilla Del Valle, Madrid, Spain)
    Palaeogeography, Palaeoclimatology, Palaeoecology 374 (2013) 327–337 Contents lists available at SciVerse ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Last Interglacial (MIS 5) ungulate assemblage from the Central Iberian Peninsula: The Camino Cave (Pinilla del Valle, Madrid, Spain) Diego J. Álvarez-Lao a,⁎, Juan L. Arsuaga b,c, Enrique Baquedano d, Alfredo Pérez-González e a Área de Paleontología, Departamento de Geología, Universidad de Oviedo, C/Jesús Arias de Velasco, s/n, 33005 Oviedo, Spain b Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, C/Sinesio Delgado, 4, 28029 Madrid, Spain c Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain d Museo Arqueológico Regional de la Comunidad de Madrid, Plaza de las Bernardas, s/n, 28801-Alcalá de Henares, Madrid, Spain e Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca, s/n, 09002 Burgos, Spain article info abstract Article history: The fossil assemblage from the Camino Cave, corresponding to the late MIS 5, constitutes a key record to un- Received 2 November 2012 derstand the faunal composition of Central Iberia during the last Interglacial. Moreover, the largest Iberian Received in revised form 21 January 2013 fallow deer fossil population was recovered here. Other ungulate species present at this assemblage include Accepted 31 January 2013 red deer, roe deer, aurochs, chamois, wild boar, horse and steppe rhinoceros; carnivores and Neanderthals Available online 13 February 2013 are also present. The origin of the accumulation has been interpreted as a hyena den. Abundant fallow deer skeletal elements allowed to statistically compare the Camino Cave fossils with other Keywords: Early Late Pleistocene Pleistocene and Holocene European populations.
    [Show full text]
  • Infectious Diseases of Saiga Antelopes and Domestic Livestock in Kazakhstan
    Infectious diseases of saiga antelopes and domestic livestock in Kazakhstan Monica Lundervold University of Warwick, UK June 2001 1 Chapter 1 Introduction This thesis combines an investigation of the ecology of a wild ungulate, the saiga antelope (Saiga tatarica, Pallas), with epidemiological work on the diseases that this species shares with domestic livestock. The main focus is on foot-and-mouth disease (FMD) and brucellosis. The area of study was Kazakhstan (located in Central Asia, Figure 1.1), home to the largest population of saiga antelope in the world (Bekenov et al., 1998). Kazakhstan's independence from the Soviet Union in 1991 led to a dramatic economic decline, accompanied by a massive reduction in livestock numbers and a virtual collapse in veterinary services (Goskomstat, 1996; Morin, 1998a). As the rural economy has disintegrated, the saiga has suffered a dramatic increase in poaching (Bekenov et al., 1998). Thus the investigation reported in this thesis includes ecological, epidemiological and socio-economic aspects, all of which were necessary in order to gain a full picture of the dynamics of the infectious diseases of saigas and livestock in Kazakhstan. The saiga is an interesting species to study because it is one of the few wildlife populations in the world that has been successfully managed for commercial hunting over a period of more than 40 years (Milner-Gulland, 1994a). Its location in Central Asia, an area that was completely closed to foreigners during the Soviet era, means that very little information on the species and its management has been available in western literature. The diseases that saigas share with domestic livestock have been a particular focus of this study because of the interesting issues related to veterinary care and disease control in the Former Soviet Union (FSU).
    [Show full text]
  • PDF File Containing Table of Lengths and Thicknesses of Turtle Shells And
    Source Species Common name length (cm) thickness (cm) L t TURTLES AMNH 1 Sternotherus odoratus common musk turtle 2.30 0.089 AMNH 2 Clemmys muhlenbergi bug turtle 3.80 0.069 AMNH 3 Chersina angulata Angulate tortoise 3.90 0.050 AMNH 4 Testudo carbonera 6.97 0.130 AMNH 5 Sternotherus oderatus 6.99 0.160 AMNH 6 Sternotherus oderatus 7.00 0.165 AMNH 7 Sternotherus oderatus 7.00 0.165 AMNH 8 Homopus areolatus Common padloper 7.95 0.100 AMNH 9 Homopus signatus Speckled tortoise 7.98 0.231 AMNH 10 Kinosternon subrabum steinochneri Florida mud turtle 8.90 0.178 AMNH 11 Sternotherus oderatus Common musk turtle 8.98 0.290 AMNH 12 Chelydra serpentina Snapping turtle 8.98 0.076 AMNH 13 Sternotherus oderatus 9.00 0.168 AMNH 14 Hardella thurgi Crowned River Turtle 9.04 0.263 AMNH 15 Clemmys muhlenbergii Bog turtle 9.09 0.231 AMNH 16 Kinosternon subrubrum The Eastern Mud Turtle 9.10 0.253 AMNH 17 Kinixys crosa hinged-back tortoise 9.34 0.160 AMNH 18 Peamobates oculifers 10.17 0.140 AMNH 19 Peammobates oculifera 10.27 0.140 AMNH 20 Kinixys spekii Speke's hinged tortoise 10.30 0.201 AMNH 21 Terrapene ornata ornate box turtle 10.30 0.406 AMNH 22 Terrapene ornata North American box turtle 10.76 0.257 AMNH 23 Geochelone radiata radiated tortoise (Madagascar) 10.80 0.155 AMNH 24 Malaclemys terrapin diamondback terrapin 11.40 0.295 AMNH 25 Malaclemys terrapin Diamondback terrapin 11.58 0.264 AMNH 26 Terrapene carolina eastern box turtle 11.80 0.259 AMNH 27 Chrysemys picta Painted turtle 12.21 0.267 AMNH 28 Chrysemys picta painted turtle 12.70 0.168 AMNH 29
    [Show full text]
  • European Bison
    IUCN/Species Survival Commission Status Survey and Conservation Action Plan The Species Survival Commission (SSC) is one of six volunteer commissions of IUCN – The World Conservation Union, a union of sovereign states, government agencies and non- governmental organisations. IUCN has three basic conservation objectives: to secure the conservation of nature, and especially of biological diversity, as an essential foundation for the future; to ensure that where the Earth’s natural resources are used this is done in a wise, European Bison equitable and sustainable way; and to guide the development of human communities towards ways of life that are both of good quality and in enduring harmony with other components of the biosphere. A volunteer network comprised of some 8,000 scientists, field researchers, government officials Edited by Zdzis³aw Pucek and conservation leaders from nearly every country of the world, the SSC membership is an Compiled by Zdzis³aw Pucek, Irina P. Belousova, unmatched source of information about biological diversity and its conservation. As such, SSC Ma³gorzata Krasiñska, Zbigniew A. Krasiñski and Wanda Olech members provide technical and scientific counsel for conservation projects throughout the world and serve as resources to governments, international conventions and conservation organisations. IUCN/SSC Action Plans assess the conservation status of species and their habitats, and specifies conservation priorities. The series is one of the world’s most authoritative sources of species conservation information
    [Show full text]
  • Bison Rewilding Plan 2014–2024 Rewilding Europe’S Contribution to the Comeback of the European Bison
    Bison Rewilding Plan 2014–2024 Rewilding Europe’s contribution to the comeback of the European bison Advised by the Zoological Society of London Rewilding Europe This report was made possible by generous grants Bison Rewilding Plan, 2014–2024 by the Swedish Postcode Lottery (Sweden) and the Liberty Wildlife Fund (The Netherlands). Author Joep van de Vlasakker, Rewilding Europe Advised by Dr Jennifer Crees, Zoological Society of London Dr Monika Böhm, Zoological Society of London Peer-reviewed by Prof Jens-Christian Svenning, Aarhus University, Denmark Dr Rafal Kowalczyk, Director Mammal Research Institute / Polish Academy of Sciences / Bialowieza A report by Rewilding Europe Toernooiveld 1 6525 ED Nijmegen The Netherlands www.rewildingeurope.com About Rewilding Europe Founded in 2011, Rewilding Europe (RE) wants to make Europe a wilder place, with much more space for wildlife, wilderness and natural processes, by bringing back a variety of wildlife for all to enjoy and exploring new ways for people to earn a fair living from the wild. RE aims to rewild one million hectares of land by 2022, creating 10 magnificent wildlife and wilderness areas, which together reflect a wide selection of European regions and ecosystems, flora and fauna. Further information: www.rewildingeurope.com About ZSL Founded in 1826, the Zoological Society of London (ZSL) is an international scientific, conservation and educational charity whose vision is a world where animals are valued, and their conservation assured. Our mission, to promote and achieve the worldwide conservation of animals and their habitats, is realised through our groundbreaking science, our active conservation projects in more than 50 countries and our two Zoos, ZSL London Zoo and ZSL Whipsnade Zoo.
    [Show full text]
  • Phylogeny of Dictyocaulus (Lungworms) from Eight Species of Ruminants Based on Analyses of Ribosomal RNA Data
    179 Phylogeny of Dictyocaulus (lungworms) from eight species of ruminants based on analyses of ribosomal RNA data J. HO¨ GLUND1*,D.A.MORRISON1, B. P. DIVINA1,2, E. WILHELMSSON1 and J. G. MATTSSON1 1 Department of Parasitology (SWEPAR), National Veterinary Institute and Swedish University of Agriculture Sciences, 751 89 Uppsala, Sweden 2 College of Veterinary Medicine, University of the Philippines Los Ban˜os, College, Laguna, 4031 Philippines (Received 8 November 2002; revised 8 February 2003; accepted 8 February 2003) SUMMARY In this study, we conducted phylogenetic analyses of nematode parasites within the genus Dictyocaulus (superfamily Trichostrongyloidea). Lungworms from cattle (Bos taurus), domestic sheep (Ovis aries), European fallow deer (Dama dama), moose (Alces alces), musk ox (Ovibos moschatus), red deer (Cervus elaphus), reindeer (Rangifer tarandus) and roe deer (Capreolus capreolus) were obtained and their small subunit ribosomal RNA (SSU) and internal transcribed spacer 2 (ITS2) sequences analysed. In the hosts examined we identified D. capreolus, D. eckerti, D. filaria and D. viviparus. However, in fallow deer we detected a taxon with unique SSU and ITS2 sequences. The phylogenetic position of this taxon based on the SSU sequences shows that it is a separate evolutionary lineage from the other recognized species of Dictyocaulus. Furthermore, the analysis of the ITS2 sequence data indicates that it is as genetically distinct as are the named species of Dictyocaulus. Therefore, either this taxon needs to be recognized as a new species, or D. capreolus, D. eckerti and D. viviparus need to be combined into a single species. Traditionally, the genus Dictyocaulus has been placed as a separate family within the superfamily Trichostrongyloidea.
    [Show full text]
  • Mixed-Species Exhibits with Pigs (Suidae)
    Mixed-species exhibits with Pigs (Suidae) Written by KRISZTIÁN SVÁBIK Team Leader, Toni’s Zoo, Rothenburg, Luzern, Switzerland Email: [email protected] 9th May 2021 Cover photo © Krisztián Svábik Mixed-species exhibits with Pigs (Suidae) 1 CONTENTS INTRODUCTION ........................................................................................................... 3 Use of space and enclosure furnishings ................................................................... 3 Feeding ..................................................................................................................... 3 Breeding ................................................................................................................... 4 Choice of species and individuals ............................................................................ 4 List of mixed-species exhibits involving Suids ........................................................ 5 LIST OF SPECIES COMBINATIONS – SUIDAE .......................................................... 6 Sulawesi Babirusa, Babyrousa celebensis ...............................................................7 Common Warthog, Phacochoerus africanus ......................................................... 8 Giant Forest Hog, Hylochoerus meinertzhageni ..................................................10 Bushpig, Potamochoerus larvatus ........................................................................ 11 Red River Hog, Potamochoerus porcus ...............................................................
    [Show full text]
  • Idiograms of Yak (Bos Grunniens), Cattle (Bos Taurus) and Their Hybrid C.P
    IDIOGRAMS OF YAK (BOS GRUNNIENS), CATTLE (BOS TAURUS) AND THEIR HYBRID C.P. Popescu To cite this version: C.P. Popescu. IDIOGRAMS OF YAK (BOS GRUNNIENS), CATTLE (BOS TAURUS) AND THEIR HYBRID. Annales de génétique et de sélection animale, INRA Editions, 1969, 1 (3), pp.207-217. hal- 00892361 HAL Id: hal-00892361 https://hal.archives-ouvertes.fr/hal-00892361 Submitted on 1 Jan 1969 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IDIOGRAMS OF YAK (BOS GRUNNIENS), CATTLE (BOS TAURUS) AND THEIR HYBRID C.P. POPESCU Department of Genetics, Institute of Zootechnical Researches, 63, Dr Staicovici, Sector 6-Bucarest (Romania) (!‘) ABSTRACT The karyotypes of Yak (Bos grunniens L.) and Cattle (Bos taurus L.) are alike both numeri- cally and morphologically. However, idiograms of the two species reveal differences both in autosomes and in sexual chromosomes. The idiogram of hybrids (Bos grunniens L. S x Bos taurus L. !) represents roughly an average of parental idiograms. Numerous authors have studied the chromosomes of some hybrid animals and their parental species for the purpose of explaining the infertility of inter- specific hybrids (BASRUR and MooN, 1967; LAY and NADr,!R, ig6g; MA!NO et al., 1963).
    [Show full text]
  • Holocene Distribution of European Bison – the Archaeozoological Record
    MUNIBE (Antropologia-Arkeologia) 57 Homenaje a Jesús Altuna 421-428 SAN SEBASTIAN 2005 ISSN 1132-2217 The Holocene distribution of European bison – the archaeozoological record Distribución Holocena del bisonte europeo - el registro arqueozoológico KEY WORDS: Europe, Holocene, European bison, distribution, archaeozoological record. PALABRAS CLAVE: Europa, Holoceno, bisonte europeo, distribución, registro arqueozoológico. Norbert BENECKE* ABSTRACT The paper presents a reconstruction of the Holocene distribution of European bison or wisent. It is based on the archaeozoological record of this species. European bison was an early Postglacial immigrant into the European continent. The oldest evidence comes from sites in northern Central Europe and South Scandinavia dating to the Preboreal. In the Mid- and Late Holocene, European bison was widely distributed on the European continent. Its range extended from France in the west to the Ukraine and Russia in the east. Except for an area comprising East Poland, Belarus, Lithuania and Latvia, European bison was a rare species in most regions of its range. In the Middle Ages, there is a shrinkage of the range of wisent in its western part. RESUMEN El artículo presenta una reconstrucción de la distribución holocena del bisonte europeo. Está basada en el registro arqueozoológico de es- ta especie. El bisonte europeo fue un inmigrante al Continente europeo durante el Postglacial inicial. La más antigua evidencia procede de ya- cimientos del Norte de Europa Central y del Sur de Escandinavia, que datan del Preboreal. Durante el Holoceno medio y tardío el bisonte eu- ropeo estaba ampliamente distribuido en el Continente europeo. Su distribución se extendía desde Francia al W hasta Ucrania al E.
    [Show full text]
  • Spatial Habitat Overlap & Habitat Preference of Himalayan Musk Deer
    Current Research Journal of Biological Sciences 2(3): 217-225, 2010 ISSN: 2041-0778 © Maxwell Scientific Organization, 2010 Submitted Date: April 23, 2010 Accepted Date: May 08, 2010 Published Date: May 20, 2010 Spatial Habitat Overlap and Habitat Preference of Himalayan Musk Deer (Moschus chrysogaster) in Sagarmatha (Mt. Everest) National Park, Nepal 1,2Achyut Aryal, 3David Raubenheimer, 4Suman Subedi and 5Bijaya Kattel 1Ecology and Conservation Group, Institute of Natural Sciences, Massey University, New Zealand 2The Biodiversity Research and Training Forum (BRTF), Nepal 3Nutritional Ecology Research Group, Institute of Natural Sciences, Massey University, New Zealand 4 Sagarmatha (Mt. Everest) National Park, Department of National Park and Wildlife Conservation, Government of Nepal 5South Florida Water Management District West Palm Beach, Florida, USA Abstract: The musk deer (Moschus chrysogaster), which is native to Nepal, China, Bhutan, and India, is an endangered species, which suffers a high level of poaching due to the economic demand for its musk pod. The World Heritage Site (WHS), Sagarmatha (Mt. Everest) National Park (SNP), provides prime habitat for this species. Our aim in this study was to perform a quantitative assessment of the habitat preferences of musk deer in SNP, and evaluate how preferred habitat might be impacted by anthropogenic activities. Results showed that the musk deer population is distributed in 131 km2 of the park area. We recorded 39 musk deer (11 male, 16 female and 12 unidentified) in Debuche, Tengboche, Phortse Thanga, Dole, and associated areas in SNP. The musk deer in these areas preferred gentle to steep slopes with the altitudinal range of 3400-3900m and also displayed a preference for dense forest and sparse ground/crown cover.
    [Show full text]
  • Host Specificity of Enterocytozoon Bieneusi Genotypes in Bactrian
    Qi et al. Parasites & Vectors (2018) 11:219 https://doi.org/10.1186/s13071-018-2793-9 RESEARCH Open Access Host specificity of Enterocytozoon bieneusi genotypes in Bactrian camels (Camelus bactrianus)inChina Meng Qi1,2†, Junqiang Li2†, Aiyun Zhao1, Zhaohui Cui2, Zilin Wei1, Bo Jing1* and Longxian Zhang2* Abstract Background: Enterocytozoon bieneusi is an obligate, intracellular fungus and is commonly reported in humans and animals. To date, there have been no reports of E. bieneusi infections in Bactrian camels (Camelus bactrianus). The present study was conducted to understand the occurrence and molecular characteristics of E. bieneusi in Bactrian camels in China. Results: Of 407 individual Bactrian camel fecal specimens, 30.0% (122) were E. bieneusi-positive by nested polymerase chain reaction (PCR) based on internal transcriber spacer (ITS) sequence analysis. A total of 14 distinct E. bieneusi ITS genotypes were obtained: eight known genotypes (genotype EbpC, EbpA, Henan-IV, BEB6, CM8, CHG16, O and WL17), and six novel genotypes (named CAM1 to CAM6). Genotype CAM1 (59.0%, 72/122) was the most predominant genotype in Bactrian camels in Xinjiang, and genotype EbpC (18.9%, 23/122) was the second-most predominant genotype. Phylogenetic analysis revealed that six known genotypes (EbpC, EbpA, WL17, Henan-IV, CM8 and O) and three novel genotypes (CAM3, CAM5 and CAM6) fell into the human-pathogenic group 1. Two known genotypes (CHG16 and BEB6) fell into the cattle host-specific group 2. The novel genotypes CAM1, CAM 2 and CAM4 cluster into group 8. Conclusions: To our knowledge, this is the first report of E. bieneusi in Bactrian camels.
    [Show full text]