Infectious Diseases of Saiga Antelopes and Domestic Livestock in Kazakhstan

Total Page:16

File Type:pdf, Size:1020Kb

Infectious Diseases of Saiga Antelopes and Domestic Livestock in Kazakhstan Infectious diseases of saiga antelopes and domestic livestock in Kazakhstan Monica Lundervold University of Warwick, UK June 2001 1 Chapter 1 Introduction This thesis combines an investigation of the ecology of a wild ungulate, the saiga antelope (Saiga tatarica, Pallas), with epidemiological work on the diseases that this species shares with domestic livestock. The main focus is on foot-and-mouth disease (FMD) and brucellosis. The area of study was Kazakhstan (located in Central Asia, Figure 1.1), home to the largest population of saiga antelope in the world (Bekenov et al., 1998). Kazakhstan's independence from the Soviet Union in 1991 led to a dramatic economic decline, accompanied by a massive reduction in livestock numbers and a virtual collapse in veterinary services (Goskomstat, 1996; Morin, 1998a). As the rural economy has disintegrated, the saiga has suffered a dramatic increase in poaching (Bekenov et al., 1998). Thus the investigation reported in this thesis includes ecological, epidemiological and socio-economic aspects, all of which were necessary in order to gain a full picture of the dynamics of the infectious diseases of saigas and livestock in Kazakhstan. The saiga is an interesting species to study because it is one of the few wildlife populations in the world that has been successfully managed for commercial hunting over a period of more than 40 years (Milner-Gulland, 1994a). Its location in Central Asia, an area that was completely closed to foreigners during the Soviet era, means that very little information on the species and its management has been available in western literature. The diseases that saigas share with domestic livestock have been a particular focus of this study because of the interesting issues related to veterinary care and disease control in the Former Soviet Union (FSU). Soviet Central Asia is only just opening up to the outside world, and the area is in rapid transition. Until very recently, little was known about their methods of animal husbandry, disease control and veterinary measures. The disease status of their animals and the state of veterinary research were not disclosed, either within the country or externally. Even now, a large proportion of the scientific literature is not in the public domain, and thus difficult to obtain. Of the literature that is available, most is in Russian and not accessible to western audiences. Within the western literature, there has been some work carried out on the disease-mediated interactions between livestock and wildlife (Christiansen & Thomsen, 1956; Anderson & Trewhella, 1985; Freeland & 2 Boulton, 1990), but it is still a relatively under-researched field, and one that is receiving increasing recognition as important both for conservation and for livestock disease control. Figure 1.1 Map of Asia Thesis Aims The study aimed to answer the following questions: • What are the effects of recent socio-political changes in Kazakhstan on livestock husbandry and veterinary practices, and hence on disease prevalence in Kazakhstan? • Are there effective disease control measures and monitoring programs operating at present in Kazakhstan? • Foot-and-mouth disease and brucellosis have been reported in saiga. Are these diseases or other major viral diseases currently circulating in the saiga population? • What are the key factors that should be included in a model of FMD dynamics in a saiga population? • Are infectious diseases a cause for concern for the saiga population, or could they be so in the near future? • How have the socio-political changes in Kazakhstan in the last decade affected the saiga antelope with respect to their relation with humans, and are these changes likely 3 to have affected the interaction between livestock and saigas, through disease or other factors? • If Kazakhstan embarks on a program to attempt eradication of brucellosis or FMD from the domestic livestock population, could saiga constitute a threat of failure to this program? To attempt to answer these questions, baseline data were required. This necessitated collection of a large amount of information in the field: • The current prevalence of major infectious diseases in the saiga population • The current saiga population structure and ecology (sex ratio, age structure) • The current prevalence of foot-and-mouth disease virus (FMDV) infection among domestic ruminants located in or close to saiga range areas and their current level of immunity against FMD, and the important factors that are associated with immunity • The current prevalence of brucellosis infection among domestic ruminants located in or close to saiga range areas, and the important factors that are associated with infection • The prevalence of other major infectious diseases among domestic ruminants located in or close to saiga range areas, and the important factors associated with infection • Changes in disease control policies after independence • Changes in the veterinary care of livestock after independence • The reliability of official statistics • Meteorological data for modelling the spread of FMD Data were collected from two saiga populations, one of which is subject to heavy human pressure and the other of which is relatively undisturbed. This comparison allowed an assessment of the effects of human disturbance on saiga ecology and the prevalence of infectious diseases. Data were also collected for livestock from villages outside the saiga range, for comparative purposes and in order to assess veterinary procedures in the case of a disease outbreak. These data were then analysed using a range of laboratory methods, statistical and epidemiological models in order to provide answers to the questions listed above. The t-test was used to test the significance between means, and the ?2, Mann- Whitney U, Fisher exact and Kruskal-Wallis H tests (Mead & Curnow, 1983; Bland, 1987; Fowler et al., 1998) were used to test the significance between proportions, where p<0.05 was considered significant. Throughout the thesis, p<0.05 is abbreviated as *, p<0.01 as ** 4 and p<0.001 as ***. Where an expected value for ?2 was less than 5, Fisher exact results were used. The transliterations of place names have been done using the Russian spelling, rather that the Kazakh spelling. Many place names have 4 or 5 different, but similar spellings. In these cases the most recent Russian version is used throughout the thesis, and no reference is made to other ways of spelling. In cases where the name of a place has been changed the old name is in brackets after the new name. Appendix 1 contains the transliteration method. Chapter 2 The Saiga Antelope (Saiga tatarica) 2.1 Introduction The saiga antelope (Saiga tatarica, Pallas) is a nomadic herding species, found in the semi- arid deserts of Central Asia: in Kazakhstan, Russia and Mongolia. It is about the size of a domestic goat; its most striking feature is the protuberant nose (Figure 2.1). The saiga is listed in appendix 2 of CITES (Convention for International Trade in Endangered Species), and is classified as ‘vulnerable’ by the IUCN (World Conservation Union). The saiga belongs to the order Artiodactyla and the family Bovidae (Nowak, 1991). There are two sub-species: Saiga tatarica tatarica in Russia and Kazakhstan, and Saiga tatarica mongolica in Mongolia. Saiga tatarica tatarica are found in four distinct populations, three of these are in Kazakhstan, the fourth is in Kalmykia, Russia. Currently the populations in Kazakhstan make up more than 80% of total saiga numbers (Bekenov et al., 1998). This study concentrates on the populations in Kazakhstan, in particular the Betpak- dala and Ustiurt populations. There are few sources of data on saiga biology, and values for biological parameters tend to be stated in the literature without supporting data or confidence limits. Most of the published work draws heavily on the findings of Bannikov et al. (1961) and thus applies to the Kalmykian population rather than the Kazakh. Some aspects of the biology of the Kazakh population (e.g. longevity, fecundity, herd structure) are different from the 5 Kalmykian population (Fadeev & Sludskii, 1982). The discussion below is based on the review of saiga ecology by Bekenov et al. (1998) unless otherwise indicated. 2.2 Saiga range area, past and present Saigas inhabit the steppe, semi-desert and desert. They require an even terrain with watering places and pasture with low-growing vegetation. In the 17th century saigas were found from the Polish border to mid-Mongolia (Milner-Gulland, 1991). There was heavy hunting in the 18th and 19th centuries, but saigas were still numerous and wide spread in and around Kazakhstan in the first half of the 19th century (Figure 2.2). In the second half of the 19th century widespread hunting caused the numbers of saiga to fall everywhere, and its range area consequently decreased in size (Sludskii, 1955). This continued into the early 20th century, driving the species to the verge of extinction. Fig_2_1 Fig 2.1 Fig 2.2 6 A hunting ban was introduced in 1919 (Zhemchuzhnikov, 1926), but it was the rural depopulation caused by enforced collectivisation of the peasants in the years after 1929 (Asanov & Alimaev, 1990) that allowed saiga numbers to recover (Bannikov et al., 1961; Zhirnov, 1982; Milner-Gulland, 1991). In the late 1930s they appeared again in areas they had previously inhabited (Sludskii, 1955). It is clear that saigas are vulnerable to overhunting; however they have the ability to rapidly recover their numbers. The increase in population size and geographical range carried on into the 1960s, when saigas appeared for the first time on sovkhozes (state farms). There was some worry among Soviet scientists that transmission of diseases could occur between saigas and livestock as they were sharing pastures and water points (Kindyakov, 1967; Starchikov, 1971). Between 1960 and 1990 the geographical range area of the saiga remained essentially the same, although suitable habitat within this area gradually decreased due to human settlements, land cultivation etc., and gaps appeared between the main range areas of Betpak-dala, Ustiurt and Ural (Figure 2.3).
Recommended publications
  • The Herbivore Digestive System Buffalo Zebra
    The Herbivore Digestive System Name__________________________ Buffalo Ruminant: The purpose of the digestion system is to ______________________________ _____________________________. Bacteria help because they can digest __________________, a sugar found in the cell walls of________________. Zebra Non- Ruminant: What is the name for the largest section of Organ Color Key a ruminant’s Mouth stomach? Esophagus __________ Stomach Small Intestine Cecum Large Intestine Background Information for the Teacher Two Strategies of Digestion in Hoofed Mammals Ruminant Non‐ruminant Representative species Buffalo, cows, sheep, goats, antelope, camels, Zebra, pigs, horses, asses, hippopotamus, rhinoceros giraffes, deer Does the animal Yes, regurgitation No regurgitation regurgitate its cud to Grass is better prepared for digestion, as grinding Bacteria can not completely digest cell walls as chew material again? motion forms small particles fit for bacteria. material passes quickly through, so stool is fibrous. Where in the system do At the beginning, in the rumen Near the end, in the cecum you find the bacteria This first chamber of its four‐part stomach is In this sac between the two intestines, bacteria digest that digest cellulose? large, and serves to store food between plant material, the products of which pass to the rumination and as site of digestion by bacteria. bloodstream. How would you Higher Nutrition Lower Nutrition compare the nutrition Reaps benefits of immediately absorbing the The digestive products made by the bacteria are obtained via digestion? products of bacterial digestion, such as sugars produced nearer the end of the line, after the small and vitamins, via the small intestine. intestine, the classic organ of nutrient absorption.
    [Show full text]
  • Habitat Selection by Two K-Selected Species: an Application to Bison and Sage Grouse
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-01 Habitat Selection by Two K-Selected Species: An Application to Bison and Sage Grouse Joshua Taft Kaze Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Animal Sciences Commons BYU ScholarsArchive Citation Kaze, Joshua Taft, "Habitat Selection by Two K-Selected Species: An Application to Bison and Sage Grouse" (2013). Theses and Dissertations. 4284. https://scholarsarchive.byu.edu/etd/4284 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Habitat Selection by Two K-Selected Species: An Application to Bison and Sage-Grouse in Utah Joshua T. Kaze A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Masters of Science Randy T. Larsen, Chair Steven Peterson Rick Baxter Department of Plant and Wildlife Science Brigham Young University December 2013 Copyright © 2013 Joshua T. Kaze All Rights Reserved ABSTRACT Habitat Selection by Two K-Selected Species: An Application to Bison and Sage-Grouse in Utah Joshua T. Kaze Department of Plant and Wildlife Science, BYU Masters of Science Population growth for species with long lifespans and low reproductive rates (i.e., K- selected species) is influenced primarily by both survival of adult females and survival of young. Because survival of adults and young is influenced by habitat quality and resource availability, it is important for managers to understand factors that influence habitat selection during the period of reproduction.
    [Show full text]
  • 08E – CHAMOIS (GAMSWILD)
    U.S. Forces Europe Hunting, Fishing, and Sport Shooting Program Guide to Hunting in Germany 08e – CHAMOIS (GAMSWILD) Breeding season (Brunftzeit): November Gestation period: 20-21 weeks Young are born: May (one, sometimes two) Teeth: 32 Males: Gamsbock Females: Geiss Fawns: Kitz Herd: Rudel Based on fossils, scientists believe that some 100,000 years ago, ancestors of chamois known in Europe today originally migrated from Central Asia. These populations were wiped out during the last ice-age, except for chamois that are located in the Apennine and the Pyrenees mountain ranges. When the glaciers melted away, about 10,000 years ago, another Chamois migration from Asia led to a re-population of Eastern and Central Europe, except for Scandinavia and the British Islands. 08e-1 U.S. Forces Europe Hunting, Fishing, and Sport Shooting Program Guide to Hunting in Germany As a true mountain animal, Chamois lived mainly in regions with rocks and steep cliffs and outside the forest. With the increasing extension of forest on the former taiga landscape, Chamois became restricted to Alpine areas. In this sense, “Alpine” means regions above the forest line. These were mainly the Carpathians, the Tatras, the Dinarids, the Alps, the Apennines, and the Pyrenees. Aside from alpine regions, Chamois have also been introduced successfully to some parts in Europe (Schwarzwald and Elbsandsteingebirge, Germany), and to New Zealand. The chamois is a member of the family Bovidae. Chamois is a very distinct genus, with no close relatives in the world of cloven hoofed game. The Serau and the Goral, both in Central Asia, and the Snow Goat in North America are considered the closest relatives.
    [Show full text]
  • Capture, Restraint and Transport Stress in Southern Chamois (Rupicapra Pyrenaica)
    Capture,Capture, restraintrestraint andand transporttransport stressstress ininin SouthernSouthern chamoischamois ((RupicapraRupicapra pyrenaicapyrenaica)) ModulationModulation withwith acepromazineacepromazine andand evaluationevaluation usingusingusing physiologicalphysiologicalphysiological parametersparametersparameters JorgeJorgeJorge RamónRamónRamón LópezLópezLópez OlveraOlveraOlvera 200420042004 Capture, restraint and transport stress in Southern chamois (Rupicapra pyrenaica) Modulation with acepromazine and evaluation using physiological parameters Jorge Ramón López Olvera Bellaterra 2004 Esta tesis doctoral fue realizada gracias a la financiación de la Comisión Interministerial de Ciencia y Tecnología (proyecto CICYT AGF99- 0763-C02) y a una beca predoctoral de Formación de Investigadores de la Universidad Autónoma de Barcelona, y contó con el apoyo del Departament de Medi Ambient de la Generalitat de Catalunya. Los Doctores SANTIAGO LAVÍN GONZÁLEZ e IGNASI MARCO SÁNCHEZ, Catedrático de Universidad y Profesor Titular del Área de Conocimiento de Medicina y Cirugía Animal de la Facultad de Veterinaria de la Universidad Autónoma de Barcelona, respectivamente, CERTIFICAN: Que la memoria titulada ‘Capture, restraint and transport stress in Southern chamois (Rupicapra pyrenaica). Modulation with acepromazine and evaluation using physiological parameters’, presentada por el licenciado Don JORGE R. LÓPEZ OLVERA para la obtención del grado de Doctor en Veterinaria, se ha realizado bajo nuestra dirección y, considerándola satisfactoriamente
    [Show full text]
  • Serologic Surveys for Natural Foci of Contagious Ecthyma Infection
    FI.NAL REP.ORT (R.ESEARCH) State: Alaska Cooperators: Randall L. Zarnke and Kenneth A. Neiland Project No.: W-21-1 Project Title: Big Game Investigations Job No.: l8.1R Job Title: Serologic Surveys for Natural Foci of contag1ous Ecthyma Infection Period Covered: July 1, 1979 to J~~? ~0, 1~80 SUMMARY Contagious ecthyma (C. E. ) antibody prevalence in domestic sheep and goats in Interior Alaska du~ing 1978 was quite low (7-10%). This suggested a low level of transmission of the virus among these species during this time period. C. E. antibody prevalence in Dall sheep increased .from 30 percent in 1971 to 100 percent in 1978. This suggested an increased level of transmission to, and/or among, these animals during this period. Following a C.E. epizootic in a band of captive Dall sheep in 1977, antibody prevalence was 80 percent in this group of sheep. Less than l year later, prevalence had dropped to 10 percent in the ·same band. Thus it appeared that antibody produced in response to this . strain of C.E. is short-lived. Antibody was also detected in 10 of 22 free­ ranging muskoxen taken by sport hunters on Nunivak Island in 1978. Detectable antibody levels were not found in any of 19 muskoxen captured on the island in 1979. No antibody was found in a small number of captive muskoxen from Unalakleet. Several of the captive muskoxen were ·known to have been infected with C.E. within 1 to 2 years prior to the time of sampling. This further substantiates the belief that anti­ body produced in response to infection by the Alaskan strain of C.E.
    [Show full text]
  • The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer Tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects
    animals Article The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects Larisa A. Ilina 1,*, Valentina A. Filippova 1 , Evgeni A. Brazhnik 1 , Andrey V. Dubrovin 1, Elena A. Yildirim 1 , Timur P. Dunyashev 1, Georgiy Y. Laptev 1, Natalia I. Novikova 1, Dmitriy V. Sobolev 1, Aleksandr A. Yuzhakov 2 and Kasim A. Laishev 2 1 BIOTROF + Ltd., 8 Malinovskaya St, Liter A, 7-N, Pushkin, 196602 St. Petersburg, Russia; fi[email protected] (V.A.F.); [email protected] (E.A.B.); [email protected] (A.V.D.); [email protected] (E.A.Y.); [email protected] (T.P.D.); [email protected] (G.Y.L.); [email protected] (N.I.N.); [email protected] (D.V.S.) 2 Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, 7, Sh. Podbel’skogo, Pushkin, 196608 St. Petersburg, Russia; [email protected] (A.A.Y.); [email protected] (K.A.L.) * Correspondence: [email protected] Simple Summary: The reindeer (Rangifer tarandus) is a unique ruminant that lives in arctic areas characterized by severe living conditions. Low temperatures and a scarce diet containing a high Citation: Ilina, L.A.; Filippova, V.A.; proportion of hard-to-digest components have contributed to the development of several adaptations Brazhnik, E.A.; Dubrovin, A.V.; that allow reindeer to have a successful existence in the Far North region. These adaptations include Yildirim, E.A.; Dunyashev, T.P.; Laptev, G.Y.; Novikova, N.I.; Sobolev, the microbiome of the rumen—a digestive organ in ruminants that is responsible for crude fiber D.V.; Yuzhakov, A.A.; et al.
    [Show full text]
  • Effect of Domestic Sheep on Chamois Activity, Distribution and Abundance on Sub-Alpine Pastures
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Eur J Wildl Res (2008) 54:110–116 DOI 10.1007/s10344-007-0118-y ORIGINAL PAPER Effect of domestic sheep on chamois activity, distribution and abundance on sub-alpine pastures Silvan Rüttimann & Marco Giacometti & Alan G. McElligott Received: 21 December 2006 /Revised: 1 May 2007 /Accepted: 11 June 2007 / Published online: 4 July 2007 # Springer-Verlag 2007 Abstract Resource competition and disease transmission time feeding, spatial distribution and numbers of chamois may occur when domestic and wild ungulates live did not change in response. Sheep were responsible for all sympatricly. We investigated if the release of sheep (Ovis encounters in which the two species came closer than 50 m aries) onto alpine pasture in Switzerland affected chamois to each other. The encounters were brief, body contact (Rupicapra rupicapra) activity budgets, local population never occurred, they were not concentrated at saltlicks and size and spatial distribution. We also evaluated the risk of chamois mainly ended them. The results suggest that the transmission of Mycoplasma conjunctivae (causing a presence of sheep had little effect on the chamois. However, contagious eye disease) from sheep to chamois by competition between the two species could still be occur- examining if the two species had close contact with one ring over a longer time scale. Finally, we found that the risk another. We carried out the study in an alpine valley of inter-specific transmission of IKC through direct body containing two adjacent areas: one containing sheep contact is likely to be low, but the risk through indirect (Fochsenflue) and one where sheep were excluded means (flies or aerosols) remains.
    [Show full text]
  • The Trophic Ecology of Wolves and Their Predatory Role in Ungulate Communities of Forest Ecosystems in Europe
    Acta Theriologica 40 (4): 335-386,1095, REVIEW PL ISSN 0001-7051 The trophic ecology of wolves and their predatory role in ungulate communities of forest ecosystems in Europe Henryk OKARMA Okarma H. 1995. The trophic ecology of wolves and their predatory role in ungulate communities of forest ecosystems in Europe. Acta Theriologica 40: 335-386. Predation by wolves Canis lupus Linnaeus, 1758 in ungulate communities in Europe, with special reference to the multi-species system of Białowieża Primeval Forest (Poland/Belarus), was assessed on the basis results of original research and literature. In historical times (post-glacial period), the geographical range of the wolf and most ungulate species in Europe decreased considerably. Community richness of ungulates and potential prey for wolves, decreased over most of the continent from 5-6 species to 2-3 species. The wolf is typically an opportunistic predator with a highly diverse diet; however, cervids are its preferred prey. Red deer Ceruus elaphus are positively selected from ungulate communities in all localities, moose Alces alces are the major prey only where middle-sized species are scarce. Roe deer Capreolus capreolus are locally preyed on intensively, especially where they have high density, co-exist mainly with moose or wild boar Sus scrofa, and red deer is scarce or absent. Wild boar are generally avoided, except in a few locations; and European bison Bison bonasus are not preyed upon by wolves. Wolf predation contributes substantially to the total natural mortality of ungulates in Europe: 42.5% for red deer, 34.5% for moose, 25.7% for roe der, and only 16% for wild boar.
    [Show full text]
  • Preliminary Studies on the Etiology of Keratoconjunctivitis in Reindeer (Rangifer Tarandus Tarandus) Calves in Alaska
    Journal of Wildlife Diseases, 44(4), 2008, pp. 1051–1055 # Wildlife Disease Association 2008 Preliminary Studies on the Etiology of Keratoconjunctivitis in Reindeer (Rangifer tarandus tarandus) Calves in Alaska Alina L. Evans,1,5 Russell F. Bey,1 James V. Schoster,2 James E. Gaarder,3 and Gregory L. Finstad4 1 Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Ave., St. Paul, Minnesota 55108, USA; 2 Animal Eye Consultants of Minnesota, Roseville, Minnesota 55113, USA; 3 Veterinary Eye Specialists, 1921 W Diamond Blvd., Suite 108, Anchorage, Alaska, 99515, USA; 4 Reindeer Research Program, University of Alaska, PO Box 757200, Fairbanks, Alaska, 99775; 5 Corresponding author (email: [email protected]) ABSTRACT: Keratoconjunctivitis outbreaks oc- and possibly contagious eye disease that cur each summer in reindeer (Rangifer tar- can leave animals blind or with impaired andus tarandus) herds in western Alaska, USA. vision. Keratoconjunctivitis is seen annu- This condition has not been well characterized nor has a definitive primary etiologic agent ally during the summer reindeer handlings been identified. We evaluated the eyes of 660 on the Seward Peninsula (Reindeer Re- calves near Nome, Alaska, between 29 June and search Program, University of Alaska 14 July 2005. Clinical signs of keratoconjuncti- Fairbanks, unpubl. data). vitis were observed in 26/660 calves (3.9%). Infectious keratoconjunctivitis has been Samples were collected from the conjunctival studied in numerous other species. In sac of both affected (n522) and unaffected (n524) animals for bacterial culture, enzyme- cattle, the primary pathogen has been linked immunosorbent assay testing for Chla- identified to be the piliated form of mydophila psittaci, and for polymerase chain Moraxella bovis (Ruehl et al., 1988).
    [Show full text]
  • Ruminant Animal? Many Different Species of Ruminant Animals Are Found Around the World
    What is a Ruminant Animal? Many different species of ruminant animals are found around the world. Ruminants include cattle, sheep, goats, buffalo, deer, elk, giraffes and camels. These animals all have a digestive system that is uniquely different from our own. Instead of one compartment to the stomach they have four. Of the four compartments the rumen is the largest section and the main digestive centre. The rumen is filled with billions of tiny microorganisms that are able to break down grass and other coarse vegetation that animals with one stomach (including humans, chickens and pigs) cannot digest. Ruminant animals do not completely chew the grass or vegetation they eat. The partially chewed grass goes into the large rumen where it is stored and broken down into balls of “cud”. When the animal has eaten its fill it will rest and “chew its cud”. The cud is then swallowed once again where it will pass into the next three compartments—the reticulum, the omasum and the true stomach, the abomasum. Dairy calves have a four-part stomach when they are born. However, they function primarily as a monogastric (simple-stomached) animal during the first part of their lives. At birth the first three compartments of a calf’s stomach—rumen, reticulum, and omasum—are inactive and undeveloped. As the calf grows and begins to eat a variety of feeds, its stomach compartments also begin to grow and change. The abomasum constitutes nearly 60 percent of the young calf’s stomach, decreasing to about 8 percent in the mature cow. The rumen comprises about 25 percent of the young calf’s stomach, increasing to 80 percent in the mature cow.
    [Show full text]
  • European Bison
    IUCN/Species Survival Commission Status Survey and Conservation Action Plan The Species Survival Commission (SSC) is one of six volunteer commissions of IUCN – The World Conservation Union, a union of sovereign states, government agencies and non- governmental organisations. IUCN has three basic conservation objectives: to secure the conservation of nature, and especially of biological diversity, as an essential foundation for the future; to ensure that where the Earth’s natural resources are used this is done in a wise, European Bison equitable and sustainable way; and to guide the development of human communities towards ways of life that are both of good quality and in enduring harmony with other components of the biosphere. A volunteer network comprised of some 8,000 scientists, field researchers, government officials Edited by Zdzis³aw Pucek and conservation leaders from nearly every country of the world, the SSC membership is an Compiled by Zdzis³aw Pucek, Irina P. Belousova, unmatched source of information about biological diversity and its conservation. As such, SSC Ma³gorzata Krasiñska, Zbigniew A. Krasiñski and Wanda Olech members provide technical and scientific counsel for conservation projects throughout the world and serve as resources to governments, international conventions and conservation organisations. IUCN/SSC Action Plans assess the conservation status of species and their habitats, and specifies conservation priorities. The series is one of the world’s most authoritative sources of species conservation information
    [Show full text]
  • SAIGA NEWS Issue 7 Providing a Six-Language Forum for Exchange of Ideas and Information About Saiga Conservation and Ecology
    Published by the Saiga Conservation Alliance summer 2008 SAIGA NEWS issue 7 Providing a six-language forum for exchange of ideas and information about saiga conservation and ecology The Altyn Dala Conservation Initiative: A long term commitment CONTENTS to save the steppe and its saigas, an endangered couple The Altyn Dala Conservation Initiative (ADCI) is a large scale project to Feature article conserve the northern steppe and semi desert ecosystems and their critically Eva Klebelsberg The Altyn Dala Conservation endangered flagship species like the saiga antelope (Saiga tatarica tatarica) and Initiative: A long term commitment to save the the Sociable Lapwing (Vanellus gregarius). ADCI is implemented by the steppe and its saigas, an endangered couple Kazakhstan government, the Association for Conservation of Biodiversity of 1 Kazakhstan (ACBK), the Frankfurt Zoological Society (FZS), the Royal Society for Updates 3 Protection of Birds (RSPB; BirdLife in the Saigas in the News UK) and WWF International. The Alina Bekirova Saiga saga. CentrAsia. 27.06.2008. 6 German Centre for International Migration and Development Articles (CIM) is supporting Duisekeev B.Z., Sklyarenko S.L. Conservation of the project through the saiga antelopes in Kazakhstan 7 long-term integration of two experts who Fedosov V. The Saiga Breeding Centre – a centre have working for the for ecological education 9 Association for Conservation of Kosbergenov M. Conservation of a local saiga Biodiversity in population on the east coast of the Aral Sea in Kazakhstan since the 10 beginning of 2007. Uzbekistan The “Altyn Dala Conservation Mandjiev H.B., Moiseikina L.G. On albinism in Initiative” (“altyn the European saiga population 10 dala” means “golden steppe” in Kazakh), Project round-up started in 2006 and focuses on an area of WWF Mongolian Saiga project.
    [Show full text]