International Journal of Molecular Sciences Article Global Transcriptomic Analysis Reveals the Mechanism of Phelipanche aegyptiaca Seed Germination Zhaoqun Yao, Fang Tian, Xiaolei Cao, Ying Xu, Meixiu Chen, Benchun Xiang and Sifeng Zhao * Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Shihezi 832003, China;
[email protected] (Z.Y.);
[email protected] (F.T.);
[email protected] (X.C.);
[email protected] (Y.X.);
[email protected] (M.C.);
[email protected] (B.X.) * Correspondence:
[email protected]; Tel.: +86-993-205-8938; Fax: +86-993-205-7990 Academic Editor: Setsuko Komatsu Received: 10 May 2016; Accepted: 11 July 2016; Published: 15 July 2016 Abstract: Phelipanche aegyptiaca is one of the most destructive root parasitic plants of Orobanchaceae. This plant has significant impacts on crop yields worldwide. Conditioned and host root stimulants, in particular, strigolactones, are needed for unique seed germination. However, no extensive study on this phenomenon has been conducted because of insufficient genomic information. Deep RNA sequencing, including de novo assembly and functional annotation was performed on P. aegyptiaca germinating seeds. The assembled transcriptome was used to analyze transcriptional dynamics during seed germination. Key gene categories involved were identified. A total of 274,964 transcripts were determined, and 53,921 unigenes were annotated according to the NR, GO, COG, KOG, and KEGG databases. Overall, 5324 differentially expressed genes among dormant, conditioned, and GR24-treated seeds were identified. GO and KEGG enrichment analyses demonstrated numerous DEGs related to DNA, RNA, and protein repair and biosynthesis, as well as carbohydrate and energy metabolism.