Invasive Species Assessment Protocol: U.S

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Species Assessment Protocol: U.S Invasive Species Assessment Protocol: U.S. National Assessments Alternanthera sessilis ELEMENT NATIONAL ID: 235065 SCIENTIFIC NAME: Alternanthera sessilis COMMON NAME: I-RANK REVIEW DATE: 2006-04-13 EVALUATOR: Tomaino, A. I-RANK: Low/Insignificant I-RANK REASONS SUMMARY: An agricultural weed that invades disturbed wet areas in tropical and subtropical areas of the U.S. It is rare or occasional in scattered counties from eastern Texas to South Carolina but more common in Hawaii. Very little information was found about its impacts on native species habitats in the U.S. It is still available for sale. SUBRANK I - ECOLOGICAL IMPACT: Low/Insignificant SUBRANK II - CURRENT DISTRIBUTION/ABUNDANCE: Low SUBRANK III - TREND IN DISTRIBUTION/ABUNDANCE: High/Low SUBRANK IV - MANAGEMENT DIFFICULTY: Medium/Insignificant NON-NATIVE THROUGHOUT NATION NATIVE RANGE: China, Taiwan, Bhutan, India, Nepal, Cambodia, Laos, Myanmar, Thailand, Vietnam, Indonesia, Malaysia, Philippines (USDA 2005). SCREENING QUESTIONS S-1. ESTABLISHED OUTSIDE CULTIVATION AS A NON-NATIVE? YES COMMENTS: Established outside cultivation in the U.S. (Kartesz 1999). S-2. PRESENT IN CONSERVATION AREAS OR OTHER NATIVE SPECIES HABITATS? Yes COMMENTS: Occurs in wet disturbed areas (FNA 2003). SECTION I. ECOLOGICAL IMPACT 1. IMPACT ON ECOSYSTEM PROCESSES AND SYSTEM-WIDE PARAMETERS C/D - LOW SIGNIFICANCE/INSIGNIFICANT COMMENTS: No mention of changes in abiotic ecosystem processes or system-wide parameters found in the literature; assumption is that any alterations are not high or moderate. Data are from NatureServe's central databases as of June 29, 2006 Copyright © 2006 NatureServe 2. IMPACT ON ECOLOGICAL COMMUNITY STRUCTURE C/D - LOW SIGNIFICANCE/INSIGNIFICANT COMMENTS: Herbaceous annual or perennial with procumbent stems (FNA 2003). Up to 1 m tall (Scher 2004). No mention of impacts on ecological community structure found in the literature; assumption is that any impacts are not high or moderate. 3. IMPACT ON ECOLOGICAL COMMUNITY COMPOSITION C - LOW SIGNIFICANCE COMMENTS: No mention of impacts on ecological community composition found in the literature; assumption is that impacts are not high or moderate. 4. IMPACT ON INDIVIDUAL NATIVE PLANT OR ANIMAL SPECIES C/D - LOW SIGNIFICANCE/INSIGNIFICANT COMMENTS: No mention of impacts on ecological community composition found in the literature; assumption is that any impacts are not high or moderate. 5. CONSERVATION SIGNIFICANCE OF THE COMMUNITIES AND NATIVE SPECIES THREATENED B/D - MODERATE SIGNIFICNACE/INSIGNIFICANT COMMENTS: Occurs in wet disturbed areas (FNA 2003). It is a common weed in Hawaii (Wagner et al. 1999) so presumeably impacts some elements of conservation significance there. No mention of threats to elements of conservation significance found in the literature; assumption is that it is not often threatening elements of conservation significance. SECTION II. CURRENT DISTRIBUTION AND ABUNDANCE 6. CURRENT RANGE SIZE IN NATION C - LOW SIGNIFICANCE COMMENTS: Established in scattered counties from eastern Texas to South Carolina and on most of the islands of Hawaii; also reported from Maryland (J. Kartesz, unpublished data). 7. PROPORTION OF CURRENT RANGE WHERE THE SPECIES IS NEGATIVELY IMPACTING BIODIVERSITY B/C - MODERATE/LOW SIGNIFICANCE COMMENTS: It is a common weed in Hawaii and was first collected there in 1935 (Wagner et al. 1999). No mention of negative impacts on biodiversity found in the literature; assumption is that impacts occur in <50% of the species' current generalized range. 8. PROPORTION OF NATION'S BIOGEOGRAPHIC UNITS INVADED C - LOW SIGNIFICANCE COMMENTS: Inferred from distribution as currently understood (J. Kartesz, unpublished data; TNC 2001). Data are from NatureServe's central databases as of June 29, 2006 Copyright © 2006 NatureServe 9. DIVERSITY OF HABITATS OR ECOLOGICAL SYSTEMS INVADED IN NATION C - LOW SIGNIFICANCE COMMENTS: Damp shady areas, swamps, pond margins, shallow ditches, roadsides, low-lying waste places, damp pastures, cultivated areas (Scher 2004). It prefers wet conditions but occurs in both wetlands and uplands (Scher 2004). In Georgia and South Carolina, rare in disturbed wet muck on the coastal plain (Weakley 2006). In Florida, occasional on wet disturbed sites (Wunderlin and Hansen 2003). SECTION III. TREND IN DISTRIBUTION AND ABUNDANCE 10. CURRENT TREND IN TOTAL RANGE WITHIN NATION A/B - HIGH/MODERATE SIGNIFICANCE COMMENTS: It is still available for sale. Occurs in disturbed areas; assumption is that disturbed areas are not declining and therefore this species' total range is not declining. 11. PROPORTION OF POTENTIAL RANGE CURRENTLY OCCUPIED A - HIGH SIGNIFICANCE COMMENTS: Inferred from USDA (1990) and J. Kartesz, unpublished data. Apparently confined to tropical and subtropical areas. 12. LONG-DISTANCE DISPERSAL POTENTIAL WITHIN NATION A/B - HIGH/MODERATE SIGNIFICANCE COMMENTS: Alternanthera sessilis can be purchased as a water garden plant (Maki and Galatowitsch 2004). It is sold on the internet as an aquarium plant. Its seeds are also wind and water dispersed (Scher 2004). 13. LOCAL RANGE EXPANSION OR CHANGE IN ABUNDANCE A/C - HIGH/LOW SIGNIFICANCE COMMENTS: Occurs in disturbed areas; assumption is that disturbed areas are not decreasing or remaining stable and therefore this species' local range is not decreasing or remaining stable. 14. INHERENT ABILITY TO INVADE CONSERVATION AREAS AND OTHER NATIVE SPECIES HABITATS C - LOW SIGNIFICANCE COMMENTS: No mention of invasion of undisturbed habitats found in the literature. Occurs in wet disturbed areas (FNA 2003). In Georgia and South Carolina, rare in disturbed wet muck on the coastal plain (Weakley 2006). In Florida, occasional on wet disturbed sites (Wunderlin and Hansen 2003). 15. SIMILAR HABITATS INVADED ELSEWHERE C - LOW SIGNIFICANCE Data are from NatureServe's central databases as of June 29, 2006 Copyright © 2006 NatureServe COMMENTS: Wet disturbed areas in Mexico, West Indies, Central America, South America, Africa (FNA 2003). In New Guinea, "a plant of damp places; ditches, wet headlands, roadsides; sometimes a weed of plantations, particularly at altitudes of 1500 m or higher. From near sea level to over 2000m" (Henty & Pritchard 1975 cited by PIER 2005). In Tonga, "occasional as a waste area weed" (Yuncker 1959 cited by PIER 2005). 16. REPRODUCTIVE CHARACTERISTICS B/C - MODERATE/LOW SIGNIFICANCE COMMENTS: Spreads by seeds which are wind and water dispersed and by rooting at stem nodes (Scher 2004). SECTION IV. MANAGEMENT DIFFICULTY 17. GENERAL MANAGEMENT DIFFICULTY B/D - MODERATE SIGNIFICNACE/INSIGNIFICANT COMMENTS: No mention of control requiring a major long-term investment found in the literature; assumption is that a major long-term investment is not required. 18. MINIMUM TIME COMMITMENT B/D - MODERATE SIGNIFICNACE/INSIGNIFICANT COMMENTS: No mention of control requiring more than 10 years found in the literature; assumption is that control requires less than 10 years. 19. IMPACTS OF MANAGEMENT ON NATIVE SPECIES U - UNKNOWN COMMENTS: 20. ACCESSIBILITY OF INVADED AREAS C/D - LOW SIGNIFICANCE/INSIGNIFICANT COMMENTS: Classified as a noxious weed; assumption is accessibility problems are not severe or substantial. REFERENCES: Flora of North America Editorial Committee. 2003. Flora of North America North of Mexico, Volume 4, Magnoliophyta: Caryophyllidae, Part 1. Oxford University Press, New York. Kartesz, J.T. 1999. A synonymized checklist and atlas with biological attributes for the vascular flora of the United States, Canada, and Greenland. First edition. In: Kartesz, J.T., and C.A. Meacham. Synthesis of the North American Flora, Version 1.0. North Carolina Botanical Garden, Chapel Hill, N.C. Data are from NatureServe's central databases as of June 29, 2006 Copyright © 2006 NatureServe Maki, K. C., and S. M. Galatowitsch. 2004. Incidental Movement of Aquatic Organisms in Water Garden Sales. Abstract. In: Minnesota Water 2004: Policy and Planning to Ensure Minnesota's Water Supplies, March 23-24, 2004. East Bank Campus of the University of Minnesota. Online. Available: http://wrc.coafes.umn.edu/Water2004/Water2004_abstracts.html (accessed 4 January 2006). Pacific Island Ecosystems at Risk (PIER). 2005. December 19 last update. Alternanthera sessilis. United States Department of Agriculture Forest Service Institute of Pacific Island Forestry. Online. Available: http://www.hear.org/pier/species/sonchus_arvensis.htm (accessed 2006). Scher, J. 2004. Federal Noxious Weed disseminules of the U.S. Center for Plant Health Science and Technology, Plant Protection and Quarantine, Animal and Plant Health Inspection Service, U. S. Department of Agriculture. Online. Available: http://www.lucidcentral.org/keys/v3/FNW/ (Accessed 2006). The Nature Conservancy. 2001. Map: TNC Ecoregions of the United States. Modification of Bailey Ecoregions. Online <ftp://ftp.tnc.org/data/national/usa/tnc_us_eco2001.zip>. Accessed May 2003. USDA, ARS, National Genetic Resources Program. 2005. December 9 last update. Germplasm Resources Information Network (GRIN) Online Database. National Germplasm Resources Laboratory, Beltsville, Maryland. Available: http://www.ars-grin.gov2/cgi-bin/npgs/html/index.pl (Accessed 2006). USDA Agricultural Research Service. 1990. USDA Plants Hardiness Zone Map. Misc. Publ. Number 1475. Wagner, W.L., D.R. Herbst, and S.H. Sohmer. 1999. Manual of the flowering plants of Hawaii. Revised edition. Volumes 1 and 2. Univ. Hawaii Press and Bishop Museum Press, Honolulu. 1919 pp. Weakley, A. S. 2006. Flora of the Carolinas,
Recommended publications
  • The Parasitoid Complex Associated with the Invasive Swede Midge
    The parasitoid complex associated with the invasive swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae) in Europe: prospects for classical biological control in North America. By Paul K. Abram A thesis submitted to the Faculty of Graduate Studies and Research in partial fiilfillment of the requirements for the degree of Master of Science in Biology Carleton University, Ottawa, Ontario, Canada ©2012, Paul K. Abram Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-87830-9 Our file Notre reference ISBN: 978-0-494-87830-9 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • A Numerical Taxonomy of the Genus Rosularia (Dc.) Stapf from Pakistan and Kashmir
    Pak. J. Bot., 44(1): 349-354, 2012. A NUMERICAL TAXONOMY OF THE GENUS ROSULARIA (DC.) STAPF FROM PAKISTAN AND KASHMIR GHULAM RASOOL SARWAR* AND MUHAMMAD QAISER Centre for Plant Conservation, University of Karachi, Karachi-75270, Pakistan Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Karachi, Pakistan Abstract Numerical analysis of the taxa belonging to the genus Rosularia (DC.) Stapf was carried out to find out their phenetic relationship. Data from different disciplines viz. general, pollen and seed morphology, chemistry and distribution pattern were used. As a result of cluster analysis two distinct groups are formed. Out of which one group consists of R. sedoides (Decne.) H. Ohba and R. alpestris A. Boriss. while other group comprises R. adenotricha (Wall. ex Edgew.) Jansson ssp. adenotricha , R. adenotricha ssp. chitralica, G.R. Sarwar, R. rosulata (Edgew.) H. Ohba and R. viguieri (Raym.-Hamet ex Frod.) G.R. Sarwar. Distribution maps of all the taxa, along with key to the taxa are also presented. Introduction studied the genus Rosularia and indicated that the genus is polyphyletic. Mayuzumi & Ohba (2004) analyzed the Rosularia is a small genus composed of 28 species, relationships within the genus Rosularia. According to distributed in arid or semiarid regions ranging from N. different workers Rosularia is polyphyletic. Africa to C. Asia through E. Mediterranean (Mabberley, There are no reports on numerical studies of 2008). Some of the taxa of Rosularia are in general Crassulaceae except the genus Sedum from Pakistan cultivation and several have great appeal due to their (Sarwar & Qaiser, 2011). The primary aim of this study is extraordinarily regular rosettes on the leaf colouring in to analyze diagnostic value of morphological characters in various seasons.
    [Show full text]
  • Express PRA for Contarinia Pseudotsugae – Occurrence – Prepared By: Julius Kuehn-Institute, Institute for National and International Plant Health; Dr
    Express PRA for Contarinia pseudotsugae – Occurrence – Prepared by: Julius Kuehn-Institute, Institute for National and International Plant Health; Dr. Silke Steinmöller, Dr. Björn Hoppe, Dr. Gritta Schrader, Dr. Anne Wilstermann; on: 27-04- 2018 (translated by Elke Vogt-Arndt) Revision highlighted in red and in italics First initiation: Occurrence of Contarinia sp., presumably C. pseudotsugae, in Baden-Württemberg, Brandenburg and Rhine-Land Palatinate Initiation for revision: Distribution in Germany; phytosantiary mesures are no longer useful Express PRA Contarinia pseudotsugae Condrashoff Phytosanitary risk for Classification is no longer applicable as Contarinia Germany pseudotsugae is widely distributed and does no longer fulfill the requirements for a quarantine pest. The containment is not deemed reasonable because of the natural distribution. Certainty of assessment high medium low Conclusion The Douglas-fir needle midge Contarinia pseudotsugae is endemic in Northern America and already occurs in partial areas of Germany and the EU. It is not listed in the Annexes of Directive 2000/29/EC but was included in the EPPO-Alert- List in 2016. Contarinia pseudotsugae solely attacks Douglas firs. Due to suitable climatic conditions Contarinia pseudotsugae established outdoors in Germany. An establishment in Central and Northern European EU-Member States is also possible. Notwithstanding that Contarinia pseudotsugae possibly might cause considerable damage mainly in nurseries, young reforestation and in Christmas tree plantings, damage descriptions from the areas where the pest occurs in Germany and other EU Member States are rare. According to actual knowledge Contarinia pseudotsugae is already wide spread in Brandenburg and North-Rhine-Westphalia and is also present in different locations in Rhine-Land Palatinate and Baden- Württemberg.
    [Show full text]
  • Water Ferns Azolla Spp. (Azollaceae) As New Host Plants for the Small China-Mark Moth, Cataclysta Lemnata (Linnaeus, 1758) (Lepidoptera, Crambidae, Acentropinae)
    ©Societas Europaea Lepidopterologica; download unter http://www.soceurlep.eu/ und www.zobodat.at Nota Lepi. 40(1) 2017: 1–13 | DOI 10.3897/nl.40.10062 Water ferns Azolla spp. (Azollaceae) as new host plants for the small China-mark moth, Cataclysta lemnata (Linnaeus, 1758) (Lepidoptera, Crambidae, Acentropinae) Atousa Farahpour-Haghani1,2, Mahdi Hassanpour1, Faramarz Alinia2, Gadir Nouri-Ganbalani1, Jabraeil Razmjou1, David Agassiz3 1 University of Mohaghegh Ardabili, Faculty of Agriculture and Natural Resources, Department of Plant Protection, Ardabil, Iran 2 Rice Research Institute of Iran (RRII), Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran 3 Department of Life Sciences, Natural History Museum, London SW7 5BD, England http://zoobank.org/307196B8-BB55-492B-8ECC-1F518D9EC9E4 Received 1 August 2016; accepted 3 November 2016; published: 20 January 2017 Subject Editor: Bernard Landry. Abstract. Water ferns (Azolla spp., Azollaceae) are reported for the first time as host plants for the larvae of the small China-mark moth Cataclysta lemnata (Linnaeus) (Lepidoptera: Crambidae: Acentropinae) in rice fields and waterways of northern Iran. Cataclysta lemnata is a semi-aquatic species that has been recorded to feed on Lemnaceae and a few other aquatic plants. However, it has not been reported before on Azolla spp. Larvae use water fern as food source and shelter and, at high population density in the laboratory, they completely wiped water fern from the water surface. Feeding was confirmed after rearing more than eight continual generations of C. lemnata on water fern in the laboratory. Adults obtained this way are darker and have darker fuscous markings in both sexes compared with specimens previously reported and the pattern remains unchanged after several generations.
    [Show full text]
  • Comparative Analysis and Implications of the Chloroplast Genomes of Three Thistles (Carduus L., Asteraceae)
    Comparative analysis and implications of the chloroplast genomes of three thistles (Carduus L., Asteraceae) Joonhyung Jung1,*, Hoang Dang Khoa Do1,2,*, JongYoung Hyun1, Changkyun Kim1 and Joo-Hwan Kim1 1 Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea 2 Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam * These authors contributed equally to this work. ABSTRACT Background. Carduus, commonly known as plumeless thistles, is a genus in the Asteraceae family that exhibits both medicinal value and invasive tendencies. However, the genomic data of Carduus (i.e., complete chloroplast genomes) have not been sequenced. Methods. We sequenced and assembled the chloroplast genome (cpDNA) sequences of three Carduus species using the Illumina Miseq sequencing system and Geneious Prime. Phylogenetic relationships between Carduus and related taxa were reconstructed using Maximum Likelihood and Bayesian Inference analyses. In addition, we used a single nucleotide polymorphism (SNP) in the protein coding region of the matK gene to develop molecular markers to distinguish C. crispus from C. acanthoides and C. tenuiflorus. Results. The cpDNA sequences of C. crispus, C. acanthoides, and C. tenuiflorus ranged from 152,342 bp to 152,617 bp in length. Comparative genomic analysis revealed high conservation in terms of gene content (including 80 protein-coding, 30 tRNA, and four rRNA genes) and gene order within the three focal species and members of subfamily Carduoideae. Despite their high similarity, the three species differed with respect to the number and content of repeats in the chloroplast genome. Additionally, eight Submitted 28 February 2020 hotspot regions, including psbI-trnS_GCU, trnE_UUC-rpoB, trnR_UCU-trnG_UCC, Accepted 11 December 2020 Published 14 January 2021 psbC-trnS_UGA, trnT_UGU-trnL_UAA, psbT-psbN, petD-rpoA, and rpl16-rps3, were identified in the study species.
    [Show full text]
  • Journal of Drug Delivery and Therapeutics MEDICINAL PLANTS
    Ramaswamy et al Journal of Drug Delivery & Therapeutics. 2018; 8(5):62-68 Available online on 15.09.2018 at http://jddtonline.info Journal of Drug Delivery and Therapeutics Open Access to Pharmaceutical and Medical Research © 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited Open Access Review Article MEDICINAL PLANTS FOR THE TREATMENT OF SNAKEBITES AMONG THE RURAL POPULATIONS OF INDIAN SUBCONTINENT: AN INDICATION FROM THE TRADITIONAL USE TO PHARMACOLOGICAL CONFIRMATION Ramaswamy Malathi*, Duraikannu Sivakumar, Solaimuthu Chandrasekar Research Department of Biotechnology, Bharathidasan University Constituent College, Perambalur district, Tamil Nadu state, India, Pin code – 621 107 ABSTRACT Snakebite is one of the important medical problems that affect the public health due to their high morbimortality. Most of the snake venoms produce intense lethal effects, which could lead to impermanent or permanent disability or in often death to the victims. The accessible specific treatment was using the antivenom serum separated from envenomed animals, whose efficiency is reduced against these lethal actions but it has a serious side effects. In this circumstance, this review aimed to provide an updated overview of herbal plants used popularly as antiophidic agents and discuss the main species with pharmacological studies supporting the uses, with prominence on plants inhibiting the lethal effects of snake envenomation amongst the rural tribal peoples of India. There are several reports of the accepted use of herbal plants against snakebites worldwide. In recent years, many studies have been published to giving pharmacological confirmation of benefits of several vegetal species against local effects induced by a broad range of snake venoms, including inhibitory potential against hyaluronidase, phospholipase, proteolytic, hemorrhagic, myotoxic, and edematogenic activities.
    [Show full text]
  • Mexican Mosquito Fern (Azolla Mexicana)
    COSEWIC Assessment and Update Status Report on the Mexican Mosquito-fern Azolla mexicana in Canada THREATENED 2008 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2008. COSEWIC assessment and update status report on the Mexican Mosquito-fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 35 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous reports: COSEWIC. 2000. COSEWIC assessment and update status report on the Mexican mosquito-fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 11 pp. Martin, M.E. 2000. Update COSEWIC status report on the Mexican mosquito-fern Azolla mexicana in Canada, in COSEWIC assessment and update status report on the Mexican mosquito-fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-11 pp. Brunton, D.F. 1984. COSEWIC status report on the mosquito fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 36 pp. Production note: COSEWIC would like to acknowledge Brian Klinkenberg for writing the status report on the Mexican Mosquito-fern Azolla mexicana in Canada, prepared under contract with Environment Canada, overseen and edited by Erich Haber, Co-chair, COSEWIC Vascular Plants Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’azolle du Mexique (Azolla mexicana) au Canada – Mise à jour.
    [Show full text]
  • Accepted Version
    This document is the accepted manuscript version of the following article: Giometto, A., Rinaldo, A., Carrara, F., & Altermatt, F. (2014). Emerging predictable features of replicated biological invasion fronts. Proceedings of the National Academy of Sciences of the United States of America PNAS, 111(1), 297-301. https://doi.org/10.1073/pnas.1321167110 Emerging predictable features of replicated biological invasion fronts Andrea Giometto ∗ y, Andrea Rinaldo ∗ z Francesco Carrara ∗ , and Florian Altermatt y ∗Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, Ecole´ Polytechnique F´ed´eralede Lausanne,CH-1015 Lausanne, Switzerland,yDepartment of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-8600 D¨ubendorf, Switzerland, and zDipartimento di Ingegneria Civile, Edile ed Ambientale, Universit`adi Padova, I-35131 Padova, Italy Submitted to Proceedings of the National Academy of Sciences of the United States of America Biological dispersal shapes species' distribution and affects their co- logical range expansions is fundamental to the study of inva- existence. The spread of organisms governs the dynamics of invasive sive species dynamics [1{10], shifts in species ranges due to species, the spread of pathogens and the shifts in species ranges due climate or environmental change [11{14] and, in general, the to climate or environmental change. Despite its relevance for fun- spatial distribution of species [3, 15{18]. Dispersal is the key damental ecological processes, however, replicated experimentation agent that brings favorable genotypes or highly competitive on biological dispersal is lacking and current assessments point at inherent limitations to predictability, even in the simplest ecologi- species into new ranges much faster than any other ecological cal settings.
    [Show full text]
  • 9. Herbs and Its Amazing Healing Properties
    EPTRI‐ENVIS Centre (Ecology of Eastern Ghats) HERBS AND ITS AMAZING HEALING PROPERTIES Article 04/2015/ENVIS-Ecology of Eastern Ghats Page 1 of 50 EPTRI‐ENVIS Centre (Ecology of Eastern Ghats) LIST OF MEDICINAL HERBS Plant name : Achyranthes aspera L. Family : Amaranthaceae Local name : Uttareni Habit : Herb Fl & Fr time : October – March Part(s) used : Leaves Medicinal uses : Leaf paste is applied externally for eye pain and dog bite. Internally taken leaves decoction with water/milk to cure stomach problems, diuretic, piles and skin diseases. Plant name : Abelmoschus esculentus (L.) Moench. Family : Malvaceae Local name : Benda Habit : Herb Fl & Fr time : Part(s) used : Roots Medicinal uses : The juice of the roots is used externally to treat cuts, wounds and boils. Plant name : Abutilon crispum (L.) Don Family : Malvaceae Local name : Nelabenda Habit : Herb Fl & Fr time : March – September Part(s) used : Root Medicinal uses : Root is used for the treatment of nervous disorders. Article 04/2015/ENVIS-Ecology of Eastern Ghats Page 2 of 50 EPTRI‐ENVIS Centre (Ecology of Eastern Ghats) Plant name : Abutilon indicum (L.) Sweet Family : Malvaceae Local name : Thuttutubenda Habit : Herb Fl & Fr time : March – September Part(s) used : Leaves & Roots Medicinal uses : Leaf juice is used for the treatment of toothache. Roots and leaves decoction is given for diuretic and stimulate purgative. Plant name : Abrus precatorius L. Family : Fabaceae Local name : Guruvenda Habit : Herb Fl & Fr time : July – December Part(s) used : Root & Seeds Medicinal uses : Roots used to treat poisonous bite and seed is used to treat leucoderma Plant name : Acalypha indica L.
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Global-Scale Episodes of Transoceanic Biological Dispersal During the Cenozoic
    Global-scale episodes of transoceanic biological dispersal during the Cenozoic Daniel Viete ( [email protected] ) Johns Hopkins University Siobhán Cooke Johns Hopkins School of Medicine Brief Communication Keywords: biological dispersal, transoceanic rafting, Cenozoic Posted Date: November 20th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-104248/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Global-scale episodes of transoceanic biological dispersal during the Cenozoic 2 Daniel R. Viete1 & Siobhán B. Cooke2 3 1. Department of Earth & Planetary Sciences, Johns Hopkins University; 2. Center for 4 Functional Anatomy & Evolution, Johns Hopkins School of Medicine 5 Since formalization of plate tectonic theory in the 1960s, vicariance has been the 6 dominant model for interpretation in biogeography. However, modern research 7 suggests transoceanic ‘rafting’ is also an important process in biological dispersal. 8 Here we show that Cenozoic occurrences of rafting-associated colonization of new 9 lands by terrestrial biota are not randomly distributed in time, but cluster at c. 40 10 million years ago (Ma) and c. 15 Ma. These excursions in rafting activity are reflected 11 across taxonomic groups and ocean basins. The global scale and ~25 million-year (My) 12 wavelength of the fluctuations suggest they are associated with planetary-scale 13 changes and/or events. 14 Simpson [1] argued that differences in the terrestrial faunal assemblages of Africa and 15 Madagascar could be explained by an adventitious process of faunal exchange; migration 16 from Africa was limited to fauna whose physiology could, on rare attempt, allow survival of an 17 extended oceanic journey then establishment of a viable Malagasy population.
    [Show full text]
  • "Plant Anatomy". In: Encyclopedia of Life Sciences
    Plant Anatomy Introductory article Gregor Barclay, University of the West Indies, St Augustine, Trinidad and Tobago Article Contents . Introduction Plant anatomy describes the structure and organization of the cells, tissues and organs . Meristems of plants in relation to their development and function. Dermal Layers . Ground Tissues Introduction . Vascular Tissues . The Organ System Higher plants differ enormously in their size and appear- . Acknowledgements ance, yet all are constructed of tissues classed as dermal (delineating boundaries created at tissue surfaces), ground (storage, support) or vascular (transport). These are meristems arise in the embryo, the ground meristem, which organized to form three vegetative organs: roots, which produces cortex and pith, and the procambium, which function mainly to provide anchorage, water, and nutri- produces primary vascular tissues. In shoot and root tips, ents;stems, which provide support;and leaves, which apical meristems add length to the plant, and axillary buds produce food for growth. Organs are variously modified to give rise to branches. Intercalary meristems, common in perform functions different from those intended, and grasses, are found at the nodes of stems (where leaves arise) indeed the flowers of angiosperms are merely collections of and in the basal regions of leaves, and cause these organs to leaves highly modified for reproduction. The growth and elongate. All of these are primary meristems, which development of tissues and organs are controlled in part by establish the pattern of primary growth in plants. groups of cells called meristems. This introduction to plant Stems and roots add girth through the activity of anatomy begins with a description of meristems, then vascular cambium and cork cambium, lateral meristems describes the structure and function of the tissues and that arise in secondary growth, a process common in organs, modifications of the organs, and finally describes dicotyledonous plants (Figure 2).
    [Show full text]