PREM-DISSERTATION-2017.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

PREM-DISSERTATION-2017.Pdf Copyright by Parvathy Prem 2017 The Dissertation Committee for Parvathy Prem certifies that this is the approved version of the following dissertation: DSMC Simulations of Volatile Transport in a Transient Lunar Atmosphere and Ice Deposition in Cold Traps after a Comet Impact Committee: David B. Goldstein, Supervisor Philip L. Varghese, Co-Supervisor Laurence M. Trafton, Co-Supervisor Laxminarayan L. Raja Richard C. Elphic DSMC Simulations of Volatile Transport in a Transient Lunar Atmosphere and Ice Deposition in Cold Traps after a Comet Impact by Parvathy Prem, BE; MSE Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2017 Epigraph “All that survives after our death are publications and people. So look carefully after the words you write, the thoughts and publications you create, and how you love others. For these are the only things that will remain.” – Susan Niebur (1973-2012) Acknowledgements First and foremost, I would like to thank my advisors – Prof. David Goldstein, Prof. Philip Varghese and Dr. Laurence Trafton – for their guidance, encouragement and support over almost seven years of graduate study. They have my gratitude and respect not only for their (willingly shared) scientific expertise, but also for the high standards to which they hold their work (and that of their students), for the balance of guidance and independence that they provide as advisors, and for the consideration with which they treat others. One of the main reasons I wished to complete this PhD was to be able to pay forward what I’ve gained from their training; I would be more than satisfied if I could ever advise a student even half as well as they have. I would also like to thank the other two members of my Dissertation Committee – Prof. Laxminarayan Raja for his interest in my progress and professional advice over the years, and Dr. Richard (Rick) Elphic for his enthusiasm and support. The encouragement that I’ve received from Rick and several other members of the planetary science community has made a world of difference to me, and I am deeply appreciative of all that they do to make this a welcoming and inclusive field. The work described in this dissertation would not have been possible without Dr. Bénédicte Stewart’s previous work. I cannot thank Bénédicte enough for all her help in getting started with the DSMC code. I would also like to thank the late Dr. Elisabetta Pierazzo and Dr. Natalia Artemieva for their collaboration, which has been instrumental to this work. Many thanks are also due to several current and former members of the Computational Fluid Physics Lab at UT Austin – Dr. William (Billy) McDoniel, Dr. Seng Yeoh, Dr. Chris Moore, Dr. Andrew Walker, Dr. Aaron Morris, Jeff Chu and Will Hoey. Billy’s improvements to code performance helped my work greatly; Chris, Andrew and v Aaron were always ready to help when I was getting started; Yeoh and Jeff were great office mates, and all of them have been great company to work with. I was fortunate to have several excellent professors during the course of my graduate studies, but special thanks go to Prof. John Lassiter and Prof. John (Jack) Holt. John’s class on Meteoritics and Early Solar System Processes not only provided a broad overview of the field that was as interesting as it has been useful, but also taught me how to read scientific literature critically. As for Jack’s Planetary Geology & Geophysics class – I don’t think I’ve ever enjoyed a course more; for that, and for all his support in the years since, Jack has my lasting gratitude. Despite the fascinating science and the wonderful people I’ve had the privilege to work with, the last seven years have also been the hardest of my life. I don’t think I could have pulled through without the support of several old friends, who deserve much more thanks than I can give in a few lines. The same goes for my parents and my little brother, who have always had more faith in me than I think is rational, and for my husband, Anindya, who has been my best friend for eleven years. I would also like to thank Dr. Margarita Leonor Diaz for her invaluable professional help over the last year and a half – I don’t think I could have written this dissertation without it. Last, but by no means least, I would like to acknowledge Tina Woods, Geetha Rajagopal and Scott Messec for their help with all things administrative and electronic. The simulations presented here would not have been possible without the generous computational resources provided by the Texas Advanced Computing Center, and the assistance of the technical support teams at TACC and ICES. This work was also supported in part by the NASA LASER program under Grant NNX09AM60G. vi DSMC Simulations of Volatile Transport in a Transient Lunar Atmosphere and Ice Deposition in Cold Traps after a Comet Impact Parvathy Prem, Ph.D. The University of Texas at Austin, 2017 Supervisor: David B. Goldstein Co-Supervisors: Philip L. Varghese and Laurence M. Trafton Over the years, a number of missions have detected signs of water and other volatiles in cold, permanently shadowed regions near the lunar poles, where temperatures are sufficiently low that volatile ices can remain stable over geological timescales. Several observations suggest that comet impacts may have played a role in delivering these cold-trapped volatiles. In this work, I use Direct Simulation Monte Carlo (DSMC) simulations to investigate the transport and sequestration of water in the aftermath of a lunar comet impact, focusing on developing a broad understanding of the physical processes that govern the fate of impact-delivered volatiles (particularly water), in order to better interpret remote sensing data. The sheer amount of vapor generated by a volatile-rich impact can transform the Moon’s tenuous, surface-bound exosphere into a collisional, transient atmosphere with characteristic gas dynamic features that influence the redistribution of impact-delivered vii volatiles. Notably, the simulations indicate that reconvergence of vapor antipodal to the point of impact may result in preferential redistribution of water in the vicinity of the antipode; in some circumstances, water may be distributed non-uniformly between different cold traps. It is also found that atmospheric self-shielding from photodestruction significantly increases the amount of water that reaches the shelter of cold traps. Volatile transport in an impact-generated atmosphere is also influenced by gas phase interactions with solar radiation and the lunar surface. The Moon has a distinctive surface thermal environment, characterized by large gradients in temperature over very small scales. In this work, I develop a stochastic rough surface temperature model that is then coupled to volatile transport simulations. It is found that surface roughness reduces the mobility of water at high latitudes, while also increasing the concentration of atmospheric/exospheric water molecules around the poles. I also implement a coupled DSMC-photon Monte Carlo method to model radiative heat transfer in the evolving, three-dimensional, rarefied atmosphere. The trapping of radiation within the optically thick gas slows the rate of cooling of the expanding vapor cloud, and also affects near- field atmospheric structure and winds. Ultimately, the fate of impact-delivered water is determined by the interplay between these factors. viii Table of Contents List of Tables ....................................................................................................... xii List of Figures ...................................................................................................... xiii Chapter 1: Introduction ............................................................................................1 1.1. Motivation ................................................................................................1 1.2. Objectives ................................................................................................4 1.3. Dissertation Overview .............................................................................6 Chapter 2: Literature Review ...................................................................................7 2.1. Chapter Overview ....................................................................................7 2.2. Distribution, Abundance and Origin of Lunar Water ..............................7 2.2.1. The Search for Cold-Trapped Water............................................7 2.2.2. Comets as a Source of Lunar Water ..........................................10 2.2.3. Modeling ....................................................................................12 2.3. Thermal Modeling of Rough Planetary Surfaces...................................16 2.4. Computational Methods and Models for Radiative Transfer ................21 Chapter 3: Computational Methods and Models ...................................................28 3.1. Chapter Overview ..................................................................................28 3.2. Review of the Hybrid SOVA-DSMC Method .......................................28 3.3. Photodestruction and Atmospheric Self-shielding.................................34 3.4. Rough Surface Temperature Model .......................................................36 3.4.1. Development of a Rough Surface Temperature Model .............37 3.4.2.
Recommended publications
  • On Celestial Wings / Edgar D
    Library of Congress Cataloging-in-Publication Data Whitcomb. Edgar D. On Celestial Wings / Edgar D. Whitcomb. p. cm. Includes bibliographical references. 1. United States. Army Air Forces-History-World War, 1939-1945. 2. Flight navigators- United States-Biography. 3. World War, 1939-1945-Campaigns-Pacific Area. 4. World War, 1939-1945-Personal narratives, American. I. Title. D790.W415 1996 940.54’4973-dc20 95-43048 CIP ISBN 1-58566-003-5 First Printing November 1995 Second Printing June 1998 Third Printing December 1999 Fourth Printing May 2000 Fifth Printing August 2001 Disclaimer This publication was produced in the Department of Defense school environment in the interest of academic freedom and the advancement of national defense-related concepts. The views expressed in this publication are those of the author and do not reflect the official policy or position of the Department of Defense or the United States government. This publication has been reviewed by security and policy review authorities and is cleared for public release. Digitize February 2003 from August 2001 Fifth Printing NOTE: Pagination changed. ii This book is dedicated to Charlie Contents Page Disclaimer........................................................................................................................... ii Foreword............................................................................................................................ vi About the author ..............................................................................................................
    [Show full text]
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • 2021 Transpacific Yacht Race Event Program
    TRANSPACTHE FIFTY-FIRST RACE FROM LOS ANGELES 2021 TO HONOLULU 2 0 21 JULY 13-30, 2021 Comanche: © Sharon Green / Ultimate Sailing COMANCHE Taxi Dancer: © Ronnie Simpson / Ultimate Sailing • Hamachi: © Team Hamachi HAMACHI 2019 FIRST TO FINISH Official race guide - $5.00 2019 OVERALL CORRECTED TIME WINNER P: 808.845.6465 [email protected] F: 808.841.6610 OFFICIAL HANDBOOK OF THE 51ST TRANSPACIFIC YACHT RACE The Transpac 2021 Official Race Handbook is published for the Honolulu Committee of the Transpacific Yacht Club by Roth Communications, 2040 Alewa Drive, Honolulu, HI 96817 USA (808) 595-4124 [email protected] Publisher .............................................Michael J. Roth Roth Communications Editor .............................................. Ray Pendleton, Kim Ickler Contributing Writers .................... Dobbs Davis, Stan Honey, Ray Pendleton Contributing Photographers ...... Sharon Green/ultimatesailingcom, Ronnie Simpson/ultimatesailing.com, Todd Rasmussen, Betsy Crowfoot Senescu/ultimatesailing.com, Walter Cooper/ ultimatesailing.com, Lauren Easley - Leialoha Creative, Joyce Riley, Geri Conser, Emma Deardorff, Rachel Rosales, Phil Uhl, David Livingston, Pam Davis, Brian Farr Designer ........................................ Leslie Johnson Design On the Cover: CONTENTS Taxi Dancer R/P 70 Yabsley/Compton 2019 1st Div. 2 Sleds ET: 8:06:43:22 CT: 08:23:09:26 Schedule of Events . 3 Photo: Ronnie Simpson / ultimatesailing.com Welcome from the Governor of Hawaii . 8 Inset left: Welcome from the Mayor of Honolulu . 9 Comanche Verdier/VPLP 100 Jim Cooney & Samantha Grant Welcome from the Mayor of Long Beach . 9 2019 Barndoor Winner - First to Finish Overall: ET: 5:11:14:05 Welcome from the Transpacific Yacht Club Commodore . 10 Photo: Sharon Green / ultimatesailingcom Welcome from the Honolulu Committee Chair . 10 Inset right: Welcome from the Sponsoring Yacht Clubs .
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Annual Report 2008 – 2009
    O L D S T U R B R I D G E Summer 2009 Special Annual VILLAGE Report Edition Visitor 2008-2009 2008--2009 Momentum and More The History of Fireworks Farms, Families, and Change Cooking with OSV Summer Events a member magazine that keeps you coming back Old Sturbridge Village, a museum and learning resource of 2008-2009 Building Momentum New England life, invites each visitor to find meaning, pleasure, a letter from President Jim Donahue relevance, and inspiration through the exploration of history. to our newly designed V I S I T O R magazine. We hope that you will learn new things and come to visit t is no secret around the Village that I like to keep my eye on the “dashboard” – a set of key the Village soon. There is always something fun to do at indicators that I am consistently checking to make sure we are steering OSV in the right direction. In fact, Welcome O l d S T u R b ri d g E V I l l a g E . I take a lot of good-natured kidding about how often I peek at the attendance figures each day, eager to see if we beat last year’s number. And I have to admit that I get energized when the daily mail brings in new donations, when the sun is shining, the parking lot is full, when I can hear happy children touring the Village, and the visitor comments are upbeat and favorable. Volume XlIX, No. 2 Summer 2009 Special Annual Report Edition I am happy to report these indicators have been overwhelmingly positive during the past year – solid proof that Old Sturbridge Village is building on last year’s successes and is poised to finish this decade much stronger There is nothing quite like learning about history from than when it started.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • The Death of Christian Culture
    Memoriœ piœ patris carrissimi quoque et matris dulcissimœ hunc libellum filius indignus dedicat in cordibus Jesu et Mariœ. The Death of Christian Culture. Copyright © 2008 IHS Press. First published in 1978 by Arlington House in New Rochelle, New York. Preface, footnotes, typesetting, layout, and cover design copyright 2008 IHS Press. Content of the work is copyright Senior Family Ink. All rights reserved. Portions of chapter 2 originally appeared in University of Wyoming Publications 25(3), 1961; chapter 6 in Gary Tate, ed., Reflections on High School English (Tulsa, Okla.: University of Tulsa Press, 1966); and chapter 7 in the Journal of the Kansas Bar Association 39, Winter 1970. No portion of this work may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without permission in writing from the publisher, except by a reviewer who may quote brief passages in a review, or except in cases where rights to content reproduced herein is retained by its original author or other rights holder, and further reproduction is subject to permission otherwise granted thereby according to applicable agreements and laws. ISBN-13 (eBook): 978-1-932528-51-0 ISBN-10 (eBook): 1-932528-51-2 Library of Congress Cataloging-in-Publication Data Senior, John, 1923– The death of Christian culture / John Senior; foreword by Andrew Senior; introduction by David Allen White. p. cm. Originally published: New Rochelle, N.Y. : Arlington House, c1978. ISBN-13: 978-1-932528-51-0 1. Civilization, Christian. 2. Christianity–20th century. I. Title. BR115.C5S46 2008 261.5–dc22 2007039625 IHS Press is the only publisher dedicated exclusively to the social teachings of the Catholic Church.
    [Show full text]
  • Accelerated Reader Book List
    Accelerated Reader Book List Picking a book to read? Check the Accelerated Reader quiz list below and choose a book that will count for credit in grade 7 or grade 8 at Quabbin Middle School. Please see your teacher if you have questions about any selection. The most recently added books/tests are denoted by the darkest blue background as shown here. Book Quiz No. Title Author Points Level 8451 EN 100 Questions and Answers About AIDS Ford, Michael Thomas 7.0 8.0 101453 EN 13 Little Blue Envelopes Johnson, Maureen 5.0 9.0 5976 EN 1984 Orwell, George 8.2 16.0 9201 EN 20,000 Leagues Under the Sea Clare, Andrea M. 4.3 2.0 523 EN 20,000 Leagues Under the Sea (Unabridged) Verne, Jules 10.0 28.0 6651 EN 24-Hour Genie, The McGinnis, Lila Sprague 4.1 2.0 593 EN 25 Cent Miracle, The Nelson, Theresa 7.1 8.0 59347 EN 5 Ways to Know About You Gravelle, Karen 8.3 5.0 8851 EN A.B.C. Murders, The Christie, Agatha 7.6 12.0 81642 EN Abduction! Kehret, Peg 4.7 6.0 6030 EN Abduction, The Newth, Mette 6.8 9.0 101 EN Abel's Island Steig, William 6.2 3.0 65575 EN Abhorsen Nix, Garth 6.6 16.0 11577 EN Absolutely Normal Chaos Creech, Sharon 4.7 7.0 5251 EN Acceptable Time, An L'Engle, Madeleine 7.5 15.0 5252 EN Ace Hits the Big Time Murphy, Barbara 5.1 6.0 5253 EN Acorn People, The Jones, Ron 7.0 2.0 8452 EN Across America on an Emigrant Train Murphy, Jim 7.5 4.0 102 EN Across Five Aprils Hunt, Irene 8.9 11.0 6901 EN Across the Grain Ferris, Jean 7.4 8.0 Across the Wide and Lonesome Prairie: The Oregon 17602 EN Gregory, Kristiana 5.5 4.0 Trail Diary..
    [Show full text]
  • Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America
    Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America There are approximately 101,135sexual abuse claims filed. Of those claims, the Tort Claimants’ Committee estimates that there are approximately 83,807 unique claims if the amended and superseded and multiple claims filed on account of the same survivor are removed. The summary of sexual abuse claims below uses the set of 83,807 of claim for purposes of claims summary below.1 The Tort Claimants’ Committee has broken down the sexual abuse claims in various categories for the purpose of disclosing where and when the sexual abuse claims arose and the identity of certain of the parties that are implicated in the alleged sexual abuse. Attached hereto as Exhibit 1 is a chart that shows the sexual abuse claims broken down by the year in which they first arose. Please note that there approximately 10,500 claims did not provide a date for when the sexual abuse occurred. As a result, those claims have not been assigned a year in which the abuse first arose. Attached hereto as Exhibit 2 is a chart that shows the claims broken down by the state or jurisdiction in which they arose. Please note there are approximately 7,186 claims that did not provide a location of abuse. Those claims are reflected by YY or ZZ in the codes used to identify the applicable state or jurisdiction. Those claims have not been assigned a state or other jurisdiction. Attached hereto as Exhibit 3 is a chart that shows the claims broken down by the Local Council implicated in the sexual abuse.
    [Show full text]
  • 20-1265 Transfer of Unclaimed Property Funds from Their
    Board Office Use: Legislative File Info. File ID Number 20-1265 Introduction Date 8/12/2020 REVISED - BOARD PUBLIC SESSION - 8/12/2020 Enactment Number 20-1156 Enactment Date 8/12/2020 os Memo To Board of Education From Kyla Johnson-Trammell, Superintendent Lisa Grant-Dawson, Chief Business Officer Ryan Nguyen, Controller Board Meeting Date August 12, 2020 Subject Transfer of Funds from the Unclaimed Property from Respective Fund(s) to General Fund - Fiscal Year 2019-2020 Action Requested Approval by the Board of Education of Resolution No. 2021-0009 for the Transferring of Funds from the Unclaimed Stale Dated Warrants that are past three (3) years from the issuance date, to the General Fund as allowed by California Government Codes Sections 50005-20057 on unclaimed property. For Fiscal Year 2019-20, the unclaimed stale dated warrants, which can be transferred to the General Fund, account for 2,680 items and amount to $1,069,434.46 as reflected in EXHIBIT A. Background As recommended by the District’s External Auditor, the District must maintain an accurate and up-to-date listing of stale dated warrants readily available for the rightful owner to file a claim. The District’s staff checked the California Laws and State Controller’s guidance on unclaimed property and developed the Stale Warrants Policy and Procedures (EXHIBIT B). Such policy and procedures were approved by the General Counsel Office on May 20th, 2020. The District must follow steps outlined in the District’s approved Stale Warrant Policy and Procedures, which include serving the public notice in the local newspaper and obtaining Board’s approval prior transferring the unclaimed funds to the General Fund for general purposes.
    [Show full text]
  • Towers on the Moon: 1. Concrete
    Towers on the Moon: 1. Concrete Sephora Rupperta,∗, Amia Rossa, Joost Vlassak1, Martin Elvisc aHarvard College, Harvard University, Cambridge, MA, USA bHarvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA cHarvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA, USA Abstract The lunar South pole likely contains significant amounts of water in the perma- nently shadowed craters there. Extracting this water for life support at a lunar base or to make rocket fuel would take large amounts of power, of order Gi- gawatts. A natural place to obtain this power are the \Peaks of Eternal Light", that lie a few kilometers away on the crater rims and ridges above the perma- nently shadowed craters. The amount of solar power that could be captured depends on how tall a tower can be built to support the photovoltaic panels. The low gravity, lack of atmosphere, and quiet seismic environment of the Moon suggests that towers could be built much taller than on Earth. Here we look at the limits to building tall concrete towers on the Moon. We choose concrete as the capital cost of transporting large masses of iron or carbon fiber to the Moon is presently so expensive that profitable operation of a power plant is unlikely. Concrete instead can be manufactured in situ from the lunar regolith. We find that, with minimum wall thicknesses (20 cm), towers up to several kilometers tall are stable. The mass of concrete needed, however, grows rapidly with height, from ∼ 760 mt at 1 km to ∼ 4,100 mt at 2 km to ∼ 105 mt at 7 km and ∼ 106 mt at 17 km.
    [Show full text]