Tall Buildings.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Tall Buildings.Pdf Tall Buildings (history, design & case study) University of Cambridge Year 2 Architecture by Simon Smith References www.ctbuh.org Council for Tall Buildings & Urban Habitat Tall buildings • Over 50% of office accommodation in HK,NY and Tokyo is high rise. In London this figure is less than 10%. • Over 50% of world’s population now live in cities. • In 1852 Elisha Otis displayed the elevator at Crystal Palace Exhibition. • Some tall buildings incorporate damping systems to reduce effects of wind and earthquake loading. • Tall buildings tend to be less efficient in terms of materials and can be high energy consumers. • Useable space is also reduced with a net to gross at 70% instead of 80%+ for lower rise buildings (but plot density is increased). • Relaxation of planning laws have allowed historic cities to develop their high rise profile (ie Canary Wharf, Potsdamer Platz, La Defense). History 1850’s Otis lifts first installed 1920’s Welding of steel, first use of wind tunnel testing of buildings Start of great depression 1880’s Brooklyn Bridge, Statue of Liberty, Eiffel Tower, first use of wind bracing 1900 First design codes introduced • Major build cycles • Major technology events – 1920’s to 1930’s US – 1850’s first lifts (Otis) – 1970’s US – 1910’s first curtain walling – 1990’s to present Asia, – 1960’s NY planning laws on density Europe – 1970’s first sky lobby & ME – 1970’s first tuned mass dampers History Tall buildings = recession? www.independent.co.uk/arts-entertainment/architecture/shadows-on-the-horizon-the-rise-and-rise-of-skyscrapers-6288162.html What makes a tall building? • Commerce – Cost/demand for land – Identity • Materials • Technology – Lift strategy – Evacuation strategy – Damping • Ground conditions • Foundation engineering Regulation • 1916 New York – Tower reduced to 25% of site area to allow natural light to infiltrate to street then no height restriction. – Sparked by 1915 development of 37 storey Equitable Building with covered entire footprint and overshadowed a neighbourhood. • 1961 New York – Floor area ratio (FAR) of 15 proposed for dense commercial areas. – 20% bonus created for buildings that created a plaza (ie Seagram Building). • Other – La Defense in Paris (1950’s) – Canary Wharf in London (1990’s) – Potsdamer Platz in Berlin (1990’s) Identity • Corporation – NatWest Tower (Tower 42), London – Woolworth Building, New York – Chrysler Building, New York – Sears Tower, Chicago – CCTV, Beijing • Country – Moscow State University, Moscow – Bank of China, Hong Kong – Petronas Towers, Kuala Lumpur – Tapei 101, Taiwan – Burj Dubai, Dubai Location • 1880’s Europe – Eiffel Tower, Paris – 300m • 1910’s US – Woolworth Building, NY – 241m (offices) • 1950’s Russia – Moscow State University, 240m (education) • 1990’s Europe – Messeturm, Frankfurt – 257m (offices) • 1990’s Asia – Bank of China, Hong Kong – 367m (offices) • 1990’s Middle East – Burj Al Arab, Dubai – 321m (hotel) Use • Office – Woolworth Building, New York – 1913 (240m) • Residential – Ritz Tower, New York – 1926 (165m) • Hotel – Burj Al Arab, Dubai – 1995 (321m) • Education – Moscow State University, Moscow – 1953 (240m) • Mixed Use – John Hancock Centre – 1970 (344m) History - foundations • Coal and Iron Exchange, New York – 1873 – Richard M. Hunt Architect – Unusually tall for a building in New York at the time. – Inverted arches used in foundations to spread load evenly to the ground and over a larger area. History - facades • Leiter Building 1879 – Chicago – William LeBaron Jenney, Engineer and Architect – Façade carried own weight only. – First building with almost an entire wall of glass windows. History – curtain walling • Home Insurance Building, 1885 – Chicago – William LeBaron Jenney – Each storey of masonry façade supported by beams at floor level. – Iron and steel frame structure weighed one third of traditional all masonry structure. History - regulations • 1892 New York Building Code – Significant floor area increases could be obtained by adopting a curtain wall approach. – First known curtain wall building is Home Insurance Building in Chicago in 1885. Ronan Point • Partial collapse in 1968 of London apartment block after a gas explosion. • 23 storey building constructed in precast concrete panels. • Paved the way for introduction of disproportionate collapse regulations. Eco Tower • Commerzbank HQ, Frankfurt – 1997. • 250m, 56 storey. • Recognised as world’s first eco tower. • Every office is day lit and has openable windows. • Energy consumption half of typical tower. • 4 storey gardens incorporated throughout the height of the tower. • Central full height atrium. Eco Tower Design • Geometry • Structural stability systems • Loading – Self weight and dead load – Live loading – Wind – Seismic – Temperature – Accidental • Comfort criteria • Damping systems • Lifts Geometry h 4 6 12 w Chicago Spire • Calatrava tower claiming to be worlds most slender free standing tower at 1:10. • 150 floors of residential reaching 609m (will be tallest building in USA). • But……economic crisis halted work despite starting on site in 2007. Eladio Dieste Stability - external Stability - internal Stability • Façade and internal walls – Home Insurance Building, Chicago - 1885 • Moment frame – Monadnock Building, Chicago – 1889 • Braced – Tower Building, New York – 1889 • Outrigger – Jin Mao Tower, Shanghai – 1998 • Tube – De Witt Chestnut Building, Chicago – 1964 • Tube in Tube – World Trade Centres, New York – 1973 • Mega frame – Bank of China, Hong Kong – 1989 • Bundled Tube – Sears Towers, Chicago – 1974 Materials use Wind loading Resultant circular movement experienced at the top of the building! Along-wind Rotation due to offset stability response system + + Across-wind response due to vortex shedding WIND Wind loading Wind loading • Modifying the shape of a tower, both in elevation and on plan, can help reduce the effect of wind loading on a tower. Introducing the following aspects will help: – Taper – Twist – Chamfered corners – Set backs – Holes through • Examples are: – Taipei 101 – Jin Mao Tower – Shanghai World Financial Centre – Burj Dubai Comfort Damping Tapei 101 Lifts • 1857 Elisha Otis installed first lifts in a 5 storey store in New York. • 1968 first double deck lifts installed with success in Time Life building in Chicago. • Since 2003 new double deck elevators can now cope with differing floor levels. • WTC buildings in 1972 were the first towers to incorporate sky lobbies. • Taipei 101 incorporates a mix of double deck lifts and sky lobbies. • Recent lifts travel at speed of up to 38mph and include pressure control systems to reduce ‘ear popping’. Double deck lifts at First Sky lobbies at WTC, Canada Place, Toronto New York Lifts - office • Chrysler Buildings, New York – 1930 – 319m, 77 storey – 4 banks of elevators contain 30 elevators • Wells Fargo Plaza, Houston – 1983 – 302m, 71 storey – Trussed steel tube – Double deck express elevators – Sky lobbies on 34-35 and 58-59 – 27 elevator shafts running 56 cabs Lifts - residential • Park Tower, Chicago • Completed 2000 • 70 storey, 250m • Hotel and Residential • 300 ton tuned mass damper Capital Gate Tower • 18deg lean (cf Pisa 4deg) • Twisting building • 60m atrium to reduce overhang load • Complex steel diagrid • Predominant wind direction inspiration? 828m tall 280,000m2 of hotel, residential and offices. Burj Dubai330,000m3 of concrete 39,0000t of reinforcement To support 1m2 of floor requires 2.75t of material (or 1,15m thickness of concrete) …..approx 3x more material required than for low to medium rise construction Torres de Hercules • 100m office tower • Natural ventilation scheme • 400mm thk façade • 400mm thk floors • 3500mm floor to ceiling • Cold bridge? Aqua Tower • 262m & 86 storey mixed use tower in Chicago • 186,000m2 26,5m Case Study Gazprom Tower, St Petersberg - Russia Competition ATELIERS JEAN NOUVEL 1 3 6 OFFICE FOR METROPOLITAN ARCHITECTURE (O.M.A.) 27 RMJM LONDON LIMITED 2 1 7 STUDIO DANIEL LIBESKIND LLC 85 FUKSAS ASSOCIATI S.R.L. 1 1 4 HERZOG & DE MEURON ARCHITEKTEN AG 75 St Petersberg St Petersberg Design Concept Site History River Setting Gazprom Flame Fur Coat (façade) Gazprom City Geometry and scale Structural system Wind tunnel testing Wind tunnel testing • West is dominant wind direction • Peak instantaneous dynamic wind load of 30MN (1.9kn/m2) 10-yr return period w ind speeds, Normal Natural Frequency - Level 75 5-yr return period w ind speeds, Normal Natural Frequency - Level 75 1-yr return period w ind speeds, Normal Natural Frequency - Level 75 50 40 30 20 PeakAcceleration (mg) 10 0 0 50 100 150 200 250 300 350 Wind Direction (deg) Dynamic analysis Gazprom, Proposed, 0.7%, Mass Option 1, Level 75, Normal Natural Frequency NBCC Office NBCC Residential SNIP 2.01.07-85 ISO 6879 Melbourne & Cheung Davenport Perception Davenport Objection 35 30 25 2% Objection 20 10% Objection 15 10 Peak Acceleration [milli-g] Acceleration Peak 5 10% Perception 0 2% Perception 0.01 0.1 1 10 100 Return Period [years] Initial design ideas Competition engineering Competition engineering Competition engineering Competition engineering Competition engineering Competition engineering Competition engineering Competition engineering Lessons learnt • Foundations – Make tower pile cap as small as possible. – Most load will be concentrated under the core. • Investigate local supply chain – High strength concrete availability. • Investigate local/national regulations – Don’t just assume that international codes will be accepted. • Outrigger trusses – Think about
Recommended publications
  • CTBUH Journal
    About the Council The Council on Tall Buildings and Urban Habitat, based at the Illinois Institute of Technology in CTBUH Journal Chicago and with a China offi ce at Tongji International Journal on Tall Buildings and Urban Habitat University in Shanghai, is an international not-for-profi t organization supported by architecture, engineering, planning, development, and construction professionals. Founded in 1969, the Council’s mission is to disseminate multi- Tall buildings: design, construction, and operation | 2014 Issue IV disciplinary information on tall buildings and sustainable urban environments, to maximize the international interaction of professionals involved Case Study: One Central Park, Sydney in creating the built environment, and to make the latest knowledge available to professionals in High-Rise Housing: The Singapore Experience a useful form. The Emergence of Asian Supertalls The CTBUH disseminates its fi ndings, and facilitates business exchange, through: the Achieving Six Stars in Sydney publication of books, monographs, proceedings, and reports; the organization of world congresses, Ethical Implications of international, regional, and specialty conferences The Skyscraper Race and workshops; the maintaining of an extensive website and tall building databases of built, under Tall Buildings in Numbers: construction, and proposed buildings; the Unfi nished Projects distribution of a monthly international tall building e-newsletter; the maintaining of an Talking Tall: Ben van Berkel international resource center; the bestowing of annual awards for design and construction excellence and individual lifetime achievement; the management of special task forces/working groups; the hosting of technical forums; and the publication of the CTBUH Journal, a professional journal containing refereed papers written by researchers, scholars, and practicing professionals.
    [Show full text]
  • Lbbert Wayne Wamer a Thesis Presented to the Graduate
    I AN ANALYSIS OF MULTIPLE USE BUILDING; by lbbert Wayne Wamer A Thesis Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science in Civil Engineering Lehigh University 1982 TABLE OF CCNI'ENTS ABSI'RACI' 1 1. INTRODlCI'ICN 2 2. THE CGJCEPr OF A MULTI-USE BUILDING 3 3. HI8rORY AND GRami OF MULTI-USE BUIIDINCS 6 4. WHY MULTI-USE BUIIDINCS ARE PRACTICAL 11 4.1 CGVNI'GJN REJUVINATICN 11 4. 2 EN'ERGY SAVIN CS 11 4.3 CRIME PREVENTIOO 12 4. 4 VERI'ICAL CANYOO EFFECT 12 4. 5 OVEOCRO'IDING 13 5. DESHN CHARACTERisriCS OF MULTI-USE BUILDINCS 15 5 .1 srRlCI'URAL SYSI'EMS 15 5. 2 AOCHITECI'URAL CHARACTERisriCS 18 5. 3 ELEVATOR CHARACTERisriCS 19 6. PSYCHOI..OCICAL ASPECTS 21 7. CASE srUDIES 24 7 .1 JOHN HANCOCK CENTER 24 7 • 2 WATER TOiVER PlACE 25 7. 3 CITICORP CENTER 27 8. SUMMARY 29 9. GLOSSARY 31 10. TABLES 33 11. FIGJRES 41 12. REFERENCES 59 VITA 63 iii ACKNCMLEI)(}IIENTS The author would like to express his appreciation to Dr. Lynn S. Beedle for the supervision of this project and review of this manuscript. Research for this thesis was carried out at the Fritz Engineering Laboratory Library, Mart Science and Engineering Library, and Lindennan Library. The thesis is needed to partially fulfill degree requirenents in Civil Engineering. Dr. Lynn S. Beedle is the Director of Fritz Laboratory and Dr. David VanHom is the Chainnan of the Department of Civil Engineering. The author wishes to thank Betty Sumners, I:olores Rice, and Estella Brueningsen, who are staff menbers in Fritz Lab, for their help in locating infonnation and references.
    [Show full text]
  • Entuitive Tall Buildings
    TALL BUILDINGS HIGH PERFORMANCE ENTUITIVE IS COLLABORATING WITH DEVELOPERS, ARCHITECTS AND BUILDERS TO DESIGN AND ENGINEER HIGH PERFORMANCE TALL BUILDINGS THAT ARE DEFINING CITY SKYLINES Urban centres around the globe are experiencing unprecedented growth. With limited land resources, cities are increasingly building towers – both for commercial and residential developments. Entuitive’s Tall Buildings team consists of structural engineers, building envelope specialists and technologists with decades of experience in delivering high-rise buildings through innovative and value driven solutions. DELIVERING VALUE It’s our ambition to help clients realize the best performing buildings that support their vision and commercial objectives. Through a holistic, integrated and highly collaborative approach, we draw on the wide-range of expertise wielded by Entuitive’s professionals to develop advanced structural and envelope solutions that deliver multiple dimensions of building performance with greater life-cycle economies. OPTIMIZING PERFORMANCE With extensive experience in tall buildings, deep knowledge of the latest building materials and construction methods, and sophisticated modeling techniques, our engineers and building envelope specialists focusing on solutions that enhance building performance. We strive to deliver a high degree of occupant comfort by mitigating the effects of wind-induced vibration. Our designs consider building resilience to natural and man-made events including seismic, extreme weather and blast. And we consistently optimize our structural and envelope solutions with an eye to improving efficiency at every stage while minimizing costs. AN ADVANCED APPROACH We use BIM and the latest technologies to enhance collaboration and coordination in order to deliver projects on-time and on- budget. We also go beyond BIM and utilize computational design and parametric modelling to assist architects in unleashing their creativity while optimizing the building structure – affording greater constructability, cost-savings and reduced time to market.
    [Show full text]
  • Structural Developments in Tall Buildings: Current Trends and Future Prospects
    © 2007 University of Sydney. All rights reserved. Architectural Science Review www.arch.usyd.edu.au/asr Volume 50.3, pp 205-223 Invited Review Paper Structural Developments in Tall Buildings: Current Trends and Future Prospects Mir M. Ali† and Kyoung Sun Moon Structures Division, School of Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA †Corresponding Author: Tel: + 1 217 333 1330; Fax: +1 217 244 2900; E-mail: [email protected] Received 8 May; accepted 13 June 2007 Abstract: Tall building developments have been rapidly increasing worldwide. This paper reviews the evolution of tall building’s structural systems and the technological driving force behind tall building developments. For the primary structural systems, a new classification – interior structures and exterior structures – is presented. While most representative structural systems for tall buildings are discussed, the emphasis in this review paper is on current trends such as outrigger systems and diagrid structures. Auxiliary damping systems controlling building motion are also discussed. Further, contemporary “out-of-the-box” architectural design trends, such as aerodynamic and twisted forms, which directly or indirectly affect the structural performance of tall buildings, are reviewed. Finally, the future of structural developments in tall buildings is envisioned briefly. Keywords: Aerodynamics, Building forms, Damping systems, Diagrid structures, Exterior structures, Interior structures, Outrigger systems, Structural performance, Structural systems, Tall buildings Introduction Tall buildings emerged in the late nineteenth century in revolution – the steel skeletal structure – as well as consequent the United States of America. They constituted a so-called glass curtain wall systems, which occurred in Chicago, has led to “American Building Type,” meaning that most important tall the present state-of-the-art skyscraper.
    [Show full text]
  • Space Efficiency in Multi-Use Tall Building
    ctbuh.org/papers Title: Space Efficiency in Multi-Use Tall Building Authors: Mahjoub Elnimeiri, Research Associate, Illinois Institute of Technology Hyeong-Ill Kim, Professor, Illinois Institute of Technology Subject: Architectural/Design Keywords: Design Process Mixed-Use Planning Publication Date: 2004 Original Publication: CTBUH 2004 Seoul Conference Paper Type: 1. Book chapter/Part chapter 2. Journal paper 3. Conference proceeding 4. Unpublished conference paper 5. Magazine article 6. Unpublished © Council on Tall Buildings and Urban Habitat / Mahjoub Elnimeiri; Hyeong-Ill Kim Space Efficiency in Multi-Use Tall Building Hyeong-ill Kim1, Mahjoub Elnimeiri2, 1 Research Associate, College of Architecture, Illinois Institute of Technology 2Professor, College of Architecture, Illinois Institute of Technology Abstract This paper seeks to make a contribution to the development of the design strategies for multi-use tall buildings in relation to space efficiency of the building for architects, engineers and developers during their early phases of the design process. This research describes the complex challenges of a design development process influenced by vertically stacked functions. This paper addresses the important parameters in the design of multi-use tall buildings and their relationship to the space efficiency. Parameters including functions, lease span, floor-to-floor height, vertical transportation, site area, FAR(Floor Area Ratio), building height, number of floors, building size at the base and top, , aspect ratio, structural system were analyzed. Ten multi-use buildings were carefully surveyed and investigated through specific case studies. To achieve this comparative analysis, a comprehensive data base was established. Based on the results of the case studies, a set of quantitative analysis was performed to show relationship among design factors.
    [Show full text]
  • Structural Design Challenges of Shanghai Tower
    Structural Design Challenges of Shanghai Tower Author: Yi Zhu Affiliation: American Society of Social Engineers Street Address: 398 Han Kou Road, Hang Sheng Building City: Shanghai State/County: Zip/Postal Code: 200001 Country: People’s Republic of China Email Address: [email protected] Fax: 1.917.661.7801 Telephone: 011.86.21.6057.0902 Website: http://www.thorntontomasetti.com Author: Dennis Poon Affiliation: Council on Tall Buildings and Urban Habitat Street Address: 51 Madison Avenue City: New York State/County: NY Zip/Postal Code: 10010 Country: United States of America Email Address: [email protected] Fax: 1.917.661.7801 Telephone: 1.917.661.7800 Website: http://www.thorntontomasetti.com Author: Emmanuel E. Velivasakis Affiliation: American Society of Civil Engineers Street Address: 51 Madison Avenue City: New York State/County: NY Zip/Postal Code: 10010 Country: Unites States of America Email Address: [email protected] Fax: +1.917.661.7801 Telephone: +1.917.661.8072 Website: http://www.thorntontomasetti.com Author: Steve Zuo Affiliation: American Institute of Steel Construction; Structural Engineers Association of New York; American Society of Civil Engineers Street Address: 51 Madison Avenue City: New York State/County: NY Zip/Postal Code: 10010 Country: United States of America Email Address: [email protected] Fax: 1.917.661.7801 Telephone: 1.917.661.7800 Website: http://www.thorntontomasetti.com/ Author: Paul Fu Affiliation: Street Address: 51 Madison Avenue City: New York State/County: NY Zip/Postal Code: 10010 Country: United States of America Email Address: [email protected] Fax: 1.917.661.7801 Telephone: 1.917.661.7800 Website: http://www.thorntontomasetti.com/ Author Bios Yi Zhu, Senior Principal of Thornton Tomasetti, has extensive experience internationally in the structural analysis, design and review of a variety of building types, including high-rise buildings and mixed-use complexes, in both steel and concrete.
    [Show full text]
  • An All-Time Record 97 Buildings of 200 Meters Or Higher Completed In
    CTBUH Year in Review: Tall Trends All building data, images and drawings can be found at end of 2014, and Forecasts for 2015 Click on building names to be taken to the Skyscraper Center An All-Time Record 97 Buildings of 200 Meters or Higher Completed in 2014 Report by Daniel Safarik and Antony Wood, CTBUH Research by Marty Carver and Marshall Gerometta, CTBUH 2014 showed further shifts towards Asia, and also surprising developments in building 60 58 14,000 13,549 2014 Completions: 200m+ Buildings by Country functions and structural materials. Note: One tall building 200m+ in height was also completed during 13,000 2014 in these countries: Chile, Kuwait, Malaysia, Singapore, South Korea, 50 Taiwan, United Kingdom, Vietnam 60 58 2014 Completions: 200m+ Buildings by Countr5,00y 0 14,000 60 13,54958 14,000 13,549 2014 Completions: 200m+ Buildings by Country Executive Summary 40 Note: One tall building 200m+ in height was also completed during ) Note: One tall building 200m+ in height was also completed during 13,000 60 58 13,0014,000 2014 in these countries: Chile, Kuwait, Malaysia, Singapore, South Korea, (m 13,549 2014 in these Completions: countries: Chile, Kuwait, 200m+ Malaysia, BuildingsSingapore, South byKorea, C ountry 50 Total Number (Total = 97) 4,000 s 50 Taiwan,Taiwan, United United Kingdom, Kingdom, Vietnam Vietnam Note: One tall building 200m+ in height was also completed during ht er 13,000 Sum of He2014 igin theseht scountries: (Tot alChile, = Kuwait, 23,333 Malaysia, m) Singapore, South Korea, 5,000 mb 30 50 5,000 The Council
    [Show full text]
  • Aesthetics of Chinese Tall Buildings Author
    CTBUH Research Paper ctbuh.org/papers Title: Aesthetics of Chinese Tall Buildings Author: Richard Lee, Junior Partner, C.Y. Lee & Partners Architects/Planners Subjects: Architectural/Design History, Theory & Criticism Keyword: Cultural Context Publication Date: 2019 Original Publication: 2019 Chicago 10th World Congress Proceedings - 50 Forward | 50 Back Paper Type: 1. Book chapter/Part chapter 2. Journal paper 3. Conference proceeding 4. Unpublished conference paper 5. Magazine article 6. Unpublished © Council on Tall Buildings and Urban Habitat / Richard Lee Aesthetics of Chinese Tall Buildings Abstract Richard Lee CTBUH Regional Representative Partner While Western aesthetics dominate the world at this time, the rise of the East has led China to re- C.Y. Lee & Partners Architects/ examine its Eurocentric view towards aesthetics. China has been long been a fertile laboratory Planners for foreign architects to create exciting and wild structures, but this explosion has led to an Taipei, Taiwan, China urban landscape littered with tall buildings that have little, if anything to do with the indigenous Richard Lee received a bachelor’s and master’s cultural heritage. This dilemma came to the forefront in Taiwan when it envisioned creating a degree from the University of Pennsylvania. world-class supertall building that would serve as a “coming-out” to the world stage. Instead After graduation, he worked at KPF in New York, followed by Handel Architects. In 2004, Lee moved of employing a foreign architect, they chose a native Chinese architect. Drawing from Chinese to Shanghai to join C.Y. Lee & Partners. After 2006, aesthetics and sensibilities, the resulting TAIPEI 101 showed that a building could resonate with he relocated to the main office in Taipei, where the indigenous population and culture in a deeply spiritual way, while simultaneously instilling a he was promoted to junior partner in 2016.
    [Show full text]
  • Sustainable High-Rise Construction in Shanghai Civil Engineering July 2015
    Sustainable High-rise Construction in Shanghai Case study – Shanghai Tower Gina Letízia Lau Thesis to obtain the Master of Science Degree in Civil Engineering Supervisor: Professor Manuel Guilherme Caras Altas Duarte Pinheiro Supervisor: Professor Manuel de Arriaga Brito Correia Guedes Examination Committee Chairperson: Professor Albano Luís Rebelo da Silva das Neves e Sousa Supervisor: Professor Manuel Guilherme Caras Altas Duarte Pinheiro Member of the Committee: Professor Vítor Faria e Sousa July 2015 In Memoriam “Godfather” Conny van Rietschoten Acknowledgements Firstly, THANK YOU to my parents and my grandparents for always encouraging me to do and to be better. Especially my extraordinary and lovely mom, for her dedication, for leading me to the right path, for accepting and supporting my decisions, always taught me to think positively and be strong, because “Life is not about waiting for the storm to pass…it's about learning how to dance in the rain!” And my grandparents for educating me during my childhood and believing me. Although they are in Shanghai, but they have always supported me when I needed. And to Tiotio, I would like to thank him for all the support I have received since I moved to Portugal. When I first came to Portugal, I did not understand a single word in Portuguese, with my family´s support and a lot of hard work I managed to overcome the language barrier. Secondly, I would like to express my deepest gratitude to my supervisors, Professor Manuel Duarte Pinheiro and Professor Manuel Correia Guedes, for their exemplary guidance, patience and information provided throughout the course of this work.
    [Show full text]
  • China Megastructures: Learning by Experience
    AC 2009-131: CHINA MEGASTRUCTURES: LEARNING BY EXPERIENCE Richard Balling, Brigham Young University Page 14.320.1 Page © American Society for Engineering Education, 2009 CHINA MEGA-STRUCTURES: LEARNING BY EXPERIENCE Abstract A study abroad program for senior and graduate civil engineering students is described. The program provides an opportunity for students to learn by experience. The program includes a two-week trip to China to study mega-structures such as skyscrapers, bridges, and complexes (stadiums, airports, etc). The program objectives and the methods for achieving those objectives are described. The relationships between the program objectives and the college educational emphases and the ABET outcomes are also presented. Student comments are included from the first offering of the program in 2008. Introduction This paper summarizes the development of a study abroad program to China where civil engineering students learn by experience. Consider some of the benefits of learning by experience. Experiential learning increases retention, creates passion, and develops perspective. Some things can only be learned by experience. Once, while the author was lecturing his teenage son for a foolish misdeed, his son interrupted him with a surprisingly profound statement, "Dad, leave me alone....sometimes you just got to be young and stupid before you can be old and wise". As parents, it's difficult to patiently let our children learn by experience. The author traveled to China for the first time in 2007. He was blindsided by the rapid pace of change in that country, and by the remarkable new mega-structures. More than half of the world's tallest skyscrapers, longest bridges, and biggest complexes (stadiums, airports, etc) are in China, and most of these have been constructed in the past decade.
    [Show full text]
  • S40410-021-00136-Z.Pdf
    Roche Cárcel City Territ Archit (2021) 8:7 https://doi.org/10.1186/s40410-021-00136-z RESEARCH ARTICLE Open Access The spatialization of time and history in the skyscrapers of the twenty-frst century in Shanghai Juan Antonio Roche Cárcel* Abstract This article aims to fnd out to what extent the skyscrapers erected in the late twentieth and early twenty-frst cen- turies, in Shanghai, follow the modern program promoted by the State and the city and how they play an essential role in the construction of the temporary discourse that this modernization entails. In this sense, it describes how the city seeks modernization and in what concrete way it designs a modern temporal discourse. The work fnds out what type of temporal narrative expresses the concentration of these skyscrapers on the two banks of the Huangpu, that of the Bund and that of the Pudong, and fnally, it analyzes the seven most representative and sig- nifcant skyscrapers built in the city in recent years, in order to reveal whether they opt for tradition or modernity, globalization or the local. The work concludes that the past, present and future of Shanghai have been minimized, that its history has been shortened, that it is a liminal site, as its most outstanding skyscrapers, built on the edge of the river and on the border between past and future. For this reason, the author defends that Shanghai, by defn- ing globalization, by being among the most active cities in the construction of skyscrapers, by building more than New York and by building increasingly technologically advanced tall towers, has the possibility to devise a peculiar Chinese modernity, or even deconstruct or give a substantial boost to the general concept of Western modernity.
    [Show full text]
  • List of World's Tallest Buildings in the World
    Height Height Rank Building City Country Floors Built (m) (ft) 1 Burj Khalifa Dubai UAE 828 m 2,717 ft 163 2010 2 Shanghai Tower Shanghai China 632 m 2,073 ft 121 2014 Saudi 3 Makkah Royal Clock Tower Hotel Mecca 601 m 1,971 ft 120 2012 Arabia 4 One World Trade Center New York City USA 541.3 m 1,776 ft 104 2013 5 Taipei 101 Taipei Taiwan 509 m 1,670 ft 101 2004 6 Shanghai World Financial Center Shanghai China 492 m 1,614 ft 101 2008 7 International Commerce Centre Hong Kong Hong Kong 484 m 1,588 ft 118 2010 8 Petronas Tower 1 Kuala Lumpur Malaysia 452 m 1,483 ft 88 1998 8 Petronas Tower 2 Kuala Lumpur Malaysia 452 m 1,483 ft 88 1998 10 Zifeng Tower Nanjing China 450 m 1,476 ft 89 2010 11 Willis Tower (Formerly Sears Tower) Chicago USA 442 m 1,450 ft 108 1973 12 Kingkey 100 Shenzhen China 442 m 1,449 ft 100 2011 13 Guangzhou International Finance Center Guangzhou China 440 m 1,440 ft 103 2010 14 Dream Dubai Marina Dubai UAE 432 m 1,417 ft 101 2014 15 Trump International Hotel and Tower Chicago USA 423 m 1,389 ft 98 2009 16 Jin Mao Tower Shanghai China 421 m 1,380 ft 88 1999 17 Princess Tower Dubai UAE 414 m 1,358 ft 101 2012 18 Al Hamra Firdous Tower Kuwait City Kuwait 413 m 1,354 ft 77 2011 19 2 International Finance Centre Hong Kong Hong Kong 412 m 1,352 ft 88 2003 20 23 Marina Dubai UAE 395 m 1,296 ft 89 2012 21 CITIC Plaza Guangzhou China 391 m 1,283 ft 80 1997 22 Shun Hing Square Shenzhen China 384 m 1,260 ft 69 1996 23 Central Market Project Abu Dhabi UAE 381 m 1,251 ft 88 2012 24 Empire State Building New York City USA 381 m 1,250
    [Show full text]