On-Going Bluefin Tuna Research in the Bay of Biscay (Northeast Atlantic): the “Hegalabur 2009” Project

Total Page:16

File Type:pdf, Size:1020Kb

On-Going Bluefin Tuna Research in the Bay of Biscay (Northeast Atlantic): the “Hegalabur 2009” Project SCRS/2009/128 Collect. Vol. Sci. Pap. ICCAT, 65(3): 755-769 (2010) ON-GOING BLUEFIN TUNA RESEARCH IN THE BAY OF BISCAY (NORTHEAST ATLANTIC): THE “HEGALABUR 2009” PROJECT Nicolas Goñi1, Igaratza Fraile1, Igor Arregui1, Josu Santiago2, Guillermo Boyra1, Xabier Irigoien1, Molly Lutcavage3, Ben Galuardi3, John Logan3, Andone Estonba4, Iker Zudaire1, Maitane Grande1, Hilario Murua1, Haritz Arrizabalaga1 SUMMARY Little research has been focused to date on the juvenile fraction of Atlantic bluefin tuna (Thunnus thynnus, BFT) populations. For instance, although the baitboat CPUE from the Bay of Biscay is used as the only recruitment index for the eastern stock, little is known about the role of this juvenile feeding area within the life cycle of bluefin tuna. This, together with recent changes in the bluefin tuna management context, might jeopardize the usefulness of the CPUE- derived index. One objective of the ongoing “Hegalabur 2009” project is to analyze the possibility of using acoustic technologies (long-range sonar and ecoshounder) to get abundance indices of bluefin tuna in the Bay of Biscay. On the other hand, the project aims to understand the role of the Bay of Biscay in the life cycle of BFT, by identifying the origin of the bluefin tuna present in the Bay of Biscay, and the variability of the proportion of individuals of different origins. Acoustic surveys (scientific echosounders and commercial sonars), biological sampling and tagging (conventional and electronic) have been conducted. Some posibilities for developing acoustic indices of abundance are discussed, as well as the perspectives for different analyses (genetics, otolith microchemistry, reproduction, tagging). RÉSUMÉ Peu de recherches ont été menées à ce jour sur les juvéniles de thon rouge de l’Atlantique (Thunnus thynnus, BFT). Par exemple, bien que la CPUE de la pêcherie de canneurs du Golfe de Gascogne soit utilisée en tant qu’unique indice de recrutement pour le stock de l’Est, les connaissances sont lacunaires sur le rôle, au sein du cycle vital du thon rouge, de cette zone d’alimentation des juvéniles. Ces incertitudes, dans un contexte de récents changements dans la gestion de la pêcherie du thon rouge, pourraient compromettre l’utilité de la CPUE en tant qu’indice basé sur la CPUE. Un des objectifs du projet « Hegalabur 2009 » en cours à cette date est d’analyser la possibilité d’utiliser des technologies acoustiques (sonar longue portée et échosondeur) pour obtenir des indices d’abondance de thon rouge dans le Golfe de Gascogne indépendants de la CPUE. D’autre part, ce projet vise à comprendre le rôle joué par le Golfe de Gascogne dans le cycle vital du thon rouge, en identifiant l’origine des spécimens présents dans cette zone, et la variabilité de la proportion de spécimens de différentes origines. Des campagnes acoustiques (mettant en œuvre des échosondeurs scientifiques et des sonars commerciaux), des échantillonnages biologiques et des opérations de marquage (conventionnel et électronique) ont été menées à cet effet. Les possibilités de développement d’indices d’abondance acoustiques sont discutées dans le présent document, ainsi que les perspectives pour différents types d’analyses (génétiques, microchimie des otolithes, reproduction, marquage). 1 AZTI Tecnalia. Herrera Kaia Portualdea z/g. 20110 Pasaia (Gipuzkoa). Spain. Corresponding author: [email protected] 2 AZTI Tecnalia. Txatxarramendi Ugartea z/g. Sukarrieta, Bizkaia, Spain. 3 Large Pelagics Research Center. Department of Biological Sciences. University of New Hampshire. Durham, New Hampshire 03824 USA. 4 Antropologia Fisikoa eta Animalien Fisiologia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), PO Box 48080, Bilbao, Spain. 755 RESUMEN Se han realizado pocos estudios sobre los juveniles de atún rojo del Atlántico (Thunnus thynnus, BFT). Por ejemplo, a pesar de que la CPUE de la pesquería de cebo vivo del Golfo de Vizcaya es el único índice de reclutamiento que se usa para la evaluación del stock Este, se sabe poco del papel que desempeña esa zona de alimentación de juveniles dentro del ciclo vital del atún rojo. Las incertidumbres que existen al respecto, en un contexto de cambios recientes en la gestión de la pesquería, podrían poner en duda la relevancia de la CPUE como índice de abundancia. Uno de los objetivos del proyecto “Hegalabur 2009” es analizar la posibilidad de usar tecnologías acústicas (sonar de largo alcance y ecosonda) para obtener índices de abundancia de atún rojo en el Golfo de Vizcaya independientes de la CPUE. Por otro lado, el proyecto tiene como objetivo conocer el papel que juega el Golfo de Vizcaya en el ciclo vital del atún rojo, identificando el origen de los individuos presentes en el Golfo de Vizcaya, y la variabilidad de la proporción de individuos de diferentes orígenes. Para ello se han llevado a cabo campañas acústicas (ecosondas científicas y sonares comerciales), muestreos biológicos y marcado (convencional y electrónico) de los atunes. En este documento, se analizan las posibilidades de desarrollar índices de abundancia basados en datos acústicos, así como perspectivas para diferentes tipos de análisis (genética, microquímica de otolitos, reproducción, marcado). KEYWORDS Atlantic, bluefin tuna, Bay of Biscay, acoustics, tagging, genetics, reproduction 1. Introduction Atlantic bluefin tuna (BFT, Thunnus thynnus), the largest known teleost fish, is a highly migratory species of great economic interest. It has been exploited in the Mediterranean Sea and East Atlantic for several centuries, and is currently exploited in these zones as well as in the West Atlantic (Fromentin and Powers, 2005). During the last decades, the globally increasing fishing capacities, together with the important development of the sashimi market in Japan, contributed to a situation of overfishing and risk of collapse (Anon. 2009). Moreover, management advice has been characterized by large uncertainties in the general knowledge about bluefin tuna populations. This promoted the development of a large-scale Bluefin tuna Research Program (Anon., 2004; Anon. 2006) in order to try to improve future management advice. To date, most research on BFT has been conducted in the western Atlantic ocean (including the Gulf of México), and the Mediterranean Sea (Rooker et al., 2007). This is partly because the Gulf of México and the Mediterranean Sea are known spawning areas with important fisheries (especially in the Mediterranean). Regarding bluefin tuna in the open Atlantic ocean, some research has been conducted with concern to population structure and mixing between the two populations (Lutcavage et al., 1999; Block et al., 2005; Carlsson et al., 2006). Furthermore, the role of bluefin tuna in different oceanic areas has been investigated as fisheries have emerged and/or collapsed in those areas both in the past (off Norway and Brazil, Fromentin and Powers, 2005; Fromentin, 2009) and more recently (off Iceland, Carlsson et al., 2006). In terms of life stages, due to a large proportion of adults in the catches of important fisheries (e.g. purse seine, longline, traps), and/or due to more suitable technologies (e.g. pop-up tags) for large individuals, most research has been concentrated in the adult portion of the populations. As a consequence, the dynamics of the juvenile portion constitutes one of the main knowledge holes in the life cycle of BFT, as pointed out in the “Workshop on Juvenile Atlantic Bluefin Tuna: New Approaches for Assessment” (University of New Hampshire, March 21-22, 2005). In the Bay of Biscay (NE Atlantic), bluefin tuna has been mainly caught by baitboats since the 1950s, with average annual catch around 1500 t. The fishery occurs from May to October, during the BFT feeding migration to the Bay of Biscay, and is based mostly on juveniles (ages 2 and 3), although much older fish (up to age 9) are also caught. This fleet has collaborated with scientists in providing fishery statistics, including logbooks. Using this information, a CPUE series has been standardized and used as the only recruitment index available for the eastern stock (Rodriguez-Marin et al., 2003). 756 However, important uncertainties about the role of the Bay of Biscay feeding area on the life cycle of BFT still remain unresolved. For instance, it is neither known whether this feeding area is visited by a significant fraction of the stock or not, nor whether the fraction of the stock visiting the Bay of Biscay in summer is constant over time or presents interannual variations, which would limit the validity of the CPUE index as recruitment index. Moreover, in the open Atlantic area, a mix of individuals originating from the Mediterranean spawning sites and from the Gulf of Mexico spawning sites coexists, as shown through tagging experiments (Block et al., 2005). In this scenario, the relationship between the fish in the Bay of Biscay and those in the western Atlantic (Rooker et al. 2007) and the Mediterranean (Rodriguez-Roda, 1969; Cort and de la Serna, 1994; de la Serna et al., 2001; Rodríguez-Marín et al., 2005) has been evidenced by conventional tag recaptures. However, the proportion of Bay of Biscay BFT belonging to each of the nursery grounds is yet unknown, and also is unknown whether these proportions are constant over months, years and age groups. On top of this, recent management actions have affected the behavior of the fleet. Basque baitboats implemented the BFT recovery plan before it became mandatory in 2007. This has modified the definition of the commercial categories used to land and market fish. In addition, they have adopted specific harvesting strategies to try to get as much economic profit of their quota as possible. Given that their quota is now well below their average yearly catch, both in 2008 and 2009 they agreed to limit the maximum catch of BFT per boat, commercial category and week. The intention was to concentrate on harvesting as many adults as possible and to spread the catch along the fishing season to keep relatively high prices for all their catch.
Recommended publications
  • Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic
    water Review Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic Valentina S. Artamonova 1, Ivan N. Bolotov 2,3,4, Maxim V. Vinarski 4 and Alexander A. Makhrov 1,4,* 1 A. N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 2 Laboratory of Molecular Ecology and Phylogenetics, Northern Arctic Federal University, 163002 Arkhangelsk, Russia; [email protected] 3 Federal Center for Integrated Arctic Research, Russian Academy of Sciences, 163000 Arkhangelsk, Russia 4 Laboratory of Macroecology & Biogeography of Invertebrates, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Analysis of zoogeographic, paleogeographic, and molecular data has shown that the ancestors of many fresh- and brackish-water cold-tolerant hydrobionts of the Mediterranean region and the Danube River basin likely originated in East Asia or Central Asia. The fish genera Gasterosteus, Hucho, Oxynoemacheilus, Salmo, and Schizothorax are examples of these groups among vertebrates, and the genera Magnibursatus (Trematoda), Margaritifera, Potomida, Microcondylaea, Leguminaia, Unio (Mollusca), and Phagocata (Planaria), among invertebrates. There is reason to believe that their ancestors spread to Europe through the Paratethys (or the proto-Paratethys basin that preceded it), where intense speciation took place and new genera of aquatic organisms arose. Some of the forms that originated in the Paratethys colonized the Mediterranean, and overwhelming data indicate that Citation: Artamonova, V.S.; Bolotov, representatives of the genera Salmo, Caspiomyzon, and Ecrobia migrated during the Miocene from I.N.; Vinarski, M.V.; Makhrov, A.A.
    [Show full text]
  • Suspended Sediment Delivery from Small Catchments to the Bay of Biscay. What Are the Controlling Factors ?
    Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 16604 To link to this article : DOI : 10.1002/esp.3957 URL : http://dx.doi.org/10.1002/esp.3957 To cite this version : Zabaleta, Ane and Antiguedad, Inaki and Barrio, Irantzu and Probst, Jean-Luc Suspended sediment delivery from small catchments to the Bay of Biscay. What are the controlling factors ? (2016) Earth Surface Processes and Landforms, vol.41, n°13, pp. 1813-2004. ISSN 1096-9837 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Suspended sediment delivery from small catchments to the Bay of Biscay. What are the controlling factors? Ane Zabaleta,1* liiaki Antiguedad,1 lrantzu Barrio2 and Jean-Luc Probst3 1 Hydrology and Environment Group, Science and Technology Faculty, University of the Basque Country UPV/EHU, Leioa, Basque Country, Spain 2 Department of Applied Mathematics, Statistics and Operations Research, Science and Technology Faculty, University of the Basque Country UPV/EHU, Leioa, Basque Country, Spain 3 EcoLab, University of Toulouse, CNRS, INPT, UPS, Toulouse, France *Correspondence to: Ane Zabaleta, Hydrology and Environment Group, Science and Technology Faculty, University of the Basque Country UPV/EHU, 48940 Leioa, Basque Country, Spain. E-mail: [email protected] ABSTRACT: The transport and yield of suspended sediment (SS) in catchments all over the world have long been tapies of great interest.
    [Show full text]
  • ~Ertif Ied by 3 0 7 Thesis S Uperv Isg.Rn.:T::.··__....---
    1 A GRAPHIC DISPLAY OF PLATE TECTONICS IN THE TETHYS SEA by Anthony B. Williams S.B. California Institute of Technology (1965) SUBMITTED IN PARTIAL FULFILLMENT OF THE 3.EQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF ·rECHNOLOGY August, 1971 ignature of Author Signature redacted Department oj;t=Earth and Planetary Science _S_ig_n_a_tu_r_e_r_e_d_a_c_te_d__ ~ ,_, , ~ertif ied by 3 0 7 Thesis S uperv isg.rn.:t::.··__....--- .. Signature redacted ccepted by Chairman, Departmental Committee on Graduate Students 77 Massachusetts Avenue Cambridge, MA 02139 MITLibraries http://Iibraries.mit.edu/ask DISCLAIMER NOTICE Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. Thank you. Some pages in the original document contain text that runs off the edge of the page. 2 ABSTRACT The hypothesis of plate tectonics is applied to the Mediterranean Sea region in order to explain its Tertiary mountain chains and to derive previous positions for the component plate fragments. Consuming plate boundaries are selected on geophysical and geological grounds, and are assumed connected through modern oceanic regions by shearing and accreting boundaries. The resultant plate fragments are rotated to fit geological and morphological similarities, and the timing of tectonic events, without violating available constraints. The cumulative rotations are plotted to illustrate behind-arc spreading in the western Mediterranean basins and closure upon the Adriatic and Ionian seas from east and west following northward motion of the central Alpine plate fragment. I 3 TABLE OF CONTENTS -Abstract .
    [Show full text]
  • Large Whales of the Bay of Biscay and Whale Strike Risk
    Large whales of the Bay of Biscay and whale strike risk orcaweb.org.uk UK registered charity no: 1141728 2 Large whales killed by ship strikes 2 Contents The ORCA and WSPA ship strike reduction initiative 3 The Bay of Biscay 4 Fin whale 5 Minke Whale 7 Sperm whale 9 Young John © image: Cover Reporting a whale strike to the International Whaling Commission (IWC) 11 Ship strike recording form 12 Further information and appendices 13 Appendix 1 Fin whale further information 13 Appendix 2 Minke whale further information 14 Appendix 3 Sperm whale further information 15 Large whales killed by ship strikes There have been several reports in the press of Shipping density in the Bay of Biscay is as high if not ships hitting and killing large whales; does this higher than in the Mediterranean, therefore it can happen in the Bay of Biscay? be inferred that there will be at least a comparable Unfortunately yes. One of the busiest shipping risk of ship strikes in these areas. This suggestion routes in the world occurs through the western is supported by further scientific research, which edge of Biscay; container vessels, tankers and bulk identified the Bay of Biscay and Southwest carriers all move goods from northern Europe Approaches as areas of high risk of fatal ship strike. to the Mediterranean, Asia and Africa. Couple this with high densities of large whales, the risks Do animals suffer after a strike? of whale strike is inevitably going to be high. Imagine you have a pet dog or cat (or perhaps you do) and it runs into the road.
    [Show full text]
  • Chapter 24. the BAY of BISCAY: the ENCOUNTERING of the OCEAN and the SHELF (18B,E)
    Chapter 24. THE BAY OF BISCAY: THE ENCOUNTERING OF THE OCEAN AND THE SHELF (18b,E) ALICIA LAVIN, LUIS VALDES, FRANCISCO SANCHEZ, PABLO ABAUNZA Instituto Español de Oceanografía (IEO) ANDRE FOREST, JEAN BOUCHER, PASCAL LAZURE, ANNE-MARIE JEGOU Institut Français de Recherche pour l’Exploitation de la MER (IFREMER) Contents 1. Introduction 2. Geography of the Bay of Biscay 3. Hydrography 4. Biology of the Pelagic Ecosystem 5. Biology of Fishes and Main Fisheries 6. Changes and risks to the Bay of Biscay Marine Ecosystem 7. Concluding remarks Bibliography 1. Introduction The Bay of Biscay is an arm of the Atlantic Ocean, indenting the coast of W Europe from NW France (Offshore of Brittany) to NW Spain (Galicia). Tradition- ally the southern limit is considered to be Cape Ortegal in NW Spain, but in this contribution we follow the criterion of other authors (i.e. Sánchez and Olaso, 2004) that extends the southern limit up to Cape Finisterre, at 43∞ N latitude, in order to get a more consistent analysis of oceanographic, geomorphological and biological characteristics observed in the bay. The Bay of Biscay forms a fairly regular curve, broken on the French coast by the estuaries of the rivers (i.e. Loire and Gironde). The southeastern shore is straight and sandy whereas the Spanish coast is rugged and its northwest part is characterized by many large V-shaped coastal inlets (rias) (Evans and Prego, 2003). The area has been identified as a unit since Roman times, when it was called Sinus Aquitanicus, Sinus Cantabricus or Cantaber Oceanus. The coast has been inhabited since prehistoric times and nowadays the region supports an important population (Valdés and Lavín, 2002) with various noteworthy commercial and fishing ports (i.e.
    [Show full text]
  • Submarine Warfare, Fiction Or Reality? John Charles Cheska University of Massachusetts Amherst
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1962 Submarine warfare, fiction or reality? John Charles Cheska University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Cheska, John Charles, "Submarine warfare, fiction or reality?" (1962). Masters Theses 1911 - February 2014. 1392. Retrieved from https://scholarworks.umass.edu/theses/1392 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. bmbb ittmtL a zia a musv John C. Chaaka, Jr. A.B. Aaharat Collag* ThMis subnlttwi to tho Graduate Faculty in partial fulfillment of tha requlraaanta for tha degraa of Master of Arta Uoiwaity of Maaaaohuaetta Aaherat August, 1962 a 3, v TABU OF CONTENTS Hm ramp _, 4 CHAPTER I Command Structure and Policy 1 II Material III Operations 28 I? The Submarine War ae the Public Saw It V The Number of U-Boate Actually Sunk V VI Conclusion 69 APPENDXEJB APPENDIX 1 Admiralty Organisation in 1941 75 2 German 0-Boat 76 3 Effects of Strategic Bombing on Late Model 78 U-Boat Productions and Operations 4 U-Boats Sunk Off the United States Coaat 79 by United States Forces 5 U-Boats Sunk in Middle American Zone 80 inr United StatM ?bkii 6 U-Bosta Sunk Off South America 81 by United States Forces 7 U-Boats Sunk in the Atlantio in Area A 82 1 U-Boats Sunk in the Atlentio in Area B 84 9A U-Boats Sunk Off European Coast 87 by United States Forces 9B U-Bnata Sunk in Mediterranean Sea by United 87 States Forces TABLE OF CONTENTS klWDU p«g« 10 U-Boats Sunk by Strategic Bombing 38 by United States Amy Air Foreee 11 U-Boats Sunk by United States Forces in 90 Cooperation with other Nationalities 12 Bibliography 91 LIST OF MAPS AND GRAPHS MAP NO.
    [Show full text]
  • Bay of Biscay and the Iberian Coast Ecoregion Published 10 December 2020
    ICES Ecosystem Overviews Bay of Biscay and the Iberian Coast ecoregion Published 10 December 2020 6.1 Bay of Biscay and the Iberian Coast ecoregion – Ecosystem Overview Table of contents Bay of Biscay and the Iberian Coast ecoregion – Ecosystem Overview ........................................................................................................ 1 Ecoregion description ................................................................................................................................................................................... 1 Key signals within the environment and the ecosystem .............................................................................................................................. 2 Pressures ...................................................................................................................................................................................................... 3 Climate change impacts ................................................................................................................................................................................ 7 State of the ecosystem ................................................................................................................................................................................. 9 Sources and acknowledgements ................................................................................................................................................................ 14 Sources
    [Show full text]
  • Marine Litter in Submarine Canyons of the Bay of Biscay
    1 Deep Sea Research Part II: Topical Studies in Oceanography Achimer November 2017, Volume 145, Pages 142-152 http://dx.doi.org/10.1016/j.dsr2.2016.04.013 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00332/44363/ © 2016 Elsevier Ltd. All rights reserved. Marine litter in submarine canyons of the Bay of Biscay Van Den Beld Inge 1, * , Guillaumont Brigitte 1, Menot Lenaick 1, Bayle Christophe 1, Arnaud-Haond Sophie 1, Bourillet Jean-Francois 2 1 Ifremer, Centre de Brest, EEP/LEP, CS 10070, 29280 Plouzané, France 2 Ifremer, Centre de Brest, REM/GM, CS 10070, 29280 Plouzané, France * Corresponding author : Inge Van Den Beld, Tel.: +33 0 2 98 22 40 40; fax: +33 0 2 98 22 47 57 ; email address : [email protected] Abstract : Marine litter is a matter of increasing concern worldwide, from shallow seas to the open ocean and from beaches to the deep-seafloor. Indeed, the deep sea may be the ultimate repository of a large proportion of litter in the ocean. We used footage acquired with a Remotely Operated Vehicle (ROV) and a towed camera to investigate the distribution and composition of litter in the submarine canyons of the Bay of Biscay. This bay contains many submarine canyons housing Vulnerable Marine Ecosystems (VMEs) such as scleractinian coral habitats. VMEs are considered to be important for fish and they increase the local biodiversity. The objectives of the study were to investigate and discuss: i) litter density, ii) the principal sources of litter, iii) the influence of environmental factors on the distribution of litter, and iv) the impact of litter on benthic communities.
    [Show full text]
  • System Development Map 2019 / 2020 Presents Existing Infrastructure & Capacity from the Perspective of the Year 2020
    7125/1-1 7124/3-1 SNØHVIT ASKELADD ALBATROSS 7122/6-1 7125/4-1 ALBATROSS S ASKELADD W GOLIAT 7128/4-1 Novaya Import & Transmission Capacity Zemlya 17 December 2020 (GWh/d) ALKE JAN MAYEN (Values submitted by TSO from Transparency Platform-the lowest value between the values submitted by cross border TSOs) Key DEg market area GASPOOL Den market area Net Connect Germany Barents Sea Import Capacities Cross-Border Capacities Hammerfest AZ DZ LNG LY NO RU TR AT BE BG CH CZ DEg DEn DK EE ES FI FR GR HR HU IE IT LT LU LV MD MK NL PL PT RO RS RU SE SI SK SM TR UA UK AT 0 AT 350 194 1.570 2.114 AT KILDIN N BE 477 488 965 BE 131 189 270 1.437 652 2.679 BE BG 577 577 BG 65 806 21 892 BG CH 0 CH 349 258 444 1.051 CH Pechora Sea CZ 0 CZ 2.306 400 2.706 CZ MURMAN DEg 511 2.973 3.484 DEg 129 335 34 330 932 1.760 DEg DEn 729 729 DEn 390 268 164 896 593 4 1.116 3.431 DEn MURMANSK DK 0 DK 101 23 124 DK GULYAYEV N PESCHANO-OZER EE 27 27 EE 10 168 10 EE PIRAZLOM Kolguyev POMOR ES 732 1.911 2.642 ES 165 80 245 ES Island Murmansk FI 220 220 FI 40 - FI FR 809 590 1.399 FR 850 100 609 224 1.783 FR GR 350 205 49 604 GR 118 118 GR BELUZEY HR 77 77 HR 77 54 131 HR Pomoriy SYSTEM DEVELOPMENT MAP HU 517 517 HU 153 49 50 129 517 381 HU Strait IE 0 IE 385 385 IE Kanin Peninsula IT 1.138 601 420 2.159 IT 1.150 640 291 22 2.103 IT TO TO LT 122 325 447 LT 65 65 LT 2019 / 2020 LU 0 LU 49 24 73 LU Kola Peninsula LV 63 63 LV 68 68 LV MD 0 MD 16 16 MD AASTA HANSTEEN Kandalaksha Avenue de Cortenbergh 100 Avenue de Cortenbergh 100 MK 0 MK 20 20 MK 1000 Brussels - BELGIUM 1000 Brussels - BELGIUM NL 418 963 1.381 NL 393 348 245 168 1.154 NL T +32 2 894 51 00 T +32 2 209 05 00 PL 158 1.336 1.494 PL 28 234 262 PL Twitter @ENTSOG Twitter @GIEBrussels PT 200 200 PT 144 144 PT [email protected] [email protected] RO 1.114 RO 148 77 RO www.entsog.eu www.gie.eu 1.114 225 RS 0 RS 174 142 316 RS The System Development Map 2019 / 2020 presents existing infrastructure & capacity from the perspective of the year 2020.
    [Show full text]
  • Bay of Biscay by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO
    An Atlas of Oceanic Internal Solitary Waves (February 2004) Bay of Biscay by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Bay of Biscay Overview The Bay of Biscay is located in the northeast Atlantic Ocean and is bounded by the western coast of France and the northern coast of Spain (Figure 1). The Bay is characterized by a broad and irregular continental shelf. Figure 1. Bathymetry of the Bay of Biscay. [Smith and Sandwell, 1997] 57 An Atlas of Oceanic Internal Solitary Waves (February 2004) Bay of Biscay by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Observations There has been considerable study on internal waves in the Bay of Biscay; both those that occur along the continental shelf break and those in the central Bay approximately 120 to 150 km from the shelf edge. The shelf break internal waves have been well characterized by Pingree and Mardell [1985] and Pingree et al. [1986] with amplitudes (peak to trough) of up to 40 m. The internal waves at the shelf break produce complex surface pattern, due to varying topography and irregular edge of the shelf break in the northern Bay. New and Pingree [1990, 1992] and New and daSilva [2002] have investigated internal waves in the Central Bay. These waves, with amplitudes of up to 80 m, are thought to be locally generated [New and Pingree 1990] through a reflection of tidal energy that re-emerges at the surface near where internal waves have been observed in the central Bay. Like other sites in the north Atlantic, (New York Bight, Northwest Africa) both types of internal waves in the Bay are believed to occur only during the summer and early fall (June though September) when a well-developed thermocline is present (Table 1).
    [Show full text]
  • Gaviota Storage Facility Is Located in the Bay of Biscay, 8 Km
    The natural gas chain Impreso en papel ecológico y libre de cloro. More than 90 years of underground storage facilities Natural gas’s long journey from the gas elds to the end consumer The Gaviota storage facility is located in the Bay of Biscay, 8 Km. off Cape Matxitxako, north east of Bermeo (Biscay). Extraction NG transport The storage facility is in a depleted gas eld covering The Gaviota storage facility is accessed from a platform 2 The gas is extracted from the The natural gas (NG) is transported a surface area of 64 km . It is located at a depth of anchored to the seabed with 20 pylons and connected gas elds using drilling wells and through gas pipelines 2,150 m in fractured limestone from the Upper by a gas pipeline to an onshore processing plant. extraction pipes Cretaceous. Liquefaction The NG is liquefi ed (LNG) to reduce its volume and make it easier to transport Gaviota Platform Gas processing plant LNG transportation The liquid natural gas Bermeo is transported in methane tankers to regasi cation plants Bilbao Regasi cation The liquid gas is returned to its original gaseous state in regasi cation plants NG transport Distribution to Natural gas is transported end consumers through the high-pressure network Gaviota Bilbao A system that copies nature Underground storage Serrablo Gaviota Castor Yela Gas has been stored naturally for millions Marismas of years. Palancares Underground natural gas Poseidón This process has been copied in Gaviota, with a depleted gas eld being used as an storage facility underground storage facility.
    [Show full text]
  • MARINE PROTECTED AREAS in the BAY of BISCAY and IBERIAN COASTS DATABASE COMPLETION and ANALYSIS January 2019 Version 2
    MARINE PROTECTED AREAS IN THE BAY OF BISCAY AND IBERIAN COASTS DATABASE COMPLETION AND ANALYSIS January 2019 Version 2 Supporting Implementation of Maritime Spatial Planning in the Northern European Atlantic European Commission Directorate-General for Maritime Affairs and Fisheries Grant Agreement No. EASME/EMFF/2015/1.2.1.3/03/SI2.742089-SIMNORAT Component 1.3.2 – Spatial demands and future trends for maritime sectors and marine conservation Deliverable Lead Partner: Agence Française pour la Biodiversité Start date of the project: 01/01/2017 Duration: 25 months Version: 1.1 Contributors (in alphabetical order): Alloncle Neil, AFB; Bliard Fanny, AFB; Campillos-Llanos Mónica, IEO; Cervera-Núñez Cristina, IEO; De Magalhães Ana Vitoria, AFB; Fauveau Guillaume, AFB; Gimard Antonin, AFB; Giret Olivier, CEREMA; Gómez-Ballesteros María, IEO; Lloret Ana, CEDEX; Lopes Alves Fátima, UAVR; Mahier Marie, AFB; Marques Márcia, UAVR; Murciano Carla, CEDEX; Odion Mélanie, AFB; Piel Steven, AFB; Quintela Adriano, UAVR; Sousa Lisa, UAVR. Dissemination level PU Public PP Restricted to a group specified by the consortium (including the Commission services) RE Restricted to other programme participants (including the Commission services) CO Confidential, only for members of the consortium (Including the Commission services) Disclaimer: This report was produced as part of the SIMNORAT Project (Grant Agreement N0. EASME/EMFF/2015/1.2.1.3/03/SI2.742089). The contents and conclusions of this report, including the maps and figures were developed by the participating partners with the best available knowledge at the time. They do not necessarily reflect the national governments’ positions and are not official documents, nor data. The European Commission or Executive Agency for Small and Medium sized Enterprises is not responsible for any use that may be made of the information it contains.
    [Show full text]