Status and Trends in Global Marine Fisheries

Total Page:16

File Type:pdf, Size:1020Kb

Status and Trends in Global Marine Fisheries Status and trends in global marine fisheries Trevor A. Branch School of Aquatic and Fishery Sciences University of Washington Climate Change and the Future of Food Bellingham, WA, 25 October 2012 All fisheries will be collapsed by 2048 Boris Worm Time magazine, November 2006 That’s just mind- bogglingly stupid Ray Hilborn Seattle Times, 2006 NCEAS working group: Finding common ground in marine conservation and management Worm et al. (2009) Science 325:578-585 Rebuilding global fisheries Catches Assessments ) Surveys Percent collapsed Percent Average length (cm length Average Year Year Worm et al. (2009) Science 325:578-585 Rebuilding global fisheries Rebuilding global fisheries Overfishing Fishery reduction RAM Legacy database ) MSY u (u/ Harvest rate rate Harvest RAM Myers, 1952-2007 Lightly Recovery exploited Biomass (B/BMSY) Worm et al. (2009) Science 325:578-585 Ricard et al. (in press) Fish and Fisheries. doi: 10.1111/j.1467-2979.2011.00435.x “we will be left with a Fishingdiet of jellyfishdown marine and planktonfood webs stew” (Christensen(Pauly & 1996, Watson Pauly 2003) et al. 1998) Picture: Sea Around Us Project, www.seaaroundus.org Christensen (1996) Rev Fish Biol Fish. 6:417-442 Pauly et al. (1998) Science 279:860-863 Pauly & Watson (2003) Scientific American July:43-47 Fishing food webs Scientific American March 24, 2009, by Dave Beck & Jennifer Jacquet Fishing food webs Food webs and trophic levels 4 3 level 2 Trophic Trophic 1 Slide courtesy of Tim Essington Fishing food webs Mean trophic level trophic Mean Pauly et al. (1998): “declined in recent decades at a rate of about 0.1 per decade” Year Pauly et al. (1998) Science 279:860-863 Fishing food webs 2010 data: increased in recent decades Mean trophic level trophic Mean Pauly et al. (1998): “declined in recent decades at a rate of about 0.1 per decade” Year Branch et al. (2010) Nature 468:431-435 Fishing food webs Trophic level Hypothesis: High fishing down Med. marine food webs Low 1950 2007 Catch amount Trophic level Data: High fishing increasing Med. at all levels of Low marine food webs 1950 2007 Catch amount Branch et al. (2010) Nature 468:431-435 Profits not predators Development of new fisheries continues… Cumulative Fisheriesdeveloped Year Sethi, Branch & Watson (2010) PNAS 107:12163-12167 Profits not predators But new fisheries are low volume Cumulative (million (million t) Annual catch catch Annual Year Sethi, Branch & Watson (2010) PNAS 107:12163-12167 Profits not predators And new fisheries are low value Cumulative Value Value (billion 2000) (billion US$ year Year Sethi, Branch & Watson (2010) PNAS 107:12163-12167 Trends in status Proxy based on catch Actual status from trends over time biomass Collapsed Collapsed Overexploited Overexploited Fully exploited Fully exploited Developing Developing Percentage of fisheries Percentage Year Branch et al. (2011) Conservation Biology 25:777-786 Trends in status Assessed stocks ) (RAM Legacy) unfished FAO status reports Region of maximum yield Biomass (% of (% Biomass Year Worm & Branch (2012) Trends Ecol Evol. doi: 10.1016/j.tree.2012.07.005 Trends in status ) gigawatt Catch (million t) (million Catch Effort ( Effort Year Worm & Branch (2012) Trends Ecol. Evol. doi: 10.1016/j.tree.2012.07.005 Effort data: Watson et al. (2012) Fish and Fisheries doi: 10.1111/j.1467-2979.2012.00483.x Trends in status 80% Food provision: globally catching 75-95% of maximum sustainable yield Branch et al. (2012) in prep. Trends in status 30% Over-harvesting 30% of large fisheries FAO (2012) The state of world fisheries and aquaculture 2012, FAO, Rome Trends in status 57% Sustainable catches from 57% of large fisheries FAO (2012) The state of world fisheries and aquaculture 2012, FAO, Rome Trends in status 13% Still developing 13% of large fisheries FAO (2012) The state of world fisheries and aquaculture 2012, FAO, Rome Trends in status 0.1% Could survey all coastal ecosystems by redirecting 0.1% of current subsidies From subsidy estimates in Sumaila et al. (2010) Journal of Bioeconomics 12:201-225 Acknowledgments • FAO: global catch data, status reports • Sea Around Us project: price data, catch data • RAM Legacy database: stock assessments • FishBase for trophic levels and other biological data • Funding: NCEAS, National Science Foundation • Coauthors on Worm et al. (2009), Branch et al. (2010, 2011), Sethi et al. (2010), also Tom Carruthers, Michael Wilberg and Sean Anderson • Special thanks to Boris Worm and Ray Hilborn and NCEAS group members Fishing food webs Top predators Rainer Froese Daniel Pauly FishBase trophic levels 2010 data Atlantic cod Mean trophic level trophic Mean Year Pauly & Froese (2012) Marine Policy 36:746-752 Fishing food webs Top predators Rainer Froese Daniel Pauly FishBase trophic levels 2010 data Atlantic cod 2011 data Atlantic cod Mean trophic level trophic Mean Year Branch (2012) Marine Policy 36:1191-1192 Trends in status Kleisner et al. (2012) method Actual status from applied to catches biomass Collapsed Collapsed Recovering Overexploited Overexploited Fully exploited Fully exploited Developing Percentage of fisheries Percentage Developing Year RAM Legacy assessments for stocks yielding 20-25% of global catches Trevor A. Branch, unpublished analysis of Kleisner et al. (2012) Fish and Fisheries doi: 10.1111/j.1467-2979.2012.00469.x Trends in status Froese et al. (2012) method: retrospective bias 1959 1969 1979 1989 1999 2009 Percentage of fisheries of Percentage Year Sean C. Anderson, unpublished analysis of Froese et al. (2012) Marine Biology 159:1283-1292 The future of fish RAM Legacy stock assessments (n=331) (20-25% of global catches) Ricard et al. (in press) Fish and Fisheries. doi: 10.1111/j.1467-2979.2011.00435.x The future of fish Compiled trawl surveys (n=29) (14 of 64 LMEs) Branch et al. (2010) Nature 468:431-435 The future of fish Proposal: global fleet of scientific survey vessels • Survey all LMEs every 5 years • Costs around US$7 million per year to run the R/V Dr Fridtjof Nansen, which surveys roughly 3 LMEs in a year • Surveying the unsurveyed LMEs every 5 yr would cost ~$23 million per yr • Who would be in charge? FAO? Norway? • Data access? Private for 2-5 years then publicly available Rough cost estimates courtesy of Åsmund Bjordal, Institute of Marine Research, Norway The future of fish $23 million in context • Pew Charitable Trusts: $250 million per yr • Global Environmental Facility: $500 million per yr, $18 million for MPAs in Brazil in 2011 • James Webb Telescope: $9 billion • Global subsidies: $25-29 billion in 2003 alone Branch et al. (2010) Nature 468:431-435 Trends in status Catch proxy: only scoring 25% for food provision from marine fisheries Halpern et al. (2012) Nature 488:615-620 .
Recommended publications
  • Dyhia Belhabib, Sarah Harper, Dirk Zeller and Daniel Pauly
    Reconstruction of marine fisheries catches for Morocco-Belhabib et al. 23 RECONSTRUCTION OF MARINE FISHERIES CATCHES FOR MOROCOO (NORTH, CENTRAL AND SOUTH), 1950-20101 Dyhia Belhabib, Sarah Harper, Dirk Zeller and Daniel Pauly Sea Around Us Project, Fisheries Centre, University of British Columbia 2202 Main Mall, Vancouver, V6T 1Z4, Canada [email protected]; [email protected]; [email protected]; [email protected] ABSTRACT Fisheries catches in the Moroccan Exclusive Economic Zone (EEZ), including the Atlantic and Mediterranean areas, were reconstructed to include commercial small-scale, commercial large-scale, illegal and unregulated fisheries, non-commercial recreational and subsistence fisheries, and foreign catches in both EEZ areas. Estimated domestic catches suggest that Moroccan data supplied to FAO are less reliable than they should be, with over 41.5% of catches being unreported. This study also shows that 25.4 million tonnes of catches were taken from the southern EEZ area, which contributed to 52% of the Moroccan catch estimated at 48.4 million tonnes. This illustrates not only that Morocco needs to improve its fisheries monitoring system to include small-scale fishing and unregulated fishing, but also questions the impacts of the fishing access agreements signed by Morocco on the local economy and fisheries sustainability, particularly in the southern area where most foreign catches are taken. INTRODUCTION Morocco is located in North Africa, west of Algeria and shares the Alboran Sea with Spain in the North. On the West African coast, Morocco, including the former Spanish Sahara, ranges from Tangier (36° N) to Lagouira (20° N) on Cape Blanc, which is one of the richest fishing areas in the world due to the sustained east central Atlantic upwelling (Porter 1997; Anon.
    [Show full text]
  • Magazine SUMMER 2020 OCEANA.ORG
    Magazine SUMMER 2020 OCEANA.ORG Oceana Senior Advisor Alexandra Cousteau and Bloomberg Philanthropies CEO Patti Harris are pictured at the Our Ocean 2019 conference in Oslo, Norway. For more, read the CEO Note on page 3. © Ilja C. Hendel Transparency Crusader (Sea) Food Security COVID-19 and Fisheries Renata Terrazas, Oceana’s VP in The ocean can feed a billion people, Dr. Daniel Pauly explains how fish Mexico, on publicizing vital data but who needs fish most? stocks could recover post-pandemic Board of Directors Ocean Council Oceana Staff Valarie Van Cleave, Chair Susan Rockefeller, Founder Andrew Sharpless Ted Danson, Vice Chair Kelly Hallman, Vice Chair Chief Executive Officer Diana Thomson, Treasurer Dede McMahon, Vice Chair Jim Simon James Sandler, Secretary Anonymous President Keith Addis, President Samantha Bass Gaz Alazraki Violaine and John Bernbach Jacqueline Savitz Chief Policy Officer, North America Monique Bär Rick Burnes Herbert M. Bedolfe, III Vin Cipolla Katie Matthews, Ph.D. Nicholas Davis Barbara Cohn Chief Scientist Sydney Davis Ann Colley César Gaviria Edward Dolman Matthew Littlejohn Senior Vice President, Strategic Initiatives Mária Eugenia Girón Kay and Frank Fernandez Loic Gouzer Carolyn and Chris Groobey Janelle Chanona Jena King J. Stephen and Angela Kilcullen Vice President, Belize Ben Koerner Ann Luskey Ademilson Zamboni, Ph.D. Sara Lowell Mia M. Thompson Vice President, Brazil Stephen P. McAllister Peter Neumeier Kristian Parker, Ph.D. Carl and Janet Nolet Joshua Laughren Daniel Pauly, Ph.D. Ellie Phipps Price Executive Director, Oceana Canada David Rockefeller, Jr. Maria Jose Peréz Simón Liesbeth van der Meer Susan Rockefeller David Rockefeller, Jr. Vice President, Chile Simon Sidamon-Eristoff Elias Sacal Rashid Sumaila, Ph.D.
    [Show full text]
  • Are Deep-Sea Fisheries Sustainable? a Summary of New Scientific Analysis: Norse, E.A., S
    RESEARCH SERIES AUGUST 2011 High biological vulnerability and economic incentives challenge the viability of deep-sea fisheries. ARE DEEP-SEA FISHERIES SUSTAINABLE? A SUMMARY OF NEW SCIENTIFIC AnaLYSIS: Norse, E.A., S. Brooke, W.W.L. Cheung, M.R. Clark, I. Ekeland, R. Froese, K.M. Gjerde, R.L. Haedrich, S.S. Heppell, T. Morato, L.E. Morgan, D. Pauly, U. R. Sumaila and R. Watson. 2012. Sustainability of Deep-sea Fisheries. Marine Policy 36(2): 307–320. AS COASTAL FISHERIES have declined around the world, fishermen have expanded their operations beyond exclusive economic zones (EEZs) to the high seas beyond EEZs, including the deep sea. Although the deep sea is the largest yet least ecologically productive part of the ocean, seamounts and other habitats can host significant amounts of some deep- sea fish species, especially when they aggregate to breed and feed. Many deep-sea fishes are slow to reproduce, or produce young only sporadically, however, making commercial fisheries unsustainable. Dr. Elliott Norse of the Marine Conservation Institute and a multidisciplinary team of co-authors analyzed data on fishes, fisheries and deep-sea biology and assessed key economic drivers and international laws to determine whether deep-sea commercial fishing could be sustainable. Ultimately, the authors conclude that most deep-sea fisheries are unsustainable, especially on the high seas. This Lenfest Research Series report is a summary of the scientists’ findings. DEEP-SEA FISHERIES As coastal fisheries have declined, fishing in the deep sea has increased. Technological advances have enabled fishing vessels to travel further from shore and locate aggregations of fish in depths that were unreachable years ago (see graphic).
    [Show full text]
  • Towards Sustainability in World Fisheries
    insight review articles Towards sustainability in world fisheries Daniel Pauly, Villy Christensen, Sylvie Guénette, Tony J. Pitcher, U. Rashid Sumaila, Carl J. Walters, R. Watson & Dirk Zeller Fisheries Centre, University of British Columbia, 2204 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4 (e-mail: [email protected]) Fisheries have rarely been ‘sustainable’. Rather, fishing has induced serial depletions, long masked by improved technology, geographic expansion and exploitation of previously spurned species lower in the food web. With global catches declining since the late 1980s, continuation of present trends will lead to supply shortfall, for which aquaculture cannot be expected to compensate, and may well exacerbate. Reducing fishing capacity to appropriate levels will require strong reductions of subsidies. Zoning the oceans into unfished marine reserves and areas with limited levels of fishing effort would allow sustainable fisheries, based on resources embedded in functional, diverse ecosystems. ishing is the catching of aquatic wildlife, the aftermath of the Second World War added another ‘peace equivalent of hunting bison, deer and rabbits on dividend’ to the industrialization of fishing: freezer trawlers, land. Thus, it is not surprising that industrial- radar and acoustic fish finders. The fleets of the Northern scale fishing should generally not be sustainable: Hemisphere were ready to take on the world. industrial-scale hunting, on land, would not be, Fisheries science advanced over this time as well: the two Feither. What is surprising rather, is how entrenched the world wars had shown that strongly exploited fish popula- notion is that unspecified ‘environmental change’ caused, tions, such as those of the North Sea, would recover most, if and continues to cause, the collapse of exploited fish not all, of their previous abundance when released from populations.
    [Show full text]
  • COVID-19 Provides an Opportunity to Advance a Sustainable UK Fisheries Policy in a Post-Brexit Brave New World
    Marine Policy 120 (2020) 104114 Contents lists available at ScienceDirect Marine Policy journal homepage: http://www.elsevier.com/locate/marpol Short communication COVID-19 provides an opportunity to advance a sustainable UK fisheries policy in a post-Brexit brave new world Paul S. Kemp a,*, Rainer Froese b, Daniel Pauly c a International Centre for Ecohydraulics Research, Faculty of Engineering and the Physical Sciences, Southampton Boldrewood Innovation Campus, University of Southampton, SO16 7QF, UK b GEOMAR Helmholtz Centre for Ocean Research, 24105, Kiel, Germany c Institute for the Oceans and Fisheries, The University of British Columbia, 2202 Main Mall, Vancouver, B.C., V6T 1Z4, Canada ARTICLE INFO ABSTRACT Keywords: Brexit creates a systemic shock that provides a unique opportunity for the UK to implement a new sustainable Ocean harvest Fisheries Policy to better manage the multiple stocks on which future fisherswill depend on leaving the European European union fisheries policy Union. At the same time, the global slowdown of commercial fishing as a result of COVID-19 has reduced Marine fisheries management pressure on some threatened stocks to levels not seen since the Second World War. In combination, Brexit and the Water-energy-fisheries Nexus COVID-19 slowdown have created a unique opportunity to facilitate the recovery of a threatened resource. Nevertheless, challenges remain as fisheries represent only 0.12% of UK economic output, presenting a risk that opportunities for more sustainable management will be lost during wider
    [Show full text]
  • Unsustainable Marine Fisheries Daniel Pauly
    Sustainable Development Law & Policy Volume 7 Article 5 Issue 1 Fall 2006: Ocean & Fisheries Law Unsustainable Marine Fisheries Daniel Pauly Follow this and additional works at: http://digitalcommons.wcl.american.edu/sdlp Part of the Environmental Law Commons, International Law Commons, and the Law of the Sea Commons Recommended Citation Pauly, Daniel. “Unsustainable Marine Fisheries.” Sustainable Development Law & Policy, Fall 2006, 10-12, 79. This Article is brought to you for free and open access by the Washington College of Law Journals & Law Reviews at Digital Commons @ American University Washington College of Law. It has been accepted for inclusion in Sustainable Development Law & Policy by an authorized administrator of Digital Commons @ American University Washington College of Law. For more information, please contact [email protected]. UNSUSTAINABLE MARINE FISHERIES by Daniel Pauly* INTRODUCTION HISTORIC ANTECEDENT Many have long assumed that the expanse and mysterious While fisheries7 and localized overexploitation have depths of the world’s oceans contain vast living resources, ready occurred for millennia,8 the massive impact of fishing on ocean to be exploited in the ways that its more familiar coastal fringes ecosystems began only in the early nineteenth century, when have. This assumption is very wrong. Of the 362 million square English steam trawlers began to land their catches.9 These kilometers of ocean on this planet, only 7.5 percent — the conti- trawlers were soon rendered more effective by power winches nental shelves — are shallower than 200 meters (“m”), and some and, following World War I, diesel engines. The aftermath of of this shelf area is covered by ice.
    [Show full text]
  • The Role of Reservations and Vetoes in Marine Conservation Agreements
    The Role of Reservations and Vetoes in Marine Conservation Agreements Howard S. Schiffman A thesis submitted in partial satisfaction of the degree of Doctor of Philosophy Professor Robin R. Churchill, Supervisor Cardiff Law School Cardiff University Submitted, July 3, 2006 \ ~ . lv UMI Number: U585553 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U585553 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 The Role of Reservations and Vetoes in Marine Conservation Agreements Howard S. Schiffman Contents Preface...................................................................................................................iv Acknowledgements ..............................................................................................v List of Abbreviations ...........................................................................................viii Chapter 1 “Exemptive Provisions:” A Survey of the Issues in International Law 1 I. Introduction ............................................................................................
    [Show full text]
  • Key Threatening Process Nomination Form
    Key Threatening Process Nomination Form for amending the list of key threatening processes under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 2012 Assessment Period This nomination form is designed to assist in the preparation of nominations of threatening processes consistent with the Regulations and EPBC Act. The listing of a key threatening process under the EPBC Act is designed to prevent native species or ecological communities from becoming threatened or prevent threatened species and ecological communities from becoming more threatened. Many processes that occur in the landscape are, or could be, threatening processes, however priority for listing will be directed to key threatening processes, those factors that most threaten biodiversity at national scale. For a key threatening process to be eligible for listing it must meet at least one of the three listing criteria. If there is insufficient data and information available to allow completion of the questions for each of the listing criteria, state this in your nomination under the relevant question. Note – Further detail to help you complete this form is provided at Attachment A. If using this form in Microsoft Word, you can jump to this information by Ctrl+clicking the hyperlinks (in blue text). Nominated key threatening process 1. NAME OF KEY THREATENING PROCESS Recreational game fishing – competition game fishing especially for sharks, tuna and marlins 2. CRITERIA UNDER WHICH THE KEY THREATENING PROCESS IS ELIGIBLE FOR LISTING Please mark the boxes that apply by clicking them with your mouse. Criterion A Evidence that the threatening process could cause a native species or ecological community to become eligible for listing in any category, other than conservation dependent.
    [Show full text]
  • Twenty Years of the Sea Around Us: Marine Fisheries Research to Serve Civil Society
    i Twenty Years of the Sea Around Us: Marine Fisheries Research to Serve Civil Society 1999 – 2019 i Twenty Years of the Sea Around Us: Marine Fisheries Research to Serve Civil Society, 1999 – 2019 Twenty Years of the Sea Around Us: Marine Fisheries Research to Serve Civil Society, 1999 – 2019 Prepared by Daniel Pauly and Valentina Ruiz Leotaud 74 pages © published 2019 by the Sea Around Us Sea Around Us Institute for the Oceans and Fisheries, The University of British Columbia 2202 Main Mall, Vancouver, B.C., Canada V6T 1Z4 ii Executive Summary This report presents an account of the activities of the Sea Around Us, an initiative devoted to documenting and disseminating information on the impacts of fisheries on marine ecosystems and to the proposal of policies to mitigate these impacts. The Sea Around Us began its activities at the Fisheries Centre (now the Institute for the Oceans and Fisheries, IOF) of the University of British Columbia (UBC), Vancouver, Canada, in July 1999 and now has ‘branches’ at the University of Western Australia, Perth, Australia, and at Quantitative Aquatics, a small non-governmental organization based in Los Baños, Philippines. This report focuses on the scientific achievements of the Sea Around Us during its 20 years of existence, but also emphasizes the key role it plays in supplying high-quality catch data (by country, ecosystem, species, gear, end use, etc.) and catch-derived indicators of ecosystem status to a wide range of researchers, educators, governments, NGO staffers, as well as to the public at large. These data are increasingly used to answer policy-relevant questions ranging from fisheries management to issues of (sea)food security in developing countries, and from climate change issues to the spatial expansion of slavery at sea.
    [Show full text]
  • SUBSISTENCE, SETTLEMENT, and LAND-USE CHANGES DURING the MISSISSIPPIAN PERIOD on ST. CATHERINES ISLAND, GEORGIA by SARAH GREENHO
    SUBSISTENCE, SETTLEMENT, AND LAND-USE CHANGES DURING THE MISSISSIPPIAN PERIOD ON ST. CATHERINES ISLAND, GEORGIA by SARAH GREENHOE BERGH (Under the Direction of Elizabeth J. Reitz) ABSTRACT This research examines the human-environment interactions on St. Catherines Island, Georgia, during the late Woodland through the Mississippian period (AD 800–1580). Results from multiple analyses indicate that socio-political, demographic, and economic changes during this period were associated with changes in subsistence, settlement, and land-use patterns. Archaeofaunal collections of vertebrates and invertebrates are examined from three sites in a single locality, representing human occupation during the entire Mississippian period—9LI21, 9LI229, and 9LI230. Two additional late Mississippian archaeofaunal collections of vertebrates are examined from different island locations—9LI207 and 9LI1637. Fine-grained recovery techniques, not previously used for Mississippian deposits on St. Catherines Island, produced collections dominated by estuarine resources, especially oysters, clams, stout tagelus, sea catfishes, mullets, killifishes, and drums. Previous methods used to recover faunal remains produced collections dominated by deer. This study suggests that, though deer contributed large amounts of meat to the diet, estuarine resources were more abundant and contributed the most meat. A Mississippian chiefdom developed on the island during the Irene phase (AD 1300– 1580), with social inequality, large and dense populations living in communities of multiple, integrated settlements, and maize farming. Zooarchaeological evidence presented in this study suggests these socio-political changes led to new human-environment interactions, compared to the early Mississippian period. Irene peoples used a larger number and wider variety of shellfishing and fishing locations than early Mississippian folk. The Irene fishing strategy caught more large fishes and may have involved a shift to larger-scale mass-capture techniques, such as weirs.
    [Show full text]
  • Tuna Be, Or Not Tuna Be: Using Catch Data to Observe the Ecological Impacts of Commercial Tuna Fisheries in the Pacific Ocean at Varying Spatial Scales
    TUNA BE, OR NOT TUNA BE: USING CATCH DATA TO OBSERVE THE ECOLOGICAL IMPACTS OF COMMERCIAL TUNA FISHERIES IN THE PACIFIC OCEAN AT VARYING SPATIAL SCALES by Laurenne Louise Schiller B.Sc. (Hons.), University of Guelph, 2010 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate and Postdoctoral Studies (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2014 © Laurenne Louise Schiller, 2014 ABSTRACT Tuna are arguably the world’s most valuable, versatile, yet vulnerable fishes. With current landings over 4 million tonnes annually, all species of tuna from all three major ocean basins are caught, traded, and consumed at various intensities around the globe. Understanding the implications of such an extensive industry is paramount to protecting the long-term health and sustainability of both the tuna fisheries as well as the ecosystems in which they operate. Given that the Pacific Ocean accounts for roughly two-thirds of the global commercial tuna catch, this thesis assesses the trends and ecological impacts of commercial tuna fishing at both the artisanal and industrial scale in this ocean. To observe the importance of tuna fisheries at a local scale, a case study of the Galápagos Islands is presented. In this context, it was observed that over-fishing and the subsequent depletion of large, low fecund serranids has resulted in a high level of ‘fishing down’ within the near- shore ecosystem. Consequently, as fishers are forced to expand to regions off-shore, tuna and coastal scombrids are becoming increasingly targeted. With regard to industrial fishing, tuna vessels (especially distant-water longliners) are known to generate a substantial amount of associated bycatch and discards.
    [Show full text]
  • Ecological Change in the Oceans and the Role of Fisheries
    Ecological Change in the Oceans and the Role of Fisheries Boris Worm Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada When I took a course with Elisabeth Mann Borgese in 1999, she reminded us that the oceans are constantly changing, both in their outer appearance, and their internal workings. Constant ecological change makes the ocean fascinat- ing to observe and study, but challenging to understand and manage. Long-term changes are brought about by geological processes such as sedi- ment transport, volcanism, and plate tectonics that affect the very shape of ocean basins and the extent of habitat features such as shallow shelf seas con- ducive to biological productivity. On intermediate time scales, climate-driven changes in ocean temperature, circulation, and chemistry can have profound ecological effects on the abundance and distribution of marine life forms, and even caused massive extinction events in the past. Over the last few thousand years, however, people have gradually become a dominant agent of change in the oceans. Initially tied to the continents where we evolved, human hunters at least 42,000 years ago started to venture out into the ocean to pursue large fish.1 Driven by changes in fishing technology, human population size, and global trade, this role has been extending to all ocean basins, and even parts of the deep sea. Over the last two decades, the profound ecological change brought about by human activities has also been studied in detail by the sci- entific community. Although human impacts on ocean ecosystems involve many pathways, there is little doubt that fishing— defined here as any extraction of marine animals and plants—is the activity that historically has had the most trans- formative ecological effects.2 Although it is not clear how much marine life has been removed over the entire history of fishing, recent total catches likely 1 S.
    [Show full text]