Anatomy of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
12 Retina Gabriele K
299 12 Retina Gabriele K. Lang and Gerhard K. Lang 12.1 Basic Knowledge The retina is the innermost of three successive layers of the globe. It comprises two parts: ❖ A photoreceptive part (pars optica retinae), comprising the first nine of the 10 layers listed below. ❖ A nonreceptive part (pars caeca retinae) forming the epithelium of the cil- iary body and iris. The pars optica retinae merges with the pars ceca retinae at the ora serrata. Embryology: The retina develops from a diverticulum of the forebrain (proen- cephalon). Optic vesicles develop which then invaginate to form a double- walled bowl, the optic cup. The outer wall becomes the pigment epithelium, and the inner wall later differentiates into the nine layers of the retina. The retina remains linked to the forebrain throughout life through a structure known as the retinohypothalamic tract. Thickness of the retina (Fig. 12.1) Layers of the retina: Moving inward along the path of incident light, the individual layers of the retina are as follows (Fig. 12.2): 1. Inner limiting membrane (glial cell fibers separating the retina from the vitreous body). 2. Layer of optic nerve fibers (axons of the third neuron). 3. Layer of ganglion cells (cell nuclei of the multipolar ganglion cells of the third neuron; “data acquisition system”). 4. Inner plexiform layer (synapses between the axons of the second neuron and dendrites of the third neuron). 5. Inner nuclear layer (cell nuclei of the bipolar nerve cells of the second neuron, horizontal cells, and amacrine cells). 6. Outer plexiform layer (synapses between the axons of the first neuron and dendrites of the second neuron). -
Current Trends in Ophthalmology Autonomic Regulation of The
Review Article Current Trends in Ophthalmology Autonomic Regulation of the Function of the Vitreous Body and Retina Lychkova AE1*, Severin AE2, Torshin VI2, Starshinov YP2, Sdobnikova SV3, Ashrafov RA4, Ashrafova SR4, Golubev YY5 Golubeva GY6 and Puzikov AM1 1Department of Health, Moscow’s Clinical Research Center, Moscow, Russia 2Russian People’s Friendship University, Moscow, Russia 3Research Institute of Eye Diseases, Moscow, Russia 4Center for Laser Surgery, Moscow, Russia 5Russian National Research Medical University, Moscow, Russia 6City Clinical Hospital, Moscow, Russia *Correspondence: Lychkova Alla Edward, Department Head of the Moscow’s Clinical Research Center, DZM, Shosse Enthusiasts 86, 111123, 11-1-53, Amundsen 129343, Moscow, Russia, Tel: (+7) 962-965-4923; E-mail: [email protected] Received: May 08, 2018; Accepted: June 25, 2018; Published: June 29, 2018 Abstract The data of the literature on the structure and physiology of the vitreous body and the retina in normal and pathological conditions are presented. The mechanism of vitreous detachment and its role in the development of vitreoretinal proliferation are described. Described adren-choline-peptide and NO-ergic mechanisms in signal transduction of the vitreous body and retina. Pharmacological and surgical methods of treatment of vitreoretinal proliferation are briefly described. Keywords: Vitreous body; Retina; Detachment; Vitreoretinal proliferation Introduction density of collagen fibers and a greater concentration of hyaluronic acid as compared to the central part. Cortical Vitreous Body (VB) is a transparent, colourless, gel- gel is comparatively more stable and more resistant to like mass containing water with an admixture of salts, age-related changes [1]. The VB contains two channels sugars, hyaluronic acid, a network of collagen fibers II, IX, (optociliary and lenticular) and three rows of cisterns, a XI types and few cells (mainly phagocytes, contributing to bursa premacularis and a precapillary space [1,3-5]. -
Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors
pharmaceutics Article Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors Hyeong Min Kim 1,†, Hyounkoo Han 2,†, Hye Kyoung Hong 1, Ji Hyun Park 1, Kyu Hyung Park 1, Hyuncheol Kim 2,* and Se Joon Woo 1,* 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; [email protected] (H.M.K.); [email protected] (H.K.H.); [email protected] (J.H.P.); [email protected] (K.H.P.) 2 Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; [email protected] * Correspondence: [email protected] (H.K.); [email protected] (S.J.W.); Tel.: +82-2-705-8922 (H.K.); +82-31-787-7377 (S.J.W.); Fax: +82-2-3273-0331 (H.K.); +82-31-787-4057 (S.J.W.) † These authors contributed equally to this work. Abstract: In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time– concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the outward direction permeability of the RCS and CS and calculated the neural retina permeability. The permeability coefficients of RCS and CS were as follows: ganciclovir, 13.78 ± 5.82 and 23.22 ± 9.74; brimonidine, 15.34 ± 7.64 and 31.56 ± 12.46; bevacizumab, 0.0136 ± 0.0059 and 0.0612 ± 0.0264 (×10−6 cm/s). -
Localization of S-100 Protein in Mulier Cells of the Retina— 1
Reports Localization of S-100 Protein in Mulier Cells of the Retina— 1. Light Microscopical Immunocytochemistry G. Terenghi,* D. Cocchia,f F. Micherti,f A. R. T. Pererson4 D. F. Cole,§ S. R. Bloom,11 ond J. M. Polok* S-100 is an acidic brain protein previously found to be pres- constituent and could be involved in the functions ent in glial cells of the brain and the nervous system of gut of normal and diseased retina10"; their identification and respiratory tract. Immunocytochemistry at the light by the use of a suitable marker is thus of primary microscopical level localized immunoreactivity for S-100 in relevance. In this study, we report on the immuno- the Mulier cells in the retina of rat, guinea pig, and Chinese cytochemical visualization at light microscopic level hamster. The Mulier cells represent the main glial com- ponent of the retina, with a structural role in the support of Mulier cells in the mammalian retina by using the and insulation of neurons and sensory elements. The use presence of S-100 protein as a marker for glial cells. of S-100 protein as an immunocytochemical marker of Materials and Methods. Albino rats (n = 5), guinea Miiller cells may be useful in the study of pathologic con- pigs (n = 5), and Chinese hamsters (n = 4) were used. ditions of the retina where glial cell proliferation could re- The animals were killed by exsanguination under flect the index of neuronal injury. Invest Ophthalmol Vis ether anaesthesia; the eyeballs were removed and im- Sci 24:976-980, 1983 mediately processed. -
The Distribution of Immune Cells in the Uveal Tract of the Normal Eye
THE DISTRIBUTION OF IMMUNE CELLS IN THE UVEAL TRACT OF THE NORMAL EYE PAUL G. McMENAMIN Perth, Western Australia SUMMARY function of these cells in the normal iris, ciliary body Inflammatory and immune-mediated diseases of the and choroid. The role of such cell types in ocular eye are not purely the consequence of infiltrating inflammation, which will be discussed by other inflammatory cells but may be initiated or propagated authors in this issue, is not the major focus of this by immune cells which are resident or trafficking review; however, a few issues will be briefly through the normal eye. The uveal tract in particular considered where appropriate. is the major site of many such cells, including resident tissue macro phages, dendritic cells and mast cells. This MACRO PHAGES review considers the distribution and location of these and other cells in the iris, ciliary body and choroid in Mononuclear phagocytes arise from bone marrow the normal eye. The uveal tract contains rich networks precursors and after a brief journey in the blood as of both resident macrophages and MHe class 11+ monocytes immigrate into tissues to become macro dendritic cells. The latter appear strategically located to phages. In their mature form they are widely act as sentinels for capturing and sampling blood-borne distributed throughout the body. Macrophages are and intraocular antigens. Large numbers of mast cells professional phagocytes and play a pivotal role as are present in the choroid of most species but are effector cells in cell-mediated immunity and inflam virtually absent from the anterior uvea in many mation.1 In addition, due to their active secretion of a laboratory animals; however, the human iris does range of important biologically active molecules such contain mast cells. -
The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life. -
Vitreous and Developmental Vitreoretinopathies Kevin R
CHAPTER 3 Vitreous and Developmental Vitreoretinopathies Kevin R. Tozer, Kenneth M. P. Yee, and J. Sebag Invisible (Fig. 3.1) by design, vitreous was long unseen the central vitreous and adjacent to the anterior cortical as important in the physiology and pathology of the eye. gel. HA molecules have a different distribution from col- Recent studies have determined that vitreous plays a sig- lagen, being most abundant in the posterior cortical gel nificant role in ocular health (1) and disease (1,2), includ- with a gradient of decreasing concentration centrally ing a number of important vitreoretinal disorders that and anteriorly (6,7). arise from abnormal embryogenesis and development. Both collagen and HA are synthesized during child- Vitreous embryology is presented in detail in Chapter 1. hood. Total collagen content in the vitreous gel remains Notable is that primary vitreous is filled with blood ves- at about 0.05 mg until the third decade (8). As collagen sels during the first trimester (Fig. 3.2). During the second does not appreciably increase during this time but the trimester, these vessels begin to disappear as the second- size of the vitreous does increase with growth, the den- ary vitreous is formed, ultimately resulting in an exqui- sity of collagen fibrils effectively decreases. This could sitely clear gel (Fig. 3.1). The following will review vitreous potentially weaken the collagen network and destabilize development and the congenital disorders that arise from the gel. However, since there is active synthesis of HA abnormalities in hyaloid vessel formation and regression during this time, the dramatic increase in HA concentra- during the primary vitreous stage and biochemical abnor- tion may stabilize the thinning collagen network (9). -
Passport to Success
The following terms and other boldface terms in the chapter are defined in the Glossary accommodation choroid After careful study of this chapter, you should be able to: cochlea conjunctiva 1. Describe the function of the sensory system convergence 2. Differentiate between the special and general senses and give examples of each cornea 3. Describe the structure of the eye gustation 4. List and describe the structures that protect the eye lacrimal apparatus 5. Define refraction and list the refractive parts of the eye lens (crystalline lens) 6. Differentiate between the rods and the cones of the eye olfaction 7. Compare the functions of the extrinsic and intrinsic muscles of organ of Corti the eye ossicle 8. Describe the nerve supply to the eye proprioceptor 9. Describe the three divisions of the ear refraction 10. Describe the receptor for hearing and explain how it functions retina 11. Compare static and dynamic equilibrium and describe the sclera location and function of these receptors semicircular canal 12. Explain the function of proprioceptors sensory adaptation 13. List several methods for treatment of pain sensory receptor 14. Describe sensory adaptation and explain its value tympanic membrane 15. Show how word parts are used to build words related to the vestibule sensory system (see Word Anatomy at the end of the chapter) vitreous body PASSport to Success Visit thePoint or see the Student Resource CD in the back of this book for definitions and pronun- ciations of key terms as well as a pretest for this chapter. ® Paul’s Second Case: Seeing More of the Sun’s Effects aul glanced once again at the postcard condition, and it does have a hereditary fac- sitting on his entranceway table as he ar- tor.” The doctor dilated Paul’s eyes with drops Prived home in the evening. -
Foveola Nonpeeling Internal Limiting Membrane Surgery to Prevent Inner Retinal Damages in Early Stage 2 Idiopathic Macula Hole
Graefes Arch Clin Exp Ophthalmol DOI 10.1007/s00417-014-2613-7 RETINAL DISORDERS Foveola nonpeeling internal limiting membrane surgery to prevent inner retinal damages in early stage 2 idiopathic macula hole Tzyy-Chang Ho & Chung-May Yang & Jen-Shang Huang & Chang-Hao Yang & Muh-Shy Chen Received: 29 October 2013 /Revised: 26 February 2014 /Accepted: 5 March 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract Keywords Fovea . Foveola . Internal limiting membrane . Purpose The purpose of this study was to investigate and macular hole . Müller cell . Vitrectomy present the results of a new vitrectomy technique to preserve the foveolar internal limiting membrane (ILM) during ILM peeling in early stage 2 macular holes (MH). Introduction Methods The medical records of 28 consecutive patients (28 eyes) with early stage 2 MH were retrospectively reviewed It is generally agreed that internal limiting membrane (ILM) and randomly divided into two groups by the extent of ILM peeling is important in achieving closure of macular holes peeing. Group 1: foveolar ILM nonpeeling group (14 eyes), (MH) [1]. An autopsy study of a patient who had undergone and group 2: total peeling of foveal ILM group (14 eyes). A successful MH closure showed an area of absent ILM sur- donut-shaped ILM was peeled off, leaving a 400-μm-diameter rounding the sealed MH [2]. ILM over foveola in group 1. The present ILM peeling surgery of idiopathic MH in- Results Smooth and symmetric umbo foveolar contour was cludes total removal of foveolar ILM. However, removal of restored without inner retinal dimpling in all eyes in group 1, all the ILM over the foveola causes anatomical changes of the but not in group 2. -
The Proteomes of the Human Eye, a Highly Compartmentalized Organ
Proteomics 17, 1–2, 2017, 1600340 DOI 10.1002/pmic.201600340 (1 of 3) 1600340 The proteomes of the human eye, a highly compartmentalized organ Gilbert S. Omenn Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA Proteomics has now published a series of Dataset Briefs on the EyeOme from the HUPO Received: November 2, 2016 Human Proteome Project with high-quality analyses of the proteomes of these compartments Accepted: November 4, 2016 of the human eye: retina, iris, ciliary body, retinal pigment epithelium/choroid, retrobulbar optic nerve, and sclera, with 3436, 2929, 2867, 2755, 2711, and 1945 proteins, respectively. These proteomics resources represent a useful starting point for a broad range of research aimed at developing preventive and therapeutic interventions for the various causes of blindness. Keywords: Biomedicine / Biology and Disease-driven Human Proteome Project / End Blindness by 2020 / Eye proteome / EyeOme / Human Proteome Project See accompanying articles in the EyeOme series: http://dx.doi.org/10.1002/pmic.201600229; http://dx.doi.org/10.1002/pmic.201500188; http://dx.doi.org/10.1002/pmic.201400397 Proteomics has now published a series of four papers on compartments of the eye as shown in Fig. 1. As was noted [5], the human eye proteome [1–4]. Under the aegis of the Hu- it was not feasible to assess the quality of the data or estimate man Proteome Organization Biology and Disease-driven Hu- numbers of likely false positives in the heterogeneous studies man Proteome Project (HPP), the EyeOme was organized by from which these findings were summarized. -
To See the Invisible: the Quest of Imaging Vitreous J
DOP42005.qxd 4/15/08 11:34 AM Page 5 Meyer CH (ed): Vital Dyes in Vitreoretinal Surgery. Dev Ophthalmol. Basel, Karger, 2008, vol 42, pp 5–28 To See the Invisible: The Quest of Imaging Vitreous J. Sebag VMR Institute, University of Southern California, Los Angeles, Calif., USA Abstract Purpose: Imaging vitreous has long been a quest to view what is, by design, invisible. This chapter will review important historical aspects, past and present imaging methodologies, and new technologies that are currently in development for future research and clinical applications. Methods: Classic and modern histologic techniques, dark-field slit microscopy, clinical slit lamp biomicroscopy, standard and scanning laser ophthalmoscopy (SLO), ultrasonography, optical coherence tomography (OCT), com- bined OCT-SLO, magnetic resonance and Raman spectroscopies, and dynamic light scattering method- ologies are presented. Results: The best available histologic techniques for imaging vitreous are those that avoid rapid dehydration of vitreous specimens. Dark-field slit microscopy enables in vitro imaging without dehydration or tissue fixatives. OCT enables better in vivo visualization of the vitreoretinal inter- face than SLO and ultrasonography, but does not adequately image the vitreous body. The combination of OCT with SLO has provided useful new imaging capabilities, but only at the vitreoretinal interface. Dynamic light scattering can evaluate the vitreous body by determining the average sizes of vitreous macromolecules in aging, disease, and as a means to assess the effects of pharmacologic vitreolysis. Raman spectroscopy can detect altered vitreous molecules, such as glycated collagen and other pro- teins in diabetic vitreopathy and possibly other diseases. Conclusions: A better understanding of normal vitreous physiology and structure and how these change in aging and disease is needed to develop more effective therapies and prevention. -
98796-Anatomy of the Orbit
Anatomy of the orbit Prof. Pia C Sundgren MD, PhD Department of Diagnostic Radiology, Clinical Sciences, Lund University, Sweden Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lay-out • brief overview of the basic anatomy of the orbit and its structures • the orbit is a complicated structure due to its embryological composition • high number of entities, and diseases due to its composition of ectoderm, surface ectoderm and mesoderm Recommend you to read for more details Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 3 x 3 Imaging technique 3 layers: - neuroectoderm (retina, iris, optic nerve) - surface ectoderm (lens) • CT and / or MR - mesoderm (vascular structures, sclera, choroid) •IOM plane 3 spaces: - pre-septal •thin slices extraconal - post-septal • axial and coronal projections intraconal • CT: soft tissue and bone windows 3 motor nerves: - occulomotor (III) • MR: T1 pre and post, T2, STIR, fat suppression, DWI (?) - trochlear (IV) - abducens (VI) Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Superior orbital fissure • cranial nerves (CN) III, IV, and VI • lacrimal nerve • frontal nerve • nasociliary nerve • orbital branch of middle meningeal artery • recurrent branch of lacrimal artery • superior orbital vein • superior ophthalmic vein Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst.