“Marine Biotechnology: a Sea of New Resources and Solutions for Ocean And

Total Page:16

File Type:pdf, Size:1020Kb

“Marine Biotechnology: a Sea of New Resources and Solutions for Ocean And UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II” DOTTORATO IN SCIENZE VETERINARIE XXIX CICLO TESI “Marine Biotechnology: a sea of new resources and solutions for ocean and human health” Candidato Tutor Co-Tutor Dott. Christian Dott.ssa Giovanna Dott.ssa Clementina Galasso Romano Sansone DOTTORATO IN SCIENZE VETERINARIE - Segreteria Dott.ssa Maria Teresa Cagiano Coordinamento - Prof. Giuseppe Cringoli A Carolina, forza, sostegno e futuro della mia vita personale e professionale. A papà e mamma, ai nonni e alla mia famiglia tutta, parte integrante di questo traguardo. 3 4 INDEX List of abbreviations 10 List of figures 14 List of tables 21 Abstract (English version) 22 Abstract (Italian version) 23 GENERAL INTRODUCTION 26 I. Resources from the sea for a sea of resources 27 II. European strategies and Marine Biotechnology 31 Aim of the thesis 31 SECTION 1. 33 The Marine model organism Paracentrotus lividus: an established marine model organism for new biotechnological applications CHAPTER 1. Introduction 34 1.1 The sea urchin model Paracentrotus lividus: an overview 35 1.2 The sea urchin Paracentrotus lividus as model organisms to study the effect of diatom secondary metabolites 45 1.3 PUAs: morphological and molecular effects on Paracentrotus lividus and human cell lines 52 5 CHAPTER 2. Material and Methods 60 2.1 Ethics Statement 61 2.2 Paracentrotus lividus collection, stimulation of spawning and fertilization test 61 2.3 Setting up the in vitro experiments for the treatment of sea urchin embryos with the Oxylipin 62 2.4 Samples collection for gene and protein expression analysis in Paracentrotus lividus 64 2.5 A bioinformatic approach for identifying sea urchin orthologue of human proteins involved in cell death mechanisms 64 2.6 RNA extraction and cDNA synthesis from sea urchin embryos 66 2.7 Primer design and validation 67 2.8 Analysis of variation of gene expression of Paracentrotus lividus samples, by Real Time qPCR 70 2.9 Maintenance, Treatment of A549 and following Cell Viability assay 71 2.10 RNA Extraction and Real-Time qPCR of the cell samples 71 CHAPTER 3. Results 74 3.1 Morphological analysis of the effects of Heptadienal on Paracentrotus lividus embryo development 75 3.2 Gene structures and aminoacid sequences of Paracentrotus lividus identified by the bioinformatic study 77 3.3 Primer validation 92 3.4 Analysis of the variation of gene expression of sea urchin Paracentrotus lividus exposed to heptadienal 95 3.5 Analysis of the variation of gene expression of the A549 cell line exposed to heptadienal 102 6 CHAPTER 4. Discussion 106 Bioinformatic approach and molecular analysis to study programmed cell death in sea urchin Paracentrotus lividus 107 CHAPTER 5. Conclusions and future implications 114 New molecular and environmental applications for the marine model organism Paracentrotus lividus 115 SECTION 2. 117 Drug Discovery from marine microorganisms: Microalgae as source of new natural compounds for applications in pharmacology CHAPTER 6. Introduction 118 6.1 Drug from the sea: current research and market 119 6.2 Biotechnological potential of marine microalgae 121 6.3 The green microalga Tetraselmis suecica 122 6.4 The dinoflagellate Alexandrium andersoni 123 CHAPTER 7. Material and Methods 126 7.1Microalgae biomass production 127 7.2 Chemical extractions and fractionation 127 7.3 HPLC and LC-MS/MS analysis 128 7.4 Scavenging activity against DPPH radical 129 7 7.5 Maintenance, treatment of human cell lines and cell viability 129 7.6 RNA extraction, cDNA synthesis and Real-Time qPCR of the cell samples 130 7.7 Protein extraction and western blotting 131 7.8 Elisa for prostaglandin E2 (PGE2) 132 7.9 Treatment of human epidermis and tissue viability 132 7.10 Cell cycle analysis 132 7.11 Statistical analysis 133 CHAPTER 8. Results 134 Tetraselmis suecica 135 8.1 Chemical characterization 135 8.2 Antioxidant activity assay 138 8.3 Cell viability and recovery experiment 139 8.4 Analysis of the variation in gene expression 141 8.5 Analysis of the variation in protein expression 146 8.6 Assessment of prostaglandin E2 release 147 8.7 Effect on ex vivo tissue 149 Alexandrium andersoni 151 8.8 Viability of tumor cell lines after treatment with Alexandrium andersoni n-butanol extract 151 8.9 Analysis of the variation in gene expression after treatment with Alexandrium andersoni n-butanol extract 153 8.10 Analysis of the variation in protein expression of death receptors after treatment of A549 with Alexandrium andersoni n-butanol extract 156 8.11 Cell cycle analysis in A549 cell line 157 8.12 Viability of tumor and normal cell lines after treatment with Alexandrium andersoni SPE-fractions and Caspase Inhibitor Assay 159 8 8.13 Variation of gene expression analysis after treatment of A549 and HT-29 with Alexandrium andersoni SPE-fractions 161 CHAPTER 9. Discussion 164 9.1 Tetraselmis suecica reduces oxidative damage and induces repairing mechanisms in human cells 165 9.2 Alexandrium andersoni activates caspase-indipendent programmed cell death in tumor cell lines 168 CHAPTER 10. Conclusions and future implications 174 Future perspectives for marine microalgae as high renewable marine resource 175 REFERENCES 177 9 LIST OF ABBREVIATION °C degree Celsius 15-HEPE (±)-15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid 5-HEPE (±)-5-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid A. andersoni Alexandrium andersoni A549 lung adenocarcinoma cell line ACTB actin-beta AFC 7-amino-4- trifluoromethyl-coumarin AIFM1 Apoptosis Inducing Factor, Mitochondria Associated 1 AKR1C2 Aldo-keto reductase family 1, member C2 ANOVA Analysis of variance ATCC American Type Culture Collection ATOX1 ATX1 antioxidant protein 1 homolog ATP6V1G2 V-type proton ATPase subunit G 2 B2M beta-2-microglobulin BAX BCL2 Associated X Protein BCL2 B-Cell CLL/Lymphoma 2 BCL2L11 Bcl-2-like protein 11 BEAS-2B normal lung/brunch epithelial cell line BECN1 Beclin 1 BIRC3 baculoviral IAP repeat containing 3 BLAST Basic Local Alignment Search Tool Blastn Nucleotide-nucleotide BLAST Blastp Protein-protein BLAST Bp base pair BP10 Blastula protease 10 CCL5 Chemokine (C-C motif) ligand 5 CCMP Culture Collection of Marine Phytoplankton cDNA complementary Deoxyribonucleic Acid CDSs coding DNA sequences CH2Cl2 Dichloromethane CHCl3 chloroform Chl a Chlorophyll a Chl b Chlorophyll b COHH Centers for Oceans and Human Health; COLO 205 colorectal adenocarcinoma cell line CRADD CASP2 and RIPK1 domain containing adaptor with death domain Ct cycle threshold CYCS cytochrome c somatic DECADIENAL 2-trans,4-trans-decadienal DECATRIENAL 2-trans-4-trans-7-cis-decatrienal DEPC Diethylpyrocarbonate DEVD Aspartic acid-Glutamic acid-Valine- Aspartic acid DHCR24 24-dehydrocholesterol reductase DHCR24 24-dehydrocholesterol reductase DMEM Dulbecco’s modified Eagle’s medium DNA DeoxyriboNucleic Acid dNTP deoxynucleotide triphosphate 10 DPPH 2,2-Di(4-tert-octylphenyl)-1-picrylhydrazyl DPR Decreto del Presidente della Repubblica DPYSL4 dihydropyrimidinase-related protein 4 E efficiency ECVAM European Centre for the Validation of Alternative Models EDTA Ethylenediaminetetraacetic acid EIF5B eukaryotic translation initiation factor 5B ELISA enzyme-linked immunosorbent assay EMBOSS European Molecular Biology Open Software Suite EPI-200 human epidermal tissue model ERA-NET- MBT European Research Area - Network - Marine Biotech; FADD Fas Associated Death Domain FAHs fatty acid hydroperoxides FASLG Fas ligand FBS Fetal Bovine Serum FOXM1 Forkhead box M1 FSW Filtered Sea Water g Relative Centrifugal Force (RCF) or G-Force GADD45 growth arrest and DNA-damage-inducible protein GPX1 Glutathione peroxidase 1 GPX4 Glutathione peroxidase 4 GSTP1 Glutathione S-transferase pi 1 H. sapiens or HS Homo sapiens H2O2 dihydrogen peroxide HAT Human Airway Trypsin-like protease HEPEs Hydroxy-EicosaPentaEnoic acids HepETEs Epoxyalcohols HEPTADIENAL 2-trans,4-trans-heptadienal HIF1A Hypoxia-inducible factor 1-alpha hpf hours post fertilization HPLC High Performance Liquid Chromatography HPRT 1hypoxanthine phosphoribosyltransferase HSP90AA1 Heat shock protein 90kDa alpha A HUBs highly connected nodes IC50 half maximal inhibitory concentration IGF1R insulin-like growth factor 1 receptor KCl Postassium chloride KCNIP1 Kv channel-interacting protein 1 LC-MS/MS liquid chromatography-mass spectrometry LOXs Lipoxygenases MCL1 induced myeloid leukemia cell differentiation protein-Mcl-1 MeOH methanol ml millilitres MTase MethylTransferase enzyme n-BuOH n-butanol NCBI National Center for Biotechnology Information NEAA non-essential amino acids NF-kB Nuclear Factor Kappa B ng nanogram nm nanometres NOAA National Oceanic and Atmospheric Administration 11 OCTADIENAL 2-trans,4-trans-octadienal OCTATRIENAL 2-trans,4-trans,7-octatrienal OHHI Oceans and Human Health Initiative P. lividus or Pl Paracentrotus lividus p38 MAPK p38 mitogen-activated protein kinase p53 Tumor Protein P53 PARP1 Poly ADP-Ribose Polymerase 1 PBS Phosphate-Buffered Saline PCR Polymerase Chain Reaction PDLIM1 PDZ and LIM domain 1 PGE2 prostaglandin E2 PINK1 PTEN Induced Putative Kinase Pl-Z12–1 zinc-finger transcription factor PMSF phenylmethylsulfonyl fluoride PRDX5 Peroxiredoxin 5 PTGR1 Prostaglandin reductase 1 PUAs Polyunsaturated Aldehydes PUFAs Polyunsaturated Fatty Acids qPCR quantitative Polymerase Chain Reaction R expression ratio R2 regression coefficient REST Relative Expression Software Tool RIMAR Research Infrastructures for MArine biological Resources RIP Receptor-Interacting Protein RIPA radioimmunoprecipitation assay RIPK_2 Homeodomain Interacting
Recommended publications
  • Echinodermata) Durant El Període 2014-2018
    NEMUS núm. 9. 2019 Sobre la descripció d’espècies noves de la classe Echinoidea (Echinodermata) durant el període 2014-2018 Vicent Gual i Orti1, Javier Segura Navarro1 & Enric Forner i Valls1 1. Ateneu de Natura. Sant Roc, 125, 3r. 5a. 12004 Castelló de la Plana. [email protected]. En el camp de la paleontologia el treball de descripció de les espècies que s’han conservat al registre fòssil està molt lluny d’haver conclòs. De manera que d’una manera dispersa i arreu del món hi ha un continu degoteig de publicacions on es descriuen espècies noves. Dins la paleontologia, l’equinologia, ocupa un paper significatiu tant a nivell científic com a nivell de col·leccionisme privat i museístic. Aquesta importància, potser està moti- vada per la bona conservació de la carcassa dels equínids, que està constituïda per calcita, cosa que afavoreix la seua fossilització i proporciona un registre fòssil ric de la classe Echinoidea. L’interès del treball és donar un visió global i actual dels treballs de descripció de la classe Echinoidea, de la qual no s’ha publicat cap treball de recopilació des de l’any 2008. Disposar d’una fotografia, una mostra, del que està passant ara. Per altra banda, es vol aprofundir en certs aspectes que sovint no són analitzats. Com el lloc geogràfic i les edats geològiques en les quals s’estan fent descripcions o en quines revistes científiques i per qui s’estan publicant les espècies noves. De l’estudi es conclou, atesos els treballs que s’ha pogut enregistrar, que durant els últims cinc anys, 2014-2018, s’han descrit al món 74 espècies noves d’equínids, per 77 autors, que s’han publicat en 30 revistes diferents, mitjançant 53 articles.
    [Show full text]
  • Arbacia Lixula (Linnaeus, 1758)
    Arbacia lixula (Linnaeus, 1758) AphiaID: 124249 OURIÇO-NEGRO Animalia (Reino) > Echinodermata (Filo) > Echinozoa (Subfilo) > Echinoidea (Classe) > Euechinoidea (Subclasse) > Carinacea (Infraclasse) > Echinacea (Superordem) > Arbacioida (Ordem) > Arbaciidae (Familia) Vasco Ferreira Vasco Ferreira Estatuto de Conservação Sinónimos Arbacia aequituberculata (Blainville, 1825) Arbacia australis Lovén, 1887 Arbacia grandinosa (Valenciennes, 1846) Arbacia pustulosa (Leske, 1778) Cidaris pustulosa Leske, 1778 Echinocidaris (Agarites) loculatua (Blainville, 1825) Echinocidaris (Tetrapygus) aequituberculatus (Blainville, 1825) Echinocidaris (Tetrapygus) grandinosa (Valenciennes, 1846) 1 Echinocidaris (Tetrapygus) pustulosa (Leske, 1778) Echinocidaris aequituberculata (Blainville, 1825) Echinocidaris grandinosa (Valenciennes, 1846) Echinocidaris loculatua (Blainville, 1825) Echinocidaris pustulosa (Leske, 1778) Echinus aequituberculatus Blainville, 1825 Echinus equituberculatus Blainville, 1825 Echinus grandinosus Valenciennes, 1846 Echinus lixula Linnaeus, 1758 Echinus loculatus Blainville, 1825 Echinus neapolitanus Delle Chiaje, 1825 Echinus pustulosus (Leske, 1778) Referências additional source Hayward, P.J.; Ryland, J.S. (Ed.). (1990). The marine fauna of the British Isles and North-West Europe: 1. Introduction and protozoans to arthropods. Clarendon Press: Oxford, UK. ISBN 0-19-857356-1. 627 pp. [details] basis of record Hansson, H.G. (2001). Echinodermata, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list
    [Show full text]
  • Annual Report for 2015-2016 and Newsletter 33
    Notice of Annual General Meeting and Annual Address The 170th Annual General Meeting will be held in the Flett Lecture Theatre of the Natural History Museum, London SW7 5BD, on Wednesday, 19th April, 2017, at 4.00 pm. The Annual Report of Council will be presented, along with Income and Expenditure Accounts for the year ended 31st December, 2016, and Council Members and Officers will be elected for the ensuing year. Tea and coffee will be available from 3.30 pm. This meeting is open to all members of the Society. The AGM will be followed by the Society’s Eleventh Annual Lecture, to be given by Professor Jenny Clack (University of Cambridge). The event will be held in the Flett Lecture Theatre of the Natural History Museum, Cromwell Road, London, SW7 5BD, at 4.15 pm. This event is open to members of the Society and other interested parties. ------------------------------------------------------------------------------------------------------------------------- ------------------- NEWSLETTER 33 1 Publications: Volume 170 was published in November 2016. Vol. 170, 2016 (£280.00) 646. British Jurassic regular echinoids, Part 2, Carinacea, by A.B. Smith (pp. 69-176, plates 42-82, final part. £130.00). 647. Ichthyosaurs of the British Middle and Upper Jurassic, Part 1, Ophthalmosaurus, by B.J. Moon & A.M. Kirton (pp. 1-84, plates 1-30. £150.00). The Editors welcome suggestions for new titles and would also be grateful for manuscripts that represent concluding or additional parts of ongoing, unfinished monographs. 2 Subscriptions for 2017 were considered due on 1st January, 2017, and will entitle subscribers to Volume 171. Individual subscriptions are £35.00.
    [Show full text]
  • Paleogenomics of Echinoids Reveals an Ancient Origin for the Double-Negative Specification of Micromeres in Sea Urchins
    Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins Jeffrey R. Thompsona,1, Eric M. Erkenbrackb, Veronica F. Hinmanc, Brenna S. McCauleyc,d, Elizabeth Petsiosa, and David J. Bottjera aDepartment of Earth Sciences, University of Southern California, Los Angeles, CA 90089; bDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511; cDepartment of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213; and dHuffington Center on Aging, Baylor College of Medicine, Houston, TX 77030 Edited by Douglas H. Erwin, Smithsonian National Museum of Natural History, Washington, DC, and accepted by Editorial Board Member Neil H. Shubin January 31, 2017 (received for review August 2, 2016) Establishing a timeline for the evolution of novelties is a common, methods thus provide a rigorous methodology in which to examine unifying goal at the intersection of evolutionary and developmental gene expression datasets, and ultimately animal body plan evolu- biology. Analyses of gene regulatory networks (GRNs) provide the tion (11), within the context of evolutionary time. After genomic ability to understand the underlying genetic and developmental novelties underlying differential body plan development have been mechanisms responsible for the origin of morphological structures identified, we can then consider the rates at which these novelties both in the development of an individual and across entire evolution- arise, and the rates at which GRNs evolve. Achieving this end ary lineages. Accurately dating GRN novelties, thereby establishing requires an explicit timeline in which to explore GRN evolution. a timeline for GRN evolution, is necessary to answer questions In a phylogenetically informed, comparative framework, it is about the rate at which GRNs and their subcircuits evolve, and to possible to infer where on a phylogenetic tree and when, in deep tie their evolution to paleoenvironmental and paleoecological time, GRN innovations are likely to have first arisen.
    [Show full text]
  • A Phylogenomic Resolution of the Sea Urchin Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A phylogenomic resolution of the sea urchin tree of life Nicolás Mongiardino Koch ([email protected]) – Corresponding author Department of Geology and Geophysics, Yale University, New Haven CT, USA Simon E. Coppard ([email protected]) Department of Biology, Hamilton College, Clinton NY, USA. Smithsonian Tropical Research Institute, Balboa, Panama. Harilaos A. Lessios ([email protected]) Smithsonian Tropical Research Institute, Balboa, Panama. Derek E. G. Briggs ([email protected]) Department of Geology and Geophysics, Yale University, New Haven CT, USA. Peabody Museum of Natural History, Yale University, New Haven CT, USA. Rich Mooi ([email protected]) Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco CA, USA. Greg W. Rouse ([email protected]) Scripps Institution of Oceanography, UC San Diego, La Jolla CA, USA. bioRxiv preprint doi: https://doi.org/10.1101/430595; this version posted September 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Background: Echinoidea is a clade of marine animals including sea urchins, heart urchins, sand dollars and sea biscuits.
    [Show full text]
  • Download This PDF File
    Acta Geologica Polonica, Vol. 64 (2014), No. 3, pp. 325–349 DOI: 10.2478/agp-2014-0017 A monograph of the Polish Oxfordian echinoids: Part 2, Subclass Euechinoidea Bronn, 1860 URSZULA RADWAŃSKA Institute of Geology, University of Warsaw, Al. Żwirki i Wigury 93; PL-02-089 Warszawa, Poland. E-mail: [email protected] ABSTRACT: Radwańska, U. 2014. A monograph of the Polish Oxfordian echinoids: Part 2, Subclass Euechinoidea Bronn, 1860. Acta Geologica Polonica, 64 (3), 325–349. Warszawa. The non-cidaroid echinoids (subclass Euechinoidea Bronn, 1860) from the Oxfordian epicontinental sequence of Poland (Polish Jura, Holy Cross Mountains, Mid-Polish Anticlinorium) are assigned to the genera Hemiped- ina Wright, 1855, Hemicidaris L. Agassiz, 1838, Hemitiaris Pomel, 1883, Pseudocidaris Étallon, 1859, Stomech- inus Desor, 1856, Eucosmus L. Agassiz in Agassiz and Desor, 1846, Glypticus L. Agassiz, 1840, Pleurodiadema de Loriol, 1870, Diplopodia McCoy, 1848, Trochotiara Lambert, 1901, Desorella Cotteau, 1855, and Hetero- cidaris Cotteau, 1860, plus one acropeltid taxon, and one taxon left in open nomenclature. Within the genus Hemicidaris L. Agassiz, 1838, the relationship between Hemicidaris intermedia (Fleming, 1828), Hemicidaris crenularis L. Agassiz, 1839 [non Lamarck, nec Goldfuss] and Hemicidaris quenstedti Mérian, 1855, all with confused taxonomy, is discussed. Based on test structure, the genera Polydiadema Lambert, 1883, and Trochotiara Lambert, 1901, of the fam- ily Emiratiidae Ali, 1990, are proved to be separate; the common species mamillana of F.A. Roemer (1836) is a typical Trochotiara. An attention is paid to the morphology of the tiny, juvenile specimens, common in Eucosmus decoratus L. Agassiz in L. Agassiz and Desor, 1846, and in Pleurodiadema stutzi (Moesch, 1867).
    [Show full text]
  • Wiki Page Related to Species Information Including from D4.X.1 WP5: Citizen Science Initiative - Involving People in Ecosystems Restoration
    RECONNECT Regional cooperation for the transnational ecosystem sustainable development Interreg V-B “Balkan-Mediterranean 2014-2020” Deliverable 5.X.4 Wiki page related to species information including from D4.X.1 WP5: Citizen science Initiative - Involving people in ecosystems restoration Responsible Partner: Department of Biological Sciences, University of Cyprus Deliverable team: DBS-UCY (AP Marine Ltd & G.E GEOMETRIKI LTD) HCMR, IBER-BAS June, 2020 Project co-funded by the European Union and National Funds of the participating countries 1 DOCUMENT DATA Title Wiki page related to species information including from D4.X.1 Authors Yiota Lazarou1, Antonis Petrou2, George Othonos3, Soteria- Irene Hadjieftychiou2, Evi Geka3, Thanasis Mantes3, Dimitar Berov4, Stefania Klayn4, Christina Pavloudi5, Giorgos Chatzigeogriou5, Pavlos Diplaros1, Spyros Sfenthourakis1, Christos Arvanitidis5 Affiliation Department of Biological Sciences of the University of Cyprus1, AP Marine Environmental Consultancy Ltd 2, G.E GEOMETRIKI LTD3, Institute of Biodiversity and Ecosystem Research4, Hellenic Centre for Marine Research5 Point of Contact Yiota Lazarou Note: AP Marine Environmental Consultancy Ltd and G.E GEOMETRIKI LTD are the External Experts of DBS-UCY for project RECONNECT Project co-funded by the European Union and National Funds of the participating countries 2 CONTENTS 1. INTRODUCTION ........................................................................................................... 5 1.1 Deliverable’s objective ...................................................................................................................
    [Show full text]
  • Dynamic Evolutionary Change in Post-Paleozoic Echinoids and the Importance of Scale When Interpreting Changes in Rates of Evolution
    Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution Melanie J. Hopkinsa,1 and Andrew B. Smithb aDivision of Paleontology, American Museum of Natural History, New York, NY 10024; and bDepartment of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom Edited by Mike Foote, The University of Chicago, Chicago, IL, and accepted by the Editorial Board January 18, 2015 (received for review September 19, 2014) How ecological and morphological diversity accrues over geo- component of both past and present marine ecosystems (e.g., logical time has been much debated by paleobiologists. Evidence refs. 20–22). However, analysis of how this diversity arose has from the fossil record suggests that many clades reach maximal either been based on taxonomic counts (e.g., ref. 23) or has diversity early in their evolutionary history, followed by a decline adopted a morphometric approach where the requirement of a in evolutionary rates as ecological space fills or due to internal homologous set of landmarks limits taxonomic, temporal, and constraints. Here, we apply recently developed methods for esti- geographic scope (e.g., ref. 24). We use a discrete-character- mating rates of morphological evolution during the post-Paleozoic based approach and a recent taxonomically comprehensive history of a major invertebrate clade, the Echinoidea. Contrary to analysis of post-Paleozoic echinoids as our phylogenetic frame- expectation, rates of evolution were lowest during the initial phase work (25). This tree is almost entirely resolved (SI Appendix, Fig. of diversification following the Permo-Triassic mass extinction and S1) and branches may be scaled using the first appearance of increased over time.
    [Show full text]
  • Phylogenomic Analyses of Echinoid Diversification Prompt a Re
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.453013; this version posted July 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenomic analyses of echinoid diversification prompt a re- 2 evaluation of their fossil record 3 Short title: Phylogeny and diversification of sea urchins 4 5 Nicolás Mongiardino Koch1,2*, Jeffrey R Thompson3,4, Avery S Hatch2, Marina F McCowin2, A 6 Frances Armstrong5, Simon E Coppard6, Felipe Aguilera7, Omri Bronstein8,9, Andreas Kroh10, Rich 7 Mooi5, Greg W Rouse2 8 9 1 Department of Earth & Planetary Sciences, Yale University, New Haven CT, USA. 2 Scripps Institution of 10 Oceanography, University of California San Diego, La Jolla CA, USA. 3 Department of Earth Sciences, 11 Natural History Museum, Cromwell Road, SW7 5BD London, UK. 4 University College London Center for 12 Life’s Origins and Evolution, London, UK. 5 Department of Invertebrate Zoology and Geology, California 13 Academy of Sciences, San Francisco CA, USA. 6 Bader International Study Centre, Queen's University, 14 Herstmonceux Castle, East Sussex, UK. 7 Departamento de Bioquímica y Biología Molecular, Facultad de 15 Ciencias Biológicas, Universidad de Concepción, Concepción, Chile. 8 School of Zoology, Faculty of Life 16 Sciences, Tel Aviv University, Tel Aviv, Israel. 9 Steinhardt Museum of Natural History, Tel-Aviv, Israel. 10 17 Department of Geology and Palaeontology, Natural History Museum Vienna, Vienna, Austria 18 * Corresponding author.
    [Show full text]
  • Rev. Invest. Mar. 2012, 32(2), 00-00 ISSN: 1991-6089 ISSN: 1991-6089
    revista de investigaciones marinas Rev. Invest. Mar. 2012, 32(2), 00-00 ISSN: 1991-6089 ISSN: 1991-6089 Invertebrados marinos de la zona central del golfo de Ana María, Cuba Leandro Rodríguez-Viera1 , Javier Rodríguez-Casariego1, José A. Pérez-García1, Yunier Olivera2, Orlando Perera-Pérez1. 1Centro de Investigaciones Marinas, Universidad de la Habana, Calle 16, No. 114 e/ 1ra y 3ra, Miramar, La Habana CP. 11300, Cuba. 2Centro de Investigaciones de Ecosistemas Costeros, Ministerio de Ciencia, Tecnología y Medio Ambiente, Cayo Coco, CP. 69400, Provincia Ciego de Ávila, Cuba. RESUMEN En la actualidad existe poca información sobre la diversidad biológica en el golfo de Ana María dado que la mayoría de los estudios realizados sobre esta área tienen un enfoque pesquero o hidrológico. Esto provocó que en el año 2011 se iniciara un proyecto de investigación para contribuir en el llenado de este vacío de información. En este trabajo se presenta una lista de 105 nombres de especies de invertebrados marinos identificados en la zona central del golfo de Ana María. Los moluscos fueron los más representados con un total de 43 especies que constituyen el 40,9% de las especies identificadas, seguido por los equinodermos con 26 especies que representan el 24,8% del total. La mayor riqueza de especies se encontró en los cayos de mayor área (Cuervo, Algodón Grande y Bergantines). Estos resultados constituyen un punto de referencia para futuras investigaciones que profundicen en el estudio de la diversidad y ecología de los invertebrados marinos en el área muestreada y otras zonas del golfo. Palabras clave: Cuba, golfo de Ana María, invertebrados marinos, lista de especies.
    [Show full text]
  • A Phylogenomic Resolution of the Sea Urchin Tree of Life Nicolás Mongiardino Koch1* , Simon E
    Mongiardino Koch et al. BMC Evolutionary Biology (2018) 18:189 https://doi.org/10.1186/s12862-018-1300-4 RESEARCH ARTICLE Open Access A phylogenomic resolution of the sea urchin tree of life Nicolás Mongiardino Koch1* , Simon E. Coppard2,3, Harilaos A. Lessios3, Derek E. G. Briggs1,4, Rich Mooi5 and Greg W. Rouse6 Abstract Background: Echinoidea is a clade of marine animals including sea urchins, heart urchins, sand dollars and sea biscuits. Found in benthic habitats across all latitudes, echinoids are key components of marine communities such as coral reefs and kelp forests. A little over 1000 species inhabit the oceans today, a diversity that traces its roots back at least to the Permian. Although much effort has been devoted to elucidating the echinoid tree of life using a variety of morphological data, molecular attempts have relied on only a handful of genes. Both of these approaches have had limited success at resolving the deepest nodes of the tree, and their disagreement over the positions of a number of clades remains unresolved. Results: We performed de novo sequencing and assembly of 17 transcriptomes to complement available genomic resources of sea urchins and produce the first phylogenomic analysis of the clade. Multiple methods of probabilistic inference recovered identical topologies, with virtually all nodes showing maximum support. In contrast, the coalescent-based method ASTRAL-II resolved one node differently, a result apparently driven by gene tree error induced by evolutionary rate heterogeneity. Regardless of the method employed, our phylogenetic structure deviates from the currently accepted classification of echinoids, with neither Acroechinoidea (all euechinoids except echinothurioids), nor Clypeasteroida (sand dollars and sea biscuits) being monophyletic as currently defined.
    [Show full text]
  • 7Ec6-47C3-9C8f-5F7c78bb7fdb.Txt
    Dépôt Institutionnel de l’Université libre de Bruxelles / Université libre de Bruxelles Institutional Repository Thèse de doctorat/ PhD Thesis Citation APA: Rolet, G. (2012). Structure et rôle du caecum gastrique des échinides détritivores: étude particulière d'Echinocardium cordatum, Echinoidea: Spatangoida (Unpublished doctoral dissertation). Université libre de Bruxelles, Faculté des Sciences – Sciences biologiques, Bruxelles. Disponible à / Available at permalink : https://dipot.ulb.ac.be/dspace/bitstream/2013/209654/5/c258d843-7ec6-47c3-9c8f-5f7c78bb7fdb.txt (English version below) Cette thèse de doctorat a été numérisée par l’Université libre de Bruxelles. L’auteur qui s’opposerait à sa mise en ligne dans DI-fusion est invité à prendre contact avec l’Université ([email protected]). Dans le cas où une version électronique native de la thèse existe, l’Université ne peut garantir que la présente version numérisée soit identique à la version électronique native, ni qu’elle soit la version officielle définitive de la thèse. DI-fusion, le Dépôt Institutionnel de l’Université libre de Bruxelles, recueille la production scientifique de l’Université, mise à disposition en libre accès autant que possible. Les œuvres accessibles dans DI-fusion sont protégées par la législation belge relative aux droits d'auteur et aux droits voisins. Toute personne peut, sans avoir à demander l’autorisation de l’auteur ou de l’ayant-droit, à des fins d’usage privé ou à des fins d’illustration de l’enseignement ou de recherche scientifique, dans la mesure justifiée par le but non lucratif poursuivi, lire, télécharger ou reproduire sur papier ou sur tout autre support, les articles ou des fragments d’autres œuvres, disponibles dans DI-fusion, pour autant que : - Le nom des auteurs, le titre et la référence bibliographique complète soient cités; - L’identifiant unique attribué aux métadonnées dans DI-fusion (permalink) soit indiqué; - Le contenu ne soit pas modifié.
    [Show full text]