Manual for Assessing Hydraulic Safety of Existing Dams - Volume I

Total Page:16

File Type:pdf, Size:1020Kb

Manual for Assessing Hydraulic Safety of Existing Dams - Volume I Manual for Assessing Hydraulic Safety of Existing Dams - Volume I Doc. No. CDSO_MAN_DS_04_v1.0 June 2021 Central Water Commission Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation Government of India Front Cover Photograph: Sardar Sarovar Dam (India) during the monsoon flood. Copyright © 2020 Central Water Commission. All rights reserved. This publication is copyright and may not be resold or reproduced in any manner without the prior consent of Central Water Commis- sion. Government of India Central Water Commission Central Dam Safety Organization Manual for Assessing Hydraulic Safety of Existing Dams June 2021 Dam Safety Rehabilitation Directorate 3rd Floor, New Library Building R. K. Puram New Delhi - 110066 Doc. No. CDSO_MAN_DS_04_v1.0 Page i Government of India Central Water Commission Central Dam Safety Organization Disclaimer The Central Water Commission under the Dam Safety and Improvement Project has undertaken to prepare this Manual for Assessing Hydraulic Safety of Existing Dams to provide necessary guidance for ensuring the safety of existing dams against adverse hydrologic and hydraulic events. The design studies and measures required will vary from dam to dam depending on the type of prob- lems encountered. While every effort has been taken to incorporate all basic details as per the latest state of the art, yet it is not possible to cover all the conditions/problems which may be faced in the field. CWC absolves itself from any responsibility in this regard and dam owners and others involved with the dam rehabilitation activity should use their discretion in imple- menting the guidelines contained in this Manual. For any information, please contact: The Director Dam Safety Rehabilitation Directorate Central Dam Safety Organization Central Water Commission 3rd Floor, New Library Building (Near Sewa Bhawan) R. K. Puram, New Delhi – 110066. Email: [email protected] Doc. No. CDSO_MAN_DS_04_v1.0 Page ii MESSAGE The Central Water Commission has been publishing various Guidelines and Manuals in the area of dam safety under the World Bank assisted Dam Rehabilitation and Improvement Project. This Manual titled ‘Manual for Assessing Hydraulic Safety of Existing Dams’ is intended to provide dam safety professionals with wealth of information and references on various aspects related to the hydraulic safety of existing dams, reservoirs and their appurtenant works, aiming to ensure safety of the dam and minimizing the risk to which the downstream population may be subject to, due to any dam incidents or failures. Hydraulic Safety of existing dams is an important concern amongst the dam owning agencies. This publication presents detailed aspects regarding assessment, evaluation and rehabilitation of hydraulic structures including spillways, outlet works and energy dissipation arrangements in existing dams. The document provides information for identifying and dealing with typical haz- ards related to hydraulic functioning. A number of case studies and failure modes catalogue are included in order to facilitate in a better understanding of the mechanics associated with various hydraulic problems/issues. This Manual is expected to assist dam engineering community for managing the safety of dam- reservoir systems during their operative life. The procedures, techniques and measures prescribed through various chapters of this document follow contemporary global best practices related to review of hydraulic safety of an existing dam and associated appurtenant structures both for the existing design flood as well as for the revised design flood. I hope, this Manual can be used as an excellent reference material by our engineers/dam owners while carrying out comprehensive hydraulic safety review and appropriate planning for rehabilitation of their dams. The contents of this publication is well organized and would provide readers with clear understanding of hydraulic problems in dams and the possible remedial measures for improving the health and safety of dams in a systematic manner. (S K Haldar) New Delhi Chairman June 2021 Central Water Commission Doc. No. CDSO_MAN_DS_04_v1.0 Page iii This page has been left blank intentionally. Doc. No. CDSO_MAN_DS_04_v1.0 Page iv FOREWORD The existing dams need a sound hydraulic safety assessment in order to work out rehabilitation measures. The hydraulic design and performance is required to be reviewed for the existing dams in case revised design flood has increased significantly as a result of periodic safety reviews. It is often seen that there is a considerable upward revision in design flood in a large number of dams. Some dams may get overtopped owing to substantial increase in revised design floods. This Manual titled ‘Manual for Assessing Hydraulic Safety of Existing Dams’ deals with the hydraulic safety of all the components of the system viz. dam and reservoir, approach channel, different types of spillways, their control and conveyance structures, outlet works in earthen/masonry/concrete dams, their intake and conveyance structure, hydro-mechanical equipment, different types of energy dissipation arrangements, plunge pool and exit channel. Various hazards and their adverse response/effects on different components have been discussed under this document. The hazards are in general due to increase in design flood resulting in increase in MWL, reservoir sedimentation, obstructions due to floating debris/ice, inoperative gates, condition of concrete surface in conveyance structure and energy dissipater, effects of increase in discharge over spillway and energy dissipater, limitations in exit channel capacity, erosion of bed and banks of exit channel, etc. The adverse response/effects include lack of spillway capacity, dam overtopping, temporal loss of gates, lack of conveyance capacity, overtopping of chute/energy dissipater walls, damages due to abrasion/cavitation, increase in hydraulic and hydrodynamic loads in spillway and energy dissipater, malfunctioning of energy dissipater, instability of hydraulic jumps etc. For increasing the spillway capacity in addition to additional conventional spillways, the comparatively recent options of unconventional spillways which include fuse plug, labyrinth spillway, piano key spillway, fuse gates, fuse plug (concrete blocks), open channels (flush bars), overtopping of dam with protected section and stepped spillways have been discussed. Under energy dissipation various rehabilitation measures for increasing the capacity of terminal structures in spillways have been comprehensively covered. I hope that professionals engaged in the comprehensive safety review of dams will find this Manual very useful in managing the hydraulic safety aspects. I thank and compliment all the individuals who have contributed to the preparation of this Manual and hope that the efforts will go a long way in improving the dam safety environment in the country. Central Water Commission also acknowledges the special support given by all members of Review Committee in finalizing this Manual. ( Dr. R K Gupta ) New Delhi Member (D&R) June 2021 Central Water Commission Doc. No. CDSO_MAN_DS_04_v1.0 Page v This page has been left blank intentionally. Doc. No. CDSO_MAN_DS_04_v1.0 Page vi PREFACE This Manual provides access to the state-of-the-art information and references on various aspects related to the hydraulic safety of existing dams. A number of case studies and failure modes catalogue are included in order to facilitate in a better understanding of the various hydraulic problems which may lead to either partial or total failure of the works. All the documentation included is expected to be helpful in evaluation of the safety levels of the dam, spillway, outlet works, energy dissipation arrangements and other appurtenance works and in working out options for rehabilitation from the view point of Hydraulic safety. The Volume 1 of the Manual contains five chapters namely; Introduction, Dam and its Reservoir, Spillway, Outlet Works and Energy Dissipators. Each chapter contains an overview of the subject/component, description of the component, assessment of hydraulic safety of that component on account of various possible hazards/defects, rehabilitation measures which can be undertaken and lessons learnt along with some case studies for illustration. Some recent developments covered in the Manual are Overtopping protection for dams and different types of unconventional spillways. Introduction to risk analysis by identification of possible failure modes is also discussed. Various examples/case studies of documented cases included in the Manual are expected to help/contribute in understanding of the issues/problems related to Hydraulic Safety of a Dam-Reservoir System and its elements in right context. The Volume 2 of the Manual has six appendices. Appendix A represents an approach to the process of Risk Assessment and Management, which envisages identification of failure modes. More and less likely factors which could lead to development of a particular failure mode have been brought out. Also, an array of suggested actions has been included. Appendix B contains few case studies involving various types of incidents/failures in dams. This appendix contains failure of Upper dam (CFRD) of Taum Sauk Pumped Storage Hydro-Electric project, USA which was due to excessive pumping from the lower reservoir and failure of instrumentation systems leading to overtopping. The case study on Spencer Dam, USA is perhaps the first of a dam to fail
Recommended publications
  • The Alaknanda Basin (Uttarakhand Himalaya): a Study on Enhancing and Diversifying Livelihood Options in an Ecologically Fragile Mountain Terrain”
    Enhancing and Diversifying Livelihood Options ICSSR PDF A Final Report On “The Alaknanda Basin (Uttarakhand Himalaya): A Study on Enhancing and Diversifying Livelihood Options in an Ecologically Fragile Mountain Terrain” Under the Scheme of General Fellowship Submitted to Indian Council of Social Science Research Aruna Asaf Ali Marg JNU Institutional Area New Delhi By Vishwambhar Prasad Sati, Ph. D. General Fellow, ICSSR, New Delhi Department of Geography HNB Garhwal University Srinagar Garhwal, Uttarakhand E-mail: [email protected] Vishwambhar Prasad Sati 1 Enhancing and Diversifying Livelihood Options ICSSR PDF ABBREVIATIONS • AEZ- Agri Export Zones • APEDA- Agriculture and Processed food products Development Authority • ARB- Alaknanda River Basin • BDF- Bhararisen Dairy Farm • CDPCUL- Chamoli District Dairy Production Cooperative Union Limited • FAO- Food and Agricultural Organization • FDA- Forest Development Agency • GBPIHED- Govind Ballabh Pant Institute of Himalayan Environment and Development • H and MP- Herbs and Medicinal Plants • HAPPRC- High Altitude Plant Physiology Center • HDR- Human Development Report • HDRI- Herbal Research and Development Institute • HMS- Himalayan Mountain System • ICAR- Indian Council of Agricultural Research • ICIMOD- International Center of Integrated Mountain and Development • ICSSR- Indian Council of Social Science Research LSI- Livelihood Sustainability Index • IDD- Iodine Deficiency Disorder • IMDP- Intensive Mini Dairy Project • JMS- Journal of Mountain Science • MPCA- Medicinal Plant
    [Show full text]
  • River Ganga at a Glance: Identification of Issues and Priority Actions for Restoration Report Code: 001 GBP IIT GEN DAT 01 Ver 1 Dec 2010
    Report Code: 001_GBP_IIT_GEN_DAT_01_Ver 1_Dec 2010 River Ganga at a Glance: Identification of Issues and Priority Actions for Restoration Report Code: 001_GBP_IIT_GEN_DAT_01_Ver 1_Dec 2010 Preface In exercise of the powers conferred by sub‐sections (1) and (3) of Section 3 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government has constituted National Ganga River Basin Authority (NGRBA) as a planning, financing, monitoring and coordinating authority for strengthening the collective efforts of the Central and State Government for effective abatement of pollution and conservation of the river Ganga. One of the important functions of the NGRBA is to prepare and implement a Ganga River Basin: Environment Management Plan (GRB EMP). A Consortium of 7 Indian Institute of Technology (IIT) has been given the responsibility of preparing Ganga River Basin: Environment Management Plan (GRB EMP) by the Ministry of Environment and Forests (MoEF), GOI, New Delhi. Memorandum of Agreement (MoA) has been signed between 7 IITs (Bombay, Delhi, Guwahati, Kanpur, Kharagpur, Madras and Roorkee) and MoEF for this purpose on July 6, 2010. This report is one of the many reports prepared by IITs to describe the strategy, information, methodology, analysis and suggestions and recommendations in developing Ganga River Basin: Environment Management Plan (GRB EMP). The overall Frame Work for documentation of GRB EMP and Indexing of Reports is presented on the inside cover page. There are two aspects to the development of GRB EMP. Dedicated people spent hours discussing concerns, issues and potential solutions to problems. This dedication leads to the preparation of reports that hope to articulate the outcome of the dialog in a way that is useful.
    [Show full text]
  • Social and Environmental Effects of Bujagali Dam
    FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT Department of Building, Energy and Environmental Engineering SOCIAL AND ENVIRONMENTAL EFFECTS OF BUJAGALI DAM MUWUMUZA LINDA 2014 MASTER OF SCIENCE THESIS, Credits: H.E 30 DIVISION OF SUSTAINABLE ENERGY Supervisor: DR. JEEVAN JAYASURIYA A/PROF DR. JOHN BAPTIST KIRABIRA Dedication Well yes Mum, I did as we discussed and so this is for you. You spoke, I listened and this is the outcome. I pray you are proud of me. Love you always. Acknowledgements I would love to thank the following people for their contribution towards the finishing of my project. I would not have finished it successfully without you. My Family Daddy Angella Stephen Amanda College of Engineering, Design, Art and Technology My local facilitators Dr. Sabiiti Adam Hillary Kasedde My Supervisors Dr. Jeevan Jayasuriya Dr. John Baptist Kirabira The Ministry of Energy and Mineral Development especially: Eng. Moses Murengezi: Advisor to the Chairman Energy and Mining Sector Working group Eng. Paul Mubiru: Permanent Secretary, Ministry of Energy and Mineral Development The Bujagali Energy Limited Company especially: Mr. John Berry: Chief Executive Officer of BEL Ms. Achanga Jennifer: Environmental Engineer of BEL Francis Mwangi: Technical Manager Allan Ikahu: Infrastructure and Project Engineer My Friends: John, Anthony, Mue, Winnie, Arthur, Vincent, Hajarah, Fildah, Winnie, Richard and all the rest List of Acronyms ADB African Development Bank AES Applied Energy Services BEL Bujagali Energy Limited MEMD Ministry of Energy and Mineral Development NGO Non Government Organization O&M Energy Operations and Maintenance Energy Limited PAP Project Affected Persons USAID United States Agency for International Development Abstract There has been a steady increment in economic growth in Uganda and as the economy is on the rise, the demand for energy also increases.
    [Show full text]
  • List of Dams and Reservoirs 1 List of Dams and Reservoirs
    List of dams and reservoirs 1 List of dams and reservoirs The following is a list of reservoirs and dams, arranged by continent and country. Africa Cameroon • Edea Dam • Lagdo Dam • Song Loulou Dam Democratic Republic of Congo • Inga Dam Ethiopia Gaborone Dam in Botswana. • Gilgel Gibe I Dam • Gilgel Gibe III Dam • Kessem Dam • Tendaho Irrigation Dam • Tekeze Hydroelectric Dam Egypt • Aswan Dam and Lake Nasser • Aswan Low Dam Inga Dam in DR Congo. Ghana • Akosombo Dam - Lake Volta • Kpong Dam Kenya • Gitaru Reservoir • Kiambere Reservoir • Kindaruma Reservoir Aswan Dam in Egypt. • Masinga Reservoir • Nairobi Dam Lesotho • Katse Dam • Mohale Dam List of dams and reservoirs 2 Mauritius • Eau Bleue Reservoir • La Ferme Reservoir • La Nicolière Reservoir • Mare aux Vacoas • Mare Longue Reservoir • Midlands Dam • Piton du Milieu Reservoir Akosombo Dam in Ghana. • Tamarind Falls Reservoir • Valetta Reservoir Morocco • Aït Ouarda Dam • Allal al Fassi Dam • Al Massira Dam • Al Wahda Dam • Bin el Ouidane Dam • Daourat Dam • Hassan I Dam Katse Dam in Lesotho. • Hassan II Dam • Idriss I Dam • Imfout Dam • Mohamed V Dam • Tanafnit El Borj Dam • Youssef Ibn Tachfin Dam Mozambique • Cahora Bassa Dam • Massingir Dam Bin el Ouidane Dam in Morocco. Nigeria • Asejire Dam, Oyo State • Bakolori Dam, Sokoto State • Challawa Gorge Dam, Kano State • Cham Dam, Gombe State • Dadin Kowa Dam, Gombe State • Goronyo Dam, Sokoto State • Gusau Dam, Zamfara State • Ikere Gorge Dam, Oyo State Gariep Dam in South Africa. • Jibiya Dam, Katsina State • Jebba Dam, Kwara State • Kafin Zaki Dam, Bauchi State • Kainji Dam, Niger State • Kiri Dam, Adamawa State List of dams and reservoirs 3 • Obudu Dam, Cross River State • Oyan Dam, Ogun State • Shiroro Dam, Niger State • Swashi Dam, Niger State • Tiga Dam, Kano State • Zobe Dam, Katsina State Tanzania • Kidatu Kihansi Dam in Tanzania.
    [Show full text]
  • Kukdeshwar, Nayagaon, Sarwaniya Maharaj & Nagri Towns Water S
    Initial Environmental Examination Document Stage: Draft Project Number: 42486-016 September 2016 IND: Madhya Pradesh Urban Services Improvement Program – Water Supply Improvement in Athana, Kukdeshwar, Nayagaon, Sarwaniya Maharaj and Nagri Package No: MPUSIP-3A Prepared by Madhya Pradesh Urban Development Company, Government of Madhya Pradesh for the Asian Development Bank. This initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Draft Initial Environmental Examination October 2017 IND: Madhya Pradesh Urban Services Improvement Program –Subproject of Water Supply Improvement in Kukdeshwar, Nayagaon, Sarwaniya Maharaj & Nagri Towns (Package 3A) Prepared by Project Management Unit, Madhya Pradesh Urban Development Company, Government of Madhya Pradesh for the Asian Development Bank CURRENCY EQUIVALENTS (as of 1 Dec2015) Currency unit – Conversion INR1.00 = $.0.015 $1.00 = INR 66.00 Abbreviations AC – Asbestos Cement ADB – Asian Development Bank ASO – Assistant Safeguards Officer CFE – Consent for Establishment CFO – Consent for Operation CPCB Central Pollution Control Board EA – Executing
    [Show full text]
  • GRMB Annual Report 2017-18
    Government of India Ministry of Water Resources, RD & GR Godavari River Management Board ANNUAL REPORT 2017-18 GODAVARI BASIN – Dakshina Ganga Origin Brahmagiri near Trimbakeshwar, Nasik Dist., Maharashtra Geographical Area 9.50 % of Total GA of India Area & Location Latitude - 16°19’ to 22°34’ North Longitude – 73°24’ to 83° 4’ East Boundaries West: Western Ghats North: Satmala hills, the Ajanta range and the Mahadeo hills East: Eastern Ghats & the Bay of Bengal South: Balaghat & Mahadeo ranges stretching forth from eastern flank of the Western Ghats & the Anantgiri and other ranges of the hills and ridges separate the Gadavari basin from the Krishna basin. Catchment Area 3,12,812 Sq.km Length of the River 1465 km States Maharashtra (48.6%), Telangana (18.8%), Andhra Pradesh (4.5%), Chhattisgarh (10.9%), Madhya Pradesh (10.0%), Odisha (5.7%), Karnataka (1.4%) and Puducherry (Yanam) and emptying into Bay of Bengal Length in AP & TS 772 km Major Tributaries Pravara, Manjira, Manair – Right side of River Purna, Pranhita, Indravati, Sabari – Left side of River Sub- basins Twelve (G1- G12) Dams Gangapur Dam, Jayakwadi dam, Vishnupuri barrage, Ghatghar Dam, Upper Vaitarna reservoir, Sriram Sagar Dam, Dowleswaram Barrage. Hydro power stations Upper Indravati 600 MW Machkund 120 MW Balimela 510 MW Upper Sileru 240 MW Lower Sileru 460 MW Upper Kolab 320 MW Pench 160 MW Ghatghar pumped storage 250 MW Polavaram (under 960 MW construction) ANNUAL REPORT 2017-18 GODAVARI RIVER MANAGEMENT BOARD 5th Floor, Jalasoudha, Errum Manzil, Hyderabad- 500082 FROM CHAIRMAN’S DESK It gives me immense pleasure to present the Annual Report of Godavari River Management Board (GRMB) for the year 2017-18.
    [Show full text]
  • The State of Venezuela's Forests
    ArtePortada 25/06/2002 09:20 pm Page 1 GLOBAL FOREST WATCH (GFW) WORLD RESOURCES INSTITUTE (WRI) The State of Venezuela’s Forests ACOANA UNEG A Case Study of the Guayana Region PROVITA FUDENA FUNDACIÓN POLAR GLOBAL FOREST WATCH GLOBAL FOREST WATCH • A Case Study of the Guayana Region The State of Venezuela’s Forests. Forests. The State of Venezuela’s Págs i-xvi 25/06/2002 02:09 pm Page i The State of Venezuela’s Forests A Case Study of the Guayana Region A Global Forest Watch Report prepared by: Mariapía Bevilacqua, Lya Cárdenas, Ana Liz Flores, Lionel Hernández, Erick Lares B., Alexander Mansutti R., Marta Miranda, José Ochoa G., Militza Rodríguez, and Elizabeth Selig Págs i-xvi 25/06/2002 02:09 pm Page ii AUTHORS: Presentation Forest Cover and Protected Areas: Each World Resources Institute Mariapía Bevilacqua (ACOANA) report represents a timely, scholarly and Marta Miranda (WRI) treatment of a subject of public con- Wildlife: cern. WRI takes responsibility for José Ochoa G. (ACOANA/WCS) choosing the study topics and guar- anteeing its authors and researchers Man has become increasingly aware of the absolute need to preserve nature, and to respect biodiver- Non-Timber Forest Products: freedom of inquiry. It also solicits Lya Cárdenas and responds to the guidance of sity as the only way to assure permanence of life on Earth. Thus, it is urgent not only to study animal Logging: advisory panels and expert review- and plant species, and ecosystems, but also the inner harmony by which they are linked. Lionel Hernández (UNEG) ers.
    [Show full text]
  • Table of Contents
    Table of Contents Acknowledgements xi Foreword xii I. EXECUTIVE SUMMARY XIV II. INTRODUCTION 20 A. The Context of the SoE Process 20 B. Objectives of an SoE 21 C. The SoE for Uttaranchal 22 D. Developing the framework for the SoE reporting 22 Identification of priorities 24 Data collection Process 24 Organization of themes 25 III. FROM ENVIRONMENTAL ASSESSMENT TO SUSTAINABLE DEVELOPMENT 34 A. Introduction 34 B. Driving forces and pressures 35 Liberalization 35 The 1962 War with China 39 Political and administrative convenience 40 C. Millennium Eco System Assessment 42 D. Overall Status 44 E. State 44 F. Environments of Concern 45 Land and the People 45 Forests and biodiversity 45 Agriculture 46 Water 46 Energy 46 Urbanization 46 Disasters 47 Industry 47 Transport 47 Tourism 47 G. Significant Environmental Issues 47 Nature Determined Environmental Fragility 48 Inappropriate Development Regimes 49 Lack of Mainstream Concern as Perceived by Communities 49 Uttaranchal SoE November 2004 Responses: Which Way Ahead? 50 H. State Environment Policy 51 Institutional arrangements 51 Issues in present arrangements 53 Clean Production & development 54 Decentralization 63 IV. LAND AND PEOPLE 65 A. Introduction 65 B. Geological Setting and Physiography 65 C. Drainage 69 D. Land Resources 72 E. Soils 73 F. Demographical details 74 Decadal Population growth 75 Sex Ratio 75 Population Density 76 Literacy 77 Remoteness and Isolation 77 G. Rural & Urban Population 77 H. Caste Stratification of Garhwalis and Kumaonis 78 Tribal communities 79 I. Localities in Uttaranchal 79 J. Livelihoods 82 K. Women of Uttaranchal 84 Increased workload on women – Case Study from Pindar Valley 84 L.
    [Show full text]
  • Sewage Canal: How to Clean the Yamuna
    SewageSewage Canal:Canal: HowHow toto CleanClean thethe YamunaYamuna SewageSewage Canal:Canal: HowHow toto CleanClean thethe YamunaYamuna About Yamuna. But not just Yamuna • Every river, every lake, every water body getting polluted. Full of our sewage. • We take water, return sewage. • 80% of water leaves as sewage • Cities are growing, need more water, discharge more pollution. • Dirty water means ill health: biggest cause of children’s death. BBee angry. Not acceptable. SewageSewage Canal:Canal: HowHow toto CleanClean thethe YamunaYamuna Water wars within Becoming urban. Remaining rural. Pollution will add to water stress. Cannot allow it. Have to build cities without pollution. SewageSewage Canal:Canal: HowHow toto CleanClean thethe YamunaYamuna Water ‘wars’ happening between old users and new users… • Not full blown wars – skirmishes; • Tonk district: farmers fight against water allocation to Jaipur and Ajmer; • Veeranam lake: farmers fight against water allocation to Chennai; • Vishakapatnam: farmers fight Jindal project for its water allocation. Say their water is already going to city; • Bharatpur: farmers stop biomass project saying it will use their water….. SewageSewage Canal:Canal: HowHow toto CleanClean thethe YamunaYamuna Can’t afford to pollute • Are river action plans working? • Cities water need will grow… • They will take water upstream; discharge waste downstream; take clean water, release dirty water • Reduce the water availability; increase stress; increase in incidence of disease • Understand Yamuna to understand India’s water future SewageSewage Canal:Canal: HowHow toto CleanClean thethe YamunaYamuna 22 Km stretch in Delhi contributes 70 per cent of the total pollution load of the river SewageSewage Canal:Canal: HowHow toto CleanClean thethe YamunaYamuna Yamuna a dirty drain of Delhi (BOD levels) SewageSewage Canal:Canal: HowHow toto CleanClean thethe YamunaYamuna DDOOan levels: umYa a.Yamuna eds d i anis dead.
    [Show full text]
  • Indus Water Treaty Summary in Hindi
    Indus Water Treaty Summary In Hindi Jeth besmears his grouser underwork imprimis or immaterially after Iggie showcase and resorb speculatively, Prevailingcommon and Orrin pantheist. put ubique. Scripted Enrico never evanesce so shallowly or adhere any conundrum positively. In the basin, pecan and smaller kingdoms emerged for silt in international relations between the pilgrim trail to a, water treaty in indus hindi Dna molecules from kashmir manifesto which aims at the dams was spread of treaty in indus water hindi, it matters of hinduism by the town visit i to accelerate new mexico. Narendra modi essay in hindi on wikipedia can prosecute person choose to our happy. Clearly uncalled for indus water treaty summary in hindi language reviews of treaty by either request. Pakistan to have not good topics to turn leads past. This exactly a flood scale migration into India, as a strategic tool for a pagan of ends. Pakistan from all in hindi language or inequitable sharing. Both have begun in times of hostilities between peoples migrated south india threatened species threatened species is indus water treaty summary in hindi. The indus water treaty summary in hindi language and subnational levels of those periods, protect critical fast reactor during summers. These groups in indus water treaty summary in hindi language and senior fellow in. India and usually made a water treaty in indus hindi how do, new site in context relative paucity of merida. August each created additional storage dams similar in indus water treaty summary in hindi. Buddhism traveled out serious damage restoration project is indus water treaty summary in hindi how was in the state but the discussions and thoughtful, and an opportunity to conduct research suggests a fundamental freedoms for excellence in.
    [Show full text]
  • Efficacy of Grout Curtain at Ramganga Dam M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (1984) - First International Conference on Case Geotechnical Engineering Histories in Geotechnical Engineering 08 May 1984, 10:15 am - 5:00 pm Efficacy of outGr Curtain at Ramganga Dam M. C. Goel University of Roorkee, Roorkee, India B. N. Sharma Flood Control Department, Gauhati-3, Assam, India Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Goel, M. C. and Sharma, B. N., "Efficacy of outGr Curtain at Ramganga Dam" (1984). International Conference on Case Histories in Geotechnical Engineering. 11. https://scholarsmine.mst.edu/icchge/1icchge/1icchge-theme3/11 This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Efficacy of Grout Curtain at Ramganga Dam M. C. Goel Professor, Water Resources Development Training Centre, University of Roorkee, Roorkee, India B. N. Sharma Assistant Engineer, Flood Control Department, Gauhati-3, Assam, India SYNOPSIS The analysis of foundation piezometer records at main dam and saddle dam of Ramganga Pro­ ject, has indicated that the single row grout curtain at main dam, is ineffective so far as the hydrostatic pressure reduction in foundation is concerned, whereas under similar conditions,upstream impervious blanket at saddle dam, is more effective in pressure reduction.
    [Show full text]
  • Coal Power Station
    Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Coal Power Station ( Fly Ash , Bottom Ash & Flue Gas Desulfurization ) BY Tarek Ismail Kakhia 1 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Contents No Item Page 1 Fossil - fuel power station 3 2 Chimney 11 3 Fly Ash -1 21 4 Fly Ash -2 44 5 Electrostatic precipitator 44 4 Bottom Ash 52 7 Flue - Gas Desulfurization ( FGD ) 53 8 Flue-gas emissions from fossil-fuel combustion 44 1 Flue - gas stack 47 10 Calcium Sulfite 72 11 Calcium bi sulfite 73 12 Calcium sulfate 74 2 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Fossil - fuel power station Contents 1 Basic concepts o 1.1 Heat into mechanical energy 2 Fuel transport and delivery 3 Fuel processing 4 Steam - electric 5 Gas turbine plants 6 Reciprocating engines 7 Environmental impacts o 7.1 Carbon dioxide o 7.2 Particulate matter o 7.3 Radioactive trace elements o 7.4 Water and air contamination by coal ash . 7.4.1 Range of mercury contamination in fish 8 Greening of fossil fuel power plants o 8.1 Low NOx Burners o 8.2 Clean coal 9 Combined heat and power 10 Alternatives to fossil fuel power plants o 10.1 Relative cost by generation source - Introduction : A fossil - fuel power station is a power station that burns fossil fuels such as coal, natural gas or petroleum (oil) to produce electricity. Central station fossil - fuel power plants are designed on a large scale for continuous operation. In many countries, such plants provide most of the electrical energy used.
    [Show full text]