Tuyas: a Descriptive Genetic Classification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Azas Plateau in Southern Siberia: a Proposed Terrestrial Analogue Site for Ice-Magma-Flood Processes on Mars
Lunar and Planetary Science XXXVII (2006) 1065.pdf THE AZAS PLATEAU IN SOUTHERN SIBERIA: A PROPOSED TERRESTRIAL ANALOGUE SITE FOR ICE-MAGMA-FLOOD PROCESSES ON MARS. G. Komatsu1, G. G. Ori1, S. G. Arzhannikov2 and A. V. Arzhannikova2, 1International Research School of Planetary Sciences, Università "G. d'Annunzio", Viale Pindaro 42, 65127 Pescara, Italy; 2The Institute of the Earth's Crust Russian Academy of Sciences, Siberian Branch Lermontova 128, 664033 Irkutsk Russia. Introduction: Recent Mars missions have opened using the K-Ar dating technique [9, 10]. These two a new level of geological investigation on the red studies have a wide range of discrepancies for the age planet. And more than ever understanding of estimates. But it is reasonable to state that the Azas processes, in particular of ice-magma inactions and lava plateau began to form during the Late Pliocene related flooding, is becoming crucial [e.g., 1, 2]. and its volcanism continued during the Pleistocene. Terrestrial analog studies have been proven to be Past studies of the Azas Plateau have focused useful in providing insights on such processes. In the mostly on geochemistry and chronology of the past, Iceland has been the most studied and volcanics. We are conducing primarily referenced as a terrestrial analog site for ice-magma geomorphological investigation of various landforms in the Azas Plateau in order to understand physical interactions [e.g., 3] but examples of such processes processes responsible for the creation of them. The can be found also in Antarctica [e.g., 4] and in results of the geomorphological investigation will be Canada [e.g., 5]. -
2014 Department Newsletter
Earth Sciences Newsletter 2014 The Dickin-stone-ian Department of Earth Sciences Participates in Baffin Island Field Trip by Marcus Key Thanks to the generosity of John (GEOL ‘78) and Susan Pohl (‘80), Professor Marcus Key, Liz Plascencia (ERSC ‘16), Melanie Campbell (ERSC ‘15), Leslie Milliman (ERSC ‘14) and Aleks Perpalaj (ERSC ‘14) were able to participate in an 11 day trip to Baffin Island to experience the geologic wonders of the Canadian high Arctic. In early August 2013, we set up two base camps by boat from Pond Inlet on Baffin Island at 73 degrees North latitude. The first was on Bylot Island where we did day hikes to Cretaceous sandstone outcrops (DSCN2094) and the Sirmilik glacier. The second was on Curry Island where we sea kayaked in a fjord carved into Precambrian metamorphics (DSCN2332) with narwhals. There were many firsts for us: first 24 hour daylight, first fresh polar bear tracks, first narwhals, first time sea kayaking in a fjord, and first time sea Kayaking around an iceberg. For additional photos of the trip visit our website. http://www.dickinson.edu/galleries/gallery/167/ baffin_island_field_trip Inside this issue: Department and Campus 1 News 2-7 A Letter from the Chair 4-5 Senior Research Projects 8-11 Faculty Publications 12-16 Faculty Updates 17-21 Alumni Updates 22-34 Contact Information 35 Greenland Expedition 2014 By Ben Edwards Thanks to the ongoing generosity of John (GEOL ’78) and Susan Pohl (’80), the Earth Sciences department sent another five member team (Ben Edwards, Ariana Auerbach ‘16, Katie Mattern ‘16, Amanda Santilla ‘17, Will Kochtitzky ‘16) to explore geology and climate change, this time near the second largest ice sheet on earth in Greenland. -
The Tuya-Teslin Areal Northern British Columbia
BRITISH COLUMBIA DEPARTMENT OF MINES HON. E. C. CARSON, Minister JOHN F. WALKER, Dopulu Minis/#, BULLETIN No. 19 THE TUYA-TESLIN AREAL NORTHERN BRITISH COLUMBIA by K. DeP. WATSON and W. H.MATHEWS 1944 CONTENTS. P*GS SUMMARY.................................................................................................................................... 5 CHAPTER I.-Introduction ....................................................................................................... 6 Location............................................................................................................................. 6 Access................................................................................................................................. 7 Field-work .......................................................................................................................... 7 Acknowledgments ............................................................................................................. 7 Previous Work.................................................................................................................. 8 CHAPTER11.- I Topography ........................................................................................................................ 9 Kawdy Plateau.......................................................................................................... 9 Trenches ...................................................................................................................... 9 Teslin -
Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust. -
Pleistocene Volcanism in the Anahim Volcanic Belt, West-Central British Columbia
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-10-24 A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia Kuehn, Christian Kuehn, C. (2014). A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25002 http://hdl.handle.net/11023/1936 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia by Christian Kuehn A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA OCTOBER, 2014 © Christian Kuehn 2014 Abstract Alkaline and peralkaline magmatism occurred along the Anahim Volcanic Belt (AVB), a 330 km long linear feature in west-central British Columbia. The belt includes three felsic shield volcanoes, the Rainbow, Ilgachuz and Itcha ranges as its most notable features, as well as regionally extensive cone fields, lava flows, dyke swarms and a pluton. Volcanic activity took place periodically from the Late Miocene to the Holocene. -
Glaciovolcanic Megapillows of Undirhlíđar, Reykjanes Peninsula, Southwestern Iceland
GLACIOVOLCANIC MEGAPILLOWS OF UNDIRHLÍĐAR, REYKJANES PENINSULA, SOUTHWESTERN ICELAND Rachel Heineman Honors Research in Geology Dr. F. Zeb Page, Thesis Advisor Oberlin College 2016-2017 ABSTRACT At Undirhlíðar tindar on the Reykjanes Peninsula, southwestern Iceland, megapillows are among the features formed during a series of ridge-building glaciovolcanic eruptions. Mapping of the northeastern 3 km of the ridge and petrographic and geochemical analysis of the megapillow outcrops occurring throughout this area demonstrate their role in the multi-stage construction of the ridge modeled by Pollock et al. (2014). The outcrops exhibit radial jointing, bands of vesicles and glassy rims; they occur in high relief surrounded by basalt breccia resembling pillow rubble, and are composed of plagioclase-phyric olivine basalt with plagioclase-rich groundmass. They occur in multiple pillow lava units formed from two distinct magma batches. Two groups of outcrops are represented that are petrographically, geochemically and geographically distinct; the first group is near to and consistent with the pillow units of Undirhlíðar quarry described by Pollock et al. (2014), and the second group, located near the tephra cone, is derived from a more evolved unit of the same magma. Megapillows show significant plagioclase accumulation with variable phenocryst zoning, indicating the movement of multiple pulses of magma through the megapillows. Megapillows at Undirhlíðar may represent a significant mechanism, demonstrated elsewhere at a marine megapillow by Goto and McPhie (2004), for magmatic distribution: feeding and then overrunning pillows which propagate and are fed from their basal margins at the eruptive front. INTRODUCTION Pillow lavas are among the most common lava morphologies on Earth, yet the construction of pillow-dominated volcanoes is not widely understood due to the relative inaccessibility of the submarine environments in which they form. -
Preliminary Results of Field Mapping, Petrography, and GIS Spatial Analysis of the West Tuya Lava Field, Northwestern British Columbia
Geological Survey of Canada CURRENT RESEARCH 2005-A2 Preliminary results of field mapping, petrography, and GIS spatial analysis of the West Tuya lava field, northwestern British Columbia K. Wetherell, B. Edwards, and K. Simpson 2005 Natural Resources Ressources naturelles Canada Canada ©Her Majesty the Queen in Right of Canada 2005 ISSN 1701-4387 Catalogue No. M44-2005/A2E-PDF ISBN 0-662-41122-6 A copy of this publication is also available for reference by depository libraries across Canada through access to the Depository Services Program's website at http://dsp-psd.pwgsc.gc.ca A free digital download of this publication is available from GeoPub: http://geopub.nrcan.gc.ca/index_e.php Toll-free (Canada and U.S.A.): 1-888-252-4301 All requests for permission to reproduce this work, in whole or in part, for purposes of commercial use, resale, or redistribution shall be addressed to: Earth Sciences Sector Information Division, Room 402, 601 Booth Street, Ottawa, Ontario K1A 0E8. Authors’ addresses K. Wetherell ([email protected]) B. Edwards ([email protected]) Department of Geology Dickinson College P.O. Box 1773 Carlisle, Pennsylvania U.S.A. 17013 K. Simpson ([email protected]) 605 Robson Street, Suite 101 Vancouver, British Columbia V6B 5J3 Publication approved by GSC Pacific Original manuscript submitted: 2005-04-21 Final version approved for publication: 2005-05-26 Preliminary results of field mapping, petrography, and GIS spatial analysis of the West Tuya lava field, northwestern British Columbia K. Wetherell, B. Edwards, and K. Simpson Wetherell, K., Edwards, B., and Simpson, K., 2005: Preliminary results of field mapping, petrography, and GIS spatial analysis of the West Tuya lava field, northwestern British Columbia; Geological Survey of Canada, Current Research 2005-A2, 10 p. -
Recognizing Ice-Contact Trachyte-Phonolite Lavas at The
RECOGNIZING ICE-CONTACT TRACHYTE-PHONOLITE LAVAS AT THE MOUNT EDZIZA VOLCANIC COMPLEX, BRITISH COLUMBIA, CANADA by Kristen A. LaMoreaux B.S., Kent State University, 2002 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH ARTS AND SCIENCES This thesis was presented by Kristen A. LaMoreaux It was defended on June 17, 2008 and approved by Dr. Michael Ramsey Dr. Thomas Anderson Thesis Director: Dr. Ian Skilling ii Copyright © by Kristen A. LaMoreaux 2008 iii RECOGNIZING ICE-CONTACT TRACHYTE-PHONOLITE LAVAS AT THE MOUNT EDZIZA VOLCANIC COMPLEX, BRITISH COLUMBIA, CANADA Kristen A. LaMoreaux, M.S. University of Pittsburgh, 2008 Mount Edziza Volcanic Complex (MEVC) lies within the Northern Cordilleran Volcanic Province (NCVP), in northwest British Columbia, Canada. The eruption products have been emplaced in a variety of subaerial, sub-ice and subaqueous environments from about 8Ma to less than 2000 y.b.p. (Souther, 1992). Ice Peak Formation (IPF) trachyte lava flows of approximately 1Ma age (Souther, 1992) are exposed at Ornostay Bluff (OB) and Koosick Bluff (KB). These flows comprise basal flow breccias overlain by massive conchoidally-fractured lava with large, poorly-developed columns, and local flow banding. Edziza Formation (EF) approximately 1Ma (Souther, 1992) phonolite is exposed at Triangle Dome (TD). TD can broadly be divided into an upper and lower zone. The upper zone comprises poorly-developed columns in addition to prominent jointing. In the lower zone the columns are planar and 75cm- 3m-wide in the interior of the complex grading into fan-like and curved subhorizontal columns <75cm-wide in the outer margins of the lower zone. -
The Mechanics of Subglacial Basaltic Lava Flow Emplacement: Inferring Paleo-Ice Conditions
THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS by Jefferson D. G. Hungerford B. S. in Geology, University of Washington, 2002 Submitted to the Graduate Faculty of The Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH FACULTY OF THE KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Jefferson D. G. Hungerford It was defended on November 8, 2013 and approved by Dr. William Harbert, Professor, Department of Geology and Planetary Science Dr. Thomas A. Anderson, Professor Emeritus, Department of Geology and Planetary Science Dr. Daniel J. Bain, Assistant Professor, Department of Geology and Planetary Science Dr. Tracy K. P. Gregg, Associate Professor, Department of Geology, University at Buffalo Dissertation Advisor: Dr. Michael S. Ramsey, Professor, Department of Geology and Planetary Science ii Copyright © by Jefferson D. G. Hungerford 2013 iii THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS Jefferson D. G. Hungerford, PhD University of Pittsburgh, 2013 Recent studies of terrestrial glaciovolcanic terrains have elucidated the utility of volcanic deposits as recorders of ice conditions at the time of eruption. Practically all of these investigations, however, have focused upon the associations of volcaniclastic and coherent lava lithofacies at or proximal to the source vent. Very few studies have documented the emplacement of effusion-dominated, basaltic glaciovolcanic eruptions and their distal deposits that more accurately reveal paleo-ice conditions. Both Mauna Kea volcano, Hawaii and the Tennena volcanic center (TVC), on Mount Edziza, British Columbia, Canada, preserve records of interaction between coherent lavas and an ice sheet inferred to be associated with the last glacial maximum (LGM). -
Coding Manual 5.0
Coding Manual 5.0 MINFILE Coding Manual Version 5.0 Information Circular 2007- 4 Table of Contents Welcome to the new 2007 MINFILE Coding Manual. This manual is a guide to the collection and entry of data into the MINFILE database. It compliments the MINFILE/pc User's Manual, which provides instructions on installing, operating, and using the MINFILE/pc program. Online help is also available from the online coding card. For comprehensive information concerning the MINFILE/pc program refer to the MINFILE/pc User's Manual. 1. INTRODUCTION 2. GENERAL INFORMATION 3. OCCURRENCE IDENTIFICATION 3.1 Coding Activity 3.2 MINFILE Number 3.3 Name 3.4 Status 3.5 NTS Map 3.6 BC Map 3.7 Mining Division 3.8 Location 3.8.1 Latitude/Longitude 3.8.2 UTM Zone 3.8.3 UTM Northing 3.8.4 UTM Easting 3.9 Elevation 3.10 Location Certainty 3.11 Canmindex Number 3.12 National Mineral Inventory (NMI) Number 3.13 Date Coded/Coded by 3.14 Date Revised/Revised by 3.15 Field Check 3.16 Comments - Identification 4. MINERAL OCCURRENCE file:///C|/HardcopyManual/01_codetoc.htm (1 of 4)2007-09-20 4:09:02 PM Coding Manual 5.0 4.1 Commodities 4.2 Mineralogy 4.2.1 Comments - Mineralogy 4.3 Alteration Type 4.4 Deposit Character 4.5 Deposit Classification 4.6 Deposit Type 4.7 Age of Mineralization 4.8 Isotopic Age 4.9 Material Dated 4.10 Dating Method 4.11 Deposit Configuration 4.11.1 Shape 4.11.2 Shape Modifier 4.11.3 Deposit Dimension 4.12 Attitude 4.13 Comments - Structural and Age 5. -
Ray Fluorescence Analysis on Lithic Material Use at Two Rockshelter Sites on the Southern Northwest Coast
CHAPTER 5 Implications Between Technological Organization and Portable X- Ray Fluorescence Analysis on Lithic Material Use at Two Rockshelter Sites on the Southern Northwest Coast Rudy Reimer and Tyrone Hamilton Simon Fraser University ([email protected]; [email protected]) Introduction Igneous toolstone dominates artifact assemblages use patterns. along the Northwest Coast (Bakewell 1998; In this paper we ask, can x-ray fluorescence Kwarsick 2010; Reimer 2012). Until recently, the determine the differences between igneous source analysis of lithic assemblages on the Northwest materials? Moreover, can we apply these results to Coast contributed little to our broader artifact assemblages? Likewise, what is the role of understanding of the ancient life ways of a dynamic these materials at two archaeological sites in the range of cultures of this region. However, recent southern Northwest Coast region of British analyses by Hall (1998, 2003), Rahemtulla (1995, Columbia? Characterizing and eventual sourcing of 2006) and Reimer (2004, 2006, 2012) show for this lithic materials through elemental analysis provides region a wide range of variation between lithic a robust contribution to our developing workshops, habitation and seasonal camps sites in understanding of how these materials moved and different areas, time periods and associated circulated in and amongst cultural groups. cultures. However, many Northwest Coast archaeologists commonly assume that cores, tools Geological Background and debitage at the sites they are investigating originate from local sources (typically beaches, Geologically, the lithic landscape is built because creek and river beds), without full consideration of of plate tectonics and the numerous volcanoes of the variability of source materials that can exist the Pacific Ring of Fire that dominate the region from one assemblage to another. -
Origin Ofenigmatic Hills in the Ross Sea, Antarctica
Origin ofEnigmatic Hills in the Ross Sea, Antarctica A Senior Thesis Submitted in Partial Fulfillment ofthe Requirements for graduation with a Bachelor ofScience in the School ofEarth Sciences at The Ohio State University by William R. Magee The Ohio State University June 2009 Project Advisor: Terry J. Wilson, School ofEarth Sciences Approved by Terry J. Wi son Acknowledgments I would like to thank Terry Wilson for her unprecedented guidance and advice throughout this entire research project. I give thanks to all ofwhom participated in the NBP04-01 geophysical research cruise. To my parents, brothers, and relatives who have always supported me during my entire undergraduate career. This work would also not be possible without the assistance of Stephanie Konfal, Cristina Millan, and Jamey Stutz. Table of Contents Introduction 1 Geologic Setting The Antarctic Plate........•.•.....•........•.•....•.•.......•....•.....••...•.....•......••.•.....2 West Antarctic Rift System 2 Rift Structure Beneath the Western Ross Sea...•..••............••........••..•...••.........4 Antarctic Plate Volcanic History 4 Erebus and Melbourne Volcanic Provinces in the Western Ross Sea Region 5 Ice Sheet History 10 Establishing the Origin of the Seafloor Hills Hypotheses for the Origin ofthe Enigmatic Seafloor Hills 12 Approach to Testing Hypothesis 12 Drumlin Morphology 14 Tuya Morphology 15 Summary 20 Bathymetric Data 21 Results Dimensions ofthe Seafloor Hills•....••......•........•.•...•••.........•........•..•......•.•.27 Shapes ofthe Seafloor Hills in Profile 30 Shapes ofthe Seafloor Hills in Map View 31 Discussion Seafloor Hills Origin 35 Ice Sheet History 36 Conclusions 40 References Introduction Antarctica is an isolated part of this planet, yet the history of this continent and its ice sheets is of global importance. The structural deformation, volcanism, and ice sheet history of the continent can be reconstructed through geological studies of surface topography and subsurface architecture.