Ray Fluorescence Analysis on Lithic Material Use at Two Rockshelter Sites on the Southern Northwest Coast
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tuyas: a Descriptive Genetic Classification
Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 3-2014 Tuyas: A Descriptive Genetic Classification J.K. Russell Benjamin R. Edwards Dickinson College Lucy Porritt C. Ryane Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Environmental Sciences Commons, Glaciology Commons, and the Volcanology Commons Recommended Citation Russell, J.K., B.R. Edwards, Lucy Porritt, and C. Ryane. "Tuyas: A Descriptive Genetic Classification." Quaternary Science Reviews 87 (2014): 70-81. https://www.sciencedirect.com/science/article/pii/ S027737911400002X This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. Quaternary Science Reviews 87 (2014) 70e81 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Tuyas: a descriptive genetic classification J.K. Russell a,*, B.R. Edwards b, Lucy Porritt a,c, C. Ryane a a Volcanology & Petrology Laboratory, Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver V6T 1Z4, Canada b Department of Earth Sciences, Dickinson College, Carlisle, PA 17013, USA c School of Earth Sciences, University of Bristol, Bristol, UK article info abstract Article history: We present a descriptive genetic classification scheme and accompanying nomenclature for glacio- Received 23 June 2013 volcanic edifices herein defined as tuyas: positive-relief volcanoes having a morphology resulting from ice Received in revised form confinement during eruption and comprising a set of lithofacies reflecting direct interaction between magma 23 December 2013 and ice/melt water. -
Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust. -
Pleistocene Volcanism in the Anahim Volcanic Belt, West-Central British Columbia
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-10-24 A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia Kuehn, Christian Kuehn, C. (2014). A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25002 http://hdl.handle.net/11023/1936 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia by Christian Kuehn A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA OCTOBER, 2014 © Christian Kuehn 2014 Abstract Alkaline and peralkaline magmatism occurred along the Anahim Volcanic Belt (AVB), a 330 km long linear feature in west-central British Columbia. The belt includes three felsic shield volcanoes, the Rainbow, Ilgachuz and Itcha ranges as its most notable features, as well as regionally extensive cone fields, lava flows, dyke swarms and a pluton. Volcanic activity took place periodically from the Late Miocene to the Holocene. -
Glaciovolcanism at Volcán Sollipulli, Southern Chile: Lithofacies Analysis and Interpretation
Journal of Volcanology and Geothermal Research 303 (2015) 59–78 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Glaciovolcanism at Volcán Sollipulli, southern Chile: Lithofacies analysis and interpretation Stefan M. Lachowycz a,⁎, David M. Pyle a, Jennie S. Gilbert b, Tamsin A. Mather a,KatyMeec, José A. Naranjo d, Laura K. Hobbs b a Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom b Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom c British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, United Kingdom d Servicio Nacional de Geología y Minería, Avenida Santa María 0104, Santiago, Chile article info abstract Article history: Magma–ice–meltwater interactions produce diverse landforms and lithofacies, reflecting the multitude of factors Received 18 December 2014 that influence glaciovolcanism, including both magmatic (e.g., composition, eruption rate) and glacial (e.g., ice Accepted 20 June 2015 thickness, thermal regime) conditions. This is exemplified by the walls of the partly ice-filled summit caldera Available online 3 July 2015 of Volcán Sollipulli, a stratovolcano in southern Chile, which include lithofacies from eruptions of a wide range of magma compositions beneath or in contact with ice. Here we analyse these lithofacies and hence propose Keywords: new interpretations of the eruptive and glacial history of Sollipulli. The facies include a thick, laterally extensive Volcano–ice interaction fi Glaciovolcanic lithofacies sequence of fragmental glaciovolcanic deposits, comprising massive, ma c lava pillow-bearing hyaloclastite Hyaloclastite overlain by sills and then hyaloclastic debris flow deposits (similar to Dalsheidi-type sequences). -
Extreme Archaeology: the Resiilts of Investigations at High Elevation Regions in the Northwest
Extreme Archaeology: The Resiilts of Investigations at High Elevation Regions in the Northwest. by Rudy Reimer BA, Simon Fraser University, Burnaby, B.C. 1997 THESIS SUBMITTED IN PARTIAL FULFLMENT OF TKE REQUIREhdENTS FOR THE DEGREE OF MASTER OF ARTS in the Department of Archaeology @Rudy Reimer 2000 Simon Fraser University August 2ûûû Ail Rights Rese~ved.This work may not be reproduced in whole in part, by photocopy or other means, without permission of the author. uisitions and Acquisitions et '3B' iographic Senrices senfices bibfkgraphiques The author has granted a non- L'auteur a accord6 une licence non exclusive licence aliowiag the exclusive mettant A la National Liiof Canada to Bibliothèque nationale du Canada de reproduce, lom, distribute or seli reproduire, prêter, distriiuer ou copies of ibis thesis in microfonn, vendre des copies de cette thèse sous papa or electronic formats. la finme de microfiche/fbn, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts hmit Ni la thèse ni des extraits substantiels may be printed or otherwjse de ceîie-ci ne doivent être imprimes reproduced without the author's ou autrement reproduits sans son permission. autorisation. Review of ethnographie and ment archaeological studies suggest that past human use ofhigh elevation subalpine and alpine environments in northwestem North America was more intense than is currently believed. Archaeological survey high in coastai and interior mountain ranges resulted in iocating 21 archaeological sites ranging in age between 7,500-1,500 BP. -
Recognizing Ice-Contact Trachyte-Phonolite Lavas at The
RECOGNIZING ICE-CONTACT TRACHYTE-PHONOLITE LAVAS AT THE MOUNT EDZIZA VOLCANIC COMPLEX, BRITISH COLUMBIA, CANADA by Kristen A. LaMoreaux B.S., Kent State University, 2002 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH ARTS AND SCIENCES This thesis was presented by Kristen A. LaMoreaux It was defended on June 17, 2008 and approved by Dr. Michael Ramsey Dr. Thomas Anderson Thesis Director: Dr. Ian Skilling ii Copyright © by Kristen A. LaMoreaux 2008 iii RECOGNIZING ICE-CONTACT TRACHYTE-PHONOLITE LAVAS AT THE MOUNT EDZIZA VOLCANIC COMPLEX, BRITISH COLUMBIA, CANADA Kristen A. LaMoreaux, M.S. University of Pittsburgh, 2008 Mount Edziza Volcanic Complex (MEVC) lies within the Northern Cordilleran Volcanic Province (NCVP), in northwest British Columbia, Canada. The eruption products have been emplaced in a variety of subaerial, sub-ice and subaqueous environments from about 8Ma to less than 2000 y.b.p. (Souther, 1992). Ice Peak Formation (IPF) trachyte lava flows of approximately 1Ma age (Souther, 1992) are exposed at Ornostay Bluff (OB) and Koosick Bluff (KB). These flows comprise basal flow breccias overlain by massive conchoidally-fractured lava with large, poorly-developed columns, and local flow banding. Edziza Formation (EF) approximately 1Ma (Souther, 1992) phonolite is exposed at Triangle Dome (TD). TD can broadly be divided into an upper and lower zone. The upper zone comprises poorly-developed columns in addition to prominent jointing. In the lower zone the columns are planar and 75cm- 3m-wide in the interior of the complex grading into fan-like and curved subhorizontal columns <75cm-wide in the outer margins of the lower zone. -
Geothermal Resource Potential of the Garibaldi Volcanic Belt, Southwestern British Columbia (Part of NTS 092J)
Geothermal Resource Potential of the Garibaldi Volcanic Belt, Southwestern British Columbia (Part of NTS 092J) S.E. Grasby, Natural Resources Canada, Geological Survey of Canada–Calgary, Calgary, Alberta, [email protected] S.M. Ansari, Natural Resources Canada, Geological Survey of Canada–Central, Ottawa, Ontario A. Calahorrano-Di Patre, Simon Fraser University, Burnaby, British Columbia Z. Chen, Natural Resources Canada, Geological Survey of Canada–Calgary, Calgary, Alberta J.A. Craven, Natural Resources Canada, Geological Survey of Canada–Central, Ottawa, Ontario J. Dettmer, University of Calgary, Calgary, Alberta H. Gilbert, University of Calgary, Calgary, Alberta C. Hanneson, University of Alberta, Edmonton, Alberta M. Harris, The University of British Columbia, Vancouver, British Columbia J. Liu, Natural Resources Canada, Geological Survey of Canada–Calgary, Calgary, Alberta M. Muhammad, Simon Fraser University, Burnaby, British Columbia K. Russell, The University of British Columbia, Vancouver, British Columbia R.O. Salvage, University of Calgary, Calgary, Alberta G. Savard, University of Calgary, Calgary, Alberta V. Tschirhart, Natural Resources Canada, Geological Survey of Canada–Central, Ottawa, Ontario M.J. Unsworth, University of Alberta, Edmonton, Alberta N. Vigouroux-Caillibot, Douglas College, New Westminster, British Columbia G. Williams-Jones, Simon Fraser University, Burnaby, British Columbia Grasby, S.E., Ansari, S.M., Calahorrano-Di Patre, A., Chen, Z., Craven, J.A., Dettmer, J., Gilbert, H., Hanneson, C., Harris, M., Liu, J., Muhammad, M., Russell, K., Salvage, R.O., Savard, G., Tschirhart, V., Unsworth, M.J., Vigouroux-Caillibot, N. and Williams-Jones, G. (2021): Geothermal resource potential of the Garibaldi volcanic belt, southwestern British Columbia (part of NTS 092J); in Geoscience BC Summary of Activities 2020: Energy and Water, Geoscience BC, Report 2021-02, p. -
VOLCANIC LANDSLIDE HAZARDS at MOUNT MEAGER, BRITISH COLUMBIA Pierre A
Sea to Sky Geotechnique 2006 VOLCANIC LANDSLIDE HAZARDS AT MOUNT MEAGER, BRITISH COLUMBIA Pierre A. Friele, Cordilleran Geoscience, Post Office Box 612, Squamish, BC, V0N 3G0, Canada. John J. Clague, Centre for Natural Hazard Research, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. ABSTRACT Landslides are frequent on the unstable slopes of the Mount Meager volcanic massif in the southern Coast Mountains of British Columbia. We compile data on historic and prehistoric landslides to determine the risk to people involved in recreation, geothermal power development, and forestry in valleys proximal to Mount Meager, and also to residents in the Lillooet River valley at distances up to 75 km from the volcano. Landslides 106-107 m3 in size will have direct impacts in Meager Creek and upper Lillooet River valleys and indirect impacts, including channel aggradation and flooding, at more distant locations. Landslides larger than 107 m3, although relatively rare, may trigger volcanic debris flows that will reach populated areas in the Lillooet River valley, 32-75 km downstream from the source. Without advance warning, the loss of life from such an event could be high. RESUME Les glissements de terrain sont fréquents sur les pentes volcaniques du massif du mont Meager sur la côte sud de la Colombie-Britannique. Nous compilons de l'information sur les éboulements historiques et préhistoriques afin de déterminer le risque vis-à-vis les personnes impliquées dans le domaine de la récréation, des développements géothermiques et de l'industrie forestière tout au long de la vallée de Lillooet jusqu'à une distance de 75 km du volcan. -
Glaciovolcanism at Volcán Sollipulli, Southern Chile: Lithofacies Analysis and Interpretation
Journal of Volcanology and Geothermal Research 303 (2015) 59–78 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Glaciovolcanism at Volcán Sollipulli, southern Chile: Lithofacies analysis and interpretation Stefan M. Lachowycz a,⁎, David M. Pyle a, Jennie S. Gilbert b, Tamsin A. Mather a,KatyMeec, José A. Naranjo d, Laura K. Hobbs b a Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom b Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom c British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, United Kingdom d Servicio Nacional de Geología y Minería, Avenida Santa María 0104, Santiago, Chile article info abstract Article history: Magma–ice–meltwater interactions produce diverse landforms and lithofacies, reflecting the multitude of factors Received 18 December 2014 that influence glaciovolcanism, including both magmatic (e.g., composition, eruption rate) and glacial (e.g., ice Accepted 20 June 2015 thickness, thermal regime) conditions. This is exemplified by the walls of the partly ice-filled summit caldera Available online 3 July 2015 of Volcán Sollipulli, a stratovolcano in southern Chile, which include lithofacies from eruptions of a wide range of magma compositions beneath or in contact with ice. Here we analyse these lithofacies and hence propose Keywords: new interpretations of the eruptive and glacial history of Sollipulli. The facies include a thick, laterally extensive Volcano–ice interaction fi Glaciovolcanic lithofacies sequence of fragmental glaciovolcanic deposits, comprising massive, ma c lava pillow-bearing hyaloclastite Hyaloclastite overlain by sills and then hyaloclastic debris flow deposits (similar to Dalsheidi-type sequences). -
Precursory Slope Distress Prior to the 2010 Mount Meager Landslide, British Columbia
Original Paper Landslides Gioachino Roberti I Brent Ward I Benjamin van Wyk de Vries I Pierre Friele I Luigi Perotti I DOI 10.1007/s10346-017-0901-0 John J. Clague I Marco Giardino Received: 9 March 2017 Accepted: 2 October 2017 © Springer-Verlag GmbH Germany 2017 Precursory slope distress prior to the 2010 Mount Meager landslide, British Columbia Abstract In 2010, the south flank of Mount Meager failed catastroph- decreasing their stability (Huggel 2009;McColletal.2010;Grämiger ically, generating the largest (53 ± 3.8 × 106 m3) landslide in Canadian et al. 2017). Water from melting ice easily enters these fractured rocks, history. We document the slow deformation of the edifice prior to increasing pore water pressure, which in turn causes instability failure using archival historic aerial photographs spanning the period (Terlien 1998). In active volcanoes, heated fluids also hydrothermally 1948–2006. All photos were processed using Structure from Motion alter and further weaken host rocks (Reid et al. 2001;Finnetal.2001; (SfM) photogrammetry. We used the SfM products to produce pre- Pola et al. 2012, 2014;Wyeringetal.2014). Saturated, weakened, and and post-failure geomorphic maps that document changes in the altered rocks may deform by creep processes (Cecchi et al. 2004;Pola volcanic edifice and Capricorn Glacier at its base. The photographic et al. 2014; Heap et al. 2015; Heap and Wadsworth 2016), inducing dataset shows that the Capricorn Glacier re-advanced from a retracted gravitational distress that can culminateincollapse(vanWykdeVries position in the 1980s then rapidly retreated in the lead-up to the 2010 and Francis 1997;Cecchietal.2004). -
Glaciovolcanism in the Canadian Cascade Volcanic Arc: a Powerful Proxy for Ancient Ice
Geophysical Research Abstracts Vol. 20, EGU2018-5554-1, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. Glaciovolcanism in the Canadian Cascade volcanic arc: a powerful proxy for ancient ice Alexander Wilson and James Kelly Russell Volcanology and Petrology Laboratory, University of British Columbia, Vancouver, Canada Volcanoes that interact with the cryosphere preserve indicators of their eruption environments. These glaciovolca- noes and their deposits are potential proxies for both local and global paleoclimates. The Garibaldi volcanic belt (GVB) is the northern (Canadian) segment of the Cascade volcanic arc of western North America. We present a comprehensive database of >100 Quaternary volcanic landforms and deposits in the GVB that incorporates new, high-resolution field mapping and 40Ar/39Ar geochronology. The GVB exhibits a high degree of volcanic di- versity; a significant component of which is due to the abundance of glaciovolcanoes. These landforms include: tuyas, tindars, subglacial tephra cones, ice-impounded lavas, subglacial domes and breccias, subglacial lava flows and lava-dominated tuyas. The volcanoes are well distributed in space and time, and incorporate a wide range of magma compositions (alkaline basalt to rhyolite). As a group, they inform the spatial-temporal distribution of both continental-scale ice sheets (i.e. the Cordilleran ice sheet) and local glaciers, that have waxed and waned in thick- ness and extent across the region. We demonstrate how forensic volcanological studies can be used to constrain paleo-ice distributions by establishing: i) the presence or absence of ice during eruptions, ii) the age of corre- sponding ice (determined by isotopic dating of the lavas), and iii) ice thickness and ice surface elevation. -
Get Their Name from Their Broad Rounded Shape, Are the Largest
Physical Geology, First University of Saskatchewan Edition is used under a CC BY-NC-SA 4.0 International License Read this book online at http://openpress.usask.ca/physicalgeology/ Chapter 11. Volcanism Adapted by Karla Panchuk from Physical Geology by Steven Earle Figure 11.1 Mt. Garibaldi (in the background), near Squamish BC, is one of Canada’s most recently active volcanoes, last erupted approximately 10,000 years ago. It is also one of the tallest, at 2,678 m in height. Source: Karla Panchuk (2017) CC BY-SA 4.0. Photograph: Michael Scheltgen (2006) CC BY 2.0. See Appendix C for more attributions. Learning Objectives After reading this chapter and answering the Review Questions at the end, you should be able to: • Explain what a volcano is. • Describe the different kinds of materials produced by volcanoes. • Describe the structures of shield volcanoes, composite volcanoes, and cinder cones. • Explain how the style of a volcanic eruption is related to magma composition. • Describe the role of plate tectonics in volcanism and magma formation. • Summarize the hazards that volcanic eruptions pose to people and infrastructure. • Describe how volcanoes are monitored, and the signals that indicate a volcano could be ready to erupt. • Provide an overview of Canadian volcanic activity. Why Study Volcanoes? Chapter 11. Volcanism 1 Volcanoes are awe-inspiring natural events. They have instilled fear and fascination with their red-hot lava flows, and cataclysmic explosions. In his painting The Eruption of Vesuvius (Figure 11.2), Pierre-Jacques Volaire captured the stunning spectacle of the eruption on Mt. Vesuvius on 14 May 1771.