Glaciovolcanism at Volcán Sollipulli, Southern Chile: Lithofacies Analysis and Interpretation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Hoodoo U.S
National Park Service The Hoodoo U.S. Department of the Interior Bryce Canyon Map & Hiking Guide Fall - Winter - Spring 2010 – 2011 Questions? Bring this newspaper to the Visitor Center! What’s Inside EMERGENCY INFORMATION PAGE 2 Accessibility . 2 Backpacking . 5 Geology . .3 Hiking Map . 5 Information & Services . 2 Natural History Association . 7 Visitor Center Hours Nearby Attractions . 8 Park Map . 4 October 3 – November 6, 2010 Prescribed Fire . 6 8 a.m. – 6 p.m. Ranger Programs . 3 November 7, 2010 – April 2, 2011 Safety . 2 8 a.m. – 4:30 p.m. Trail Guide . 5 Volunteers, Partners & Donors . 7 April 3 - May 7, 2011 Weather . 6 8 a.m. – 6 p.m. Wildlife . 6 Kevin Doxstater Emergencies Call 911 or 435-676-2411 National Park Service Be Safe at U.S. Department of the Interior Bryce Canyon 24–hours a day or contact a Park Ranger Park Headquarters Mailing Address Web How many people die at Bryce? Fortunately, Bryce averages less than 1 435 834-5322 PO Box 640201 Website: www.nps.gov/brca fatality per year. In order of decreasing Fax 435 834-4703 Bryce, Utah 84764-0201 abundance fatalities are caused by: Twitter: brycecanyonNPS •Heart attacks Lost & Found: 435 834-4736 •Falling off cliffs •Lightning Travelers Information Station: Tune radio to 1590 AM for park information •Vehicle accidents Unfortunately, hundreds of serious injuries have also needlessly occurred, Information and Services some out of ignorance, but too many Park Roads Entrance Fees Lodging from ignoring park safety warnings. The main park road is open year-round S Private Vehicle: $25 per vehicle, Bryce Canyon Lodge: Open Top 10 Causes of Bryce Injuries but may be temporarily closed immediately good for 7 days at Bryce Canyon only. -
Supplementary Material
Supplementary material S1 Eruptions considered Askja 1875 Askja, within Iceland’s Northern Volcanic Zone (NVZ), erupted in six phases of varying intensity, lasting 17 hours on 28–29 March 1875. The main eruption included a Subplinian phase (Unit B) followed by hydromagmatic fall and with some proximal pyroclastic flow (Unit C) and a magmatic Plinian phase (Unit D). Units C and D consisted of 4.5 x 108 m3 and 1.37 x 109 m3 of rhyolitic tephra, respectively [1–3]. Eyjafjallajökull 2010 Eyjafjallajökull is situated in the Eastern Volcanic Zone (EVZ) in southern Iceland. The Subplinian 2010 eruption lasted from 14 April to 21 May, resulting in significant disruption to European airspace. Plume heights ranged from 3 to 10 km and dispersing 2.7 x 105 m3 of trachytic tephra [4]. Hverfjall 2000 BP Hverfjall Fires occurred from a 50 km long fissure in the Krafla Volcanic System in Iceland’s NVZ. Magma interaction with an aquifer resulted in an initial basaltic hydromagmatic fall deposit from the Hverfjall vent with a total volume of 8 x 107 m3 [5]. Eldgja 10th century The flood lava eruption in the first half of the 10th century occurred from the Eldgja fissure within the Katla Volcanic System in Iceland’s EVZ. The mainly effusive basaltic eruption is estimated to have lasted between 6 months and 6 years, and included approximately 16 explosive episodes, both magmatic and hydromagmatic. A subaerial eruption produced magmatic Unit 7 (2.4 x 107 m3 of tephra) and a subglacial eruption produced hydromagmatic Unit 8 (2.8 x 107 m3 of tephra). -
Multiple Sources for Tephra from AD 1259 Volcanic Signal in Antarctic Ice
Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino To cite this version: Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino. Mul- tiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, Elsevier, 2019, 210, pp.164-174. 10.1016/j.quascirev.2019.03.005. hal-02350371 HAL Id: hal-02350371 https://hal.archives-ouvertes.fr/hal-02350371 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Details Manuscript number JQSR_2019_21 Title MULTIPLE SOURCES FOR TEPHRA FROM AD 1259 VOLCANIC SIGNAL IN ANTARCTIC ICE CORES Abstract Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata. -
Explosive Subaqueous Eruptions: the Influence of Volcanic Jets on Eruption Dynamics and Tephra Dispersal in Underwater Eruptions
EXPLOSIVE SUBAQUEOUS ERUPTIONS: THE INFLUENCE OF VOLCANIC JETS ON ERUPTION DYNAMICS AND TEPHRA DISPERSAL IN UNDERWATER ERUPTIONS by RYAN CAIN CAHALAN A DISSERTATION Presented to the Department of Earth ScIences and the Graduate School of the UniversIty of Oregon In partIaL fulfiLLment of the requirements for the degree of Doctor of PhiLosophy December 2020 DISSERTATION APPROVAL PAGE Student: Ryan CaIn CahaLan Title: ExplosIve Subaqueous EruptIons: The Influence of Volcanic Jets on EruptIon DynamIcs and Tephra DIspersaL In Underwater EruptIons This dissertatIon has been accepted and approved in partIaL fulfiLLment of the requirements for the Doctor of PhiLosophy degree in the Department of Earth ScIences by: Dr. Josef Dufek ChaIrperson Dr. Thomas GIachettI Core Member Dr. Paul WaLLace Core Member Dr. KeLLy Sutherland InstItutIonaL RepresentatIve and Kate Mondloch Interim VIce Provost and Dean of the Graduate School OriginaL approvaL sIgnatures are on fiLe wIth the UniversIty of Oregon Graduate School. Degree awarded December 2020 II © 2020 Ryan Cain Cahalan III DISSERTATION ABSTRACT Ryan CaIn CahaLan Doctor of PhiLosophy Department of Earth ScIences December 2020 Title: ExplosIve Subaqueous EruptIons: The Influence of Volcanic Jets on EruptIon DynamIcs and Tephra DIspersaL In Underwater EruptIons Subaqueous eruptIons are often overlooked in hazard consIderatIons though they represent sIgnificant hazards to shipping, coastLInes, and in some cases, aIrcraft. In explosIve subaqueous eruptIons, volcanic jets transport fragmented tephra and exsolved gases from the conduit into the water column. Upon eruptIon the volcanic jet mIxes wIth seawater and rapidly cools. This mIxing and assocIated heat transfer ultImateLy determInes whether steam present in the jet wILL completeLy condense or rise to breach the sea surface and become a subaeriaL hazard. -
Deep Carbon Emissions from Volcanoes Michael R
Reviews in Mineralogy & Geochemistry Vol. 75 pp. 323-354, 2013 11 Copyright © Mineralogical Society of America Deep Carbon Emissions from Volcanoes Michael R. Burton Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy [email protected] Georgina M. Sawyer Laboratoire Magmas et Volcans, Université Blaise Pascal 5 rue Kessler, 63038 Clermont Ferrand, France and Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy Domenico Granieri Istituto Nazionale di Geofisica e Vulcanologia Via della Faggiola, 32 56123 Pisa, Italy INTRODUCTION: VOLCANIC CO2 EMISSIONS IN THE GEOLOGICAL CARBON CYCLE Over long periods of time (~Ma), we may consider the oceans, atmosphere and biosphere as a single exospheric reservoir for CO2. The geological carbon cycle describes the inputs to this exosphere from mantle degassing, metamorphism of subducted carbonates and outputs from weathering of aluminosilicate rocks (Walker et al. 1981). A feedback mechanism relates the weathering rate with the amount of CO2 in the atmosphere via the greenhouse effect (e.g., Wang et al. 1976). An increase in atmospheric CO2 concentrations induces higher temperatures, leading to higher rates of weathering, which draw down atmospheric CO2 concentrations (Ber- ner 1991). Atmospheric CO2 concentrations are therefore stabilized over long timescales by this feedback mechanism (Zeebe and Caldeira 2008). This process may have played a role (Feulner et al. 2012) in stabilizing temperatures on Earth while solar radiation steadily increased due to stellar evolution (Bahcall et al. 2001). In this context the role of CO2 degassing from the Earth is clearly fundamental to the stability of the climate, and therefore to life on Earth. -
“Poseidic” Explosive Eruptions at Loihi Seamount, Hawaii
Downloaded from geology.gsapubs.org on October 5, 2010 “Poseidic” explosive eruptions at Loihi Seamount, Hawaii C. Ian Schipper*1, James D.L. White1, Bruce F. Houghton2, Nobumichi Shimizu3, and Robert B. Stewart4 1Geology Department, University of Otago, PO Box 56, Leith Street, Dunedin 9016, New Zealand 2School of Ocean and Earth Science and Technology (SOEST), University of Hawai’ i at Ma¯noa, 1680 East-West Road, Honolulu, Hawaii 98622, USA 3Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 4Soil and Earth Sciences, Institute of Natural Resources (INR), Massey University, PB 11-222, Palmerston North 4474, New Zealand ABSTRACT (A.D. 1996) of Loihi’s ~400 ka history (Moore Much remains unknown about submarine explosive eruptions. Their deposits are found et al. 1982; Garcia et al. 2006). to great depths in all the world’s oceans, but eruptions are typically described by analogy Here we describe the southern cone on the to a subaerial nomenclature that ignores the substantial and inevitable infl uences of hydro- southeast summit plateau of Loihi (18°54′N, static pressure and magma-water interaction at submerged edifi ces. Here we explore mag- 155°15′W), examined in October 2006 with matic volatile exsolution and magma-water interaction for a pyroclastic cone-forming erup- the Hawaiian Undersea Research Laboratory’s tion at ~1 km depth on Loihi Seamount, Hawaii. We examine vesicle textures in lapilli—the Pisces IV submersible. The cone is ~60 m high, physical manifestation of degassing; dissolved volatiles in matrix glasses and olivine-hosted 4 × 106 m3 in volume, with a faintly discernable glass inclusions—the geochemical record of ascent and volatile exsolution; and fi ne ash summit rim we interpret as the edge of a partly morphology—the evidence for if and how external water assisted in fragmentation. -
Geology of the Hoodoo Mountain Area (NTS 104B/14W)
Geology of the Hoodoo Mountain Area (NTS 104B/14W) by M.G. Mihalynuk1, A. Zagorevski2 and F. Cordey3 KEYWORDS: Hoodoo Mountain, Sphaler Creek, Stikine information is included herein; see Mihalynuk et al. assemblage, Stuhini Group, copper porphyry, Galore (2010, 2011a) for additional unit descriptions and Creek, Dirk prospect, Telena prospect, volcanic-hosted previous work. massive sulphide, Rock and Roll, Andrei Icefield, Iskut River LOCATION AND ACCESS INTRODUCTION Hoodoo Mountain area (NTS 104/14W) can be accessed either via the Bronson airstrip to the immediate Hoodoo Mountain area is located between the south, or via the Espaw camp located at kilometre 91 on enormous copper-gold resource defined at Galore Creek the incomplete Galore Creek access road, immediately and the past-producing gold deposits of the Bronson north of the map area. At the time of our field program, Camp. Reserves at Galore Creek in proven and probable both required air transport from Bob Quinn airstrip categories are 528 Mt grading 0.58% Cu, 0.32 g/t Au and located on Highway 37, approximately 400 km by road 6.02 g/t Ag (Gill et al., 2011). In the Bronson Camp, the from both Smithers and Terrace (Figure 1). Bob Quinn Snip mine produced 32 million grams of gold, 12 million airstrip is 60 km from both Bronson airstrip and Espaw grams silver and nearly 250 000 kilograms copper from Camp. about 1.2 million tonnes between 1991 and 1999; Johnny Mountain produced for less than two years with produced, proven, probable and “possible” categories totalling 0.622 Mt at 19.54 g/t Au (MINFILE, 2011). -
S a N R a F a E L S W E
UTAH GEOLOGICAL SURVEY SURVEY NOTES Volume 34, Number 2 June 2002 S AN R AFAEL S WELL TABLE OF CONTENTS Cache Valley Sensitivity and The Vulnerabilty to Pesticides . 1 New Publications . 4 GeoSights: Little Egypt . 5 Director’s Landslide Damaged Six Layton Homes . 6 Perspective Glad You Asked: What are minerals used for? . 8 by Richard G. Allis San Rafael Swell Proposed as New National Monument . 9 Energy News: Growing Importance of Coalbed Gas in Utah . 12 n an eleventh-hour decision as the assumed to be the exact way the Act will actually be administered. A Survey News . 13 Utah legislature ended its session Ithis March, the “Professional Geolo- license will be required for all geologi- cal work relevant to public welfare, or Design by Vicky Clarke gist Licensing Act” was passed, and it has subsequently been signed into law. safeguarding the life, health, property and the environment in Utah. Among Cover: San Rafael Swell, photograph courtesy Utah becomes the 31st state to require of Utah Travel Council. professional geologist licensure, and it several exclusions are subordinates of is the 27th to adopt the National Asso- a licensed professional geologist, indi- State of Utah ciation of State Boards of Geology viduals engaged in teaching or Michael O. Leavitt, Governor (ASBOG) exam as the standard for research in the physical or natural sci- Department of Natural Resources Robert Morgan, Executive Director licensure. The relatively rapid passing ences who are not otherwise engaged UGS Board of the Act is a tribute to the energy, in practicing geology before the public, Robert Robison, Chair enthusiasm and lobbying skills of prac- employees of companies if their work Geoff Bedell Craig Nelson ticing geologists in Utah. -
Inside Science
SPRING 2009 NEWS FROM THE ROYAL SOCIETY INSIDE SCIENCE YOUNG EXPLORERS TOUCHDOWN IN NEW ZEALAND International Expedition Prize is a ‘once in a lifetime experience’ SCIENCE TAKES TO THE STAGE The Royal Shakespeare Company premiers a new play on the emergence of modern science UPDATE FROM THE ROYAL SOCIETY This third issue of Inside Science contains early information DID YOU KNOW? about exciting plans for the Royal Society’s 350th Anniversary in 2010. The Anniversary is a marvellous STEADY FOOTING, opportunity to increase the profile of science, explore its SHAKY BRIDGE benefits and address the challenges it presents for society On its opening day, crowds of but perhaps most important of all to inspire young minds pedestrians experienced unexpected with the excitement of scientific discovery. swaying as they walked across London’s Our policy work continues to address major scientific issues Millennium Bridge. Whilst pedestrians affecting the UK. In December we cautioned the Government on fondly nicknamed it the ‘wobbly bridge’, the levels of separated plutonium stockpiled in the UK – currently physicists were busy exploring the the highest in the world. With support from our Plutonium Working Group, the Society has reasons for the phenomenon. submitted detailed comment to the Nuclear Decommissioning Authority (NDA) for a report to The view was widely held that the Government on management options for the stockpile. ‘wobble’ was due to crowd loading and Late last year we ran an extremely successful MP-Scientist pairing scheme, helping to build pedestrians synchronising their footsteps bridges between parliamentarians and some of the best young scientists in the UK. -
Report on Cartography in the Republic of Chile 2011 - 2015
REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 ARMY OF CHILE MILITARY GEOGRAPHIC INSTITUTE OF CHILE REPORT ON CARTOGRAPHY IN THE REPUBLIC OF CHILE 2011 - 2015 PRESENTED BY THE CHILEAN NATIONAL COMMITTEE OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AT THE SIXTEENTH GENERAL ASSEMBLY OF THE INTERNATIONAL CARTOGRAPHIC ASSOCIATION AUGUST 2015 1 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 CONTENTS Page Contents 2 1: CHILEAN NATIONAL COMMITTEE OF THE ICA 3 1.1. Introduction 3 1.2. Chilean ICA National Committee during 2011 - 2015 5 1.3. Chile and the International Cartographic Conferences of the ICA 6 2: MULTI-INSTITUTIONAL ACTIVITIES 6 2.1 National Spatial Data Infrastructure of Chile 6 2.2. Pan-American Institute for Geography and History – PAIGH 8 2.3. SSOT: Chilean Satellite 9 3: STATE AND PUBLIC INSTITUTIONS 10 3.1. Military Geographic Institute - IGM 10 3.2. Hydrographic and Oceanographic Service of the Chilean Navy – SHOA 12 3.3. Aero-Photogrammetric Service of the Air Force – SAF 14 3.4. Agriculture Ministry and Dependent Agencies 15 3.5. National Geological and Mining Service – SERNAGEOMIN 18 3.6. Other Government Ministries and Specialized Agencies 19 3.7. Regional and Local Government Bodies 21 4: ACADEMIC, EDUCATIONAL AND TRAINING SECTOR 21 4.1 Metropolitan Technological University – UTEM 21 4.2 Universities with Geosciences Courses 23 4.3 Military Polytechnic Academy 25 5: THE PRIVATE SECTOR 26 6: ACKNOWLEDGEMENTS AND ACRONYMS 28 ANNEX 1. List of SERNAGEOMIN Maps 29 ANNEX 2. Report from CENGEO (University of Talca) 37 2 REPORT ON CARTOGRAPHY IN CHILE: 2011 - 2015 PART ONE: CHILEAN NATIONAL COMMITTEE OF THE ICA 1.1: Introduction 1.1.1. -
My Main Research Interests Centre on the Science Behind Volcanoes and Volcanic Behaviour
PROF. TAMSIN A. MATHER Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. Tel.: +44 (0)1865 282125 [email protected] My main research interests centre on the science behind volcanoes and volcanic behaviour. My motivation is to understand volcanoes as (a) natural hazards, (b) a key planetary scale process throughout geological time, playing a key role in change but vital for maintaining habitability and (c) natural resources (e.g., geothermal power and the development of ore deposits). I use techniques including satellite Earth Observation, remote and direct measurements of volcanic gas/aerosol, field mapping and petrological and geochemical analysis. I have also studied the emissions from an oil depot fire (Buncefield 2005) and am generally interested in the global mercury cycle as well as other biogeochemical cycles. Post-doctoral employment (Maternity leave: June-December 2007 and January-July 2010) 2014–present: Professor of Earth Sciences, University of Oxford. 2006–2014: Lecturer/Academic Fellow in Physics & Chemistry of the Earth and Environment, Dept of Earth Sciences, University of Oxford & Fellow, University College. 2005–2009: Royal Society Dorothy Hodgkin research fellow, awarded at Cambridge and moved to Oxford (Volcanic volatile emissions: from lithosphere to atmosphere) 2005: NERC fellow Parliamentary Office of Science and Technology (Report title: Carbon capture and storage) Education and Qualifications 2001–2004: Ph.D., Dept of Earth Sciences, University of Cambridge, ‘Near-source chemistry of tropospheric volcanic plumes’. NERC funded. Awarded December 2004. 1999–2000: M.Phil. (History and Philosophy of Science), University of Cambridge. Distinction. 1995–1999: M.Sci. -
Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.