Explosive Subaqueous Eruptions: the Influence of Volcanic Jets on Eruption Dynamics and Tephra Dispersal in Underwater Eruptions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geology, Geochemistry and Earthquake History of Loieihi Seamount, Hawaiei's Youngest Volcano
ARTICLE IN PRESS Chemie der Erde ] (]]]]) ]]]–]]] www.elsevier.de/chemer INVITED REVIEW Geology, geochemistry and earthquake history of Lo¯"ihi Seamount, Hawai"i’s youngest volcano Michael O. Garciaa,Ã, Jackie Caplan-Auerbachb, Eric H. De Carloc, M.D. Kurzd, N. Beckera aDepartment of Geology and Geophysics, University of Hawai"i, Honolulu, HI 96822, USA bAlaska Volcano Observatory, U.S.G.S., Alaska Science Center, Anchorage, AK 99508, USA cDepartment of Oceanography, University of Hawai"i, Honolulu, HI 96822, USA dDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 6 June 2005; accepted 20 September 2005 Abstract A half-century of investigations are summarized here on the youngest Hawaiian volcano, Lo¯"ihi Seamount. It was discovered in 1952 following an earthquake swarm. Surveying in 1954 determined it has an elongate shape, which is the meaning of its Hawaiian name. Lo¯"ihi was mostly forgotten until two earthquake swarms in the 1970s led to a dredging expedition in 1978, which recovered young lavas. The recovery of young lavas motivated numerous expeditions to investigate the geology, geophysics, and geochemistry of this active volcano. Geophysical monitoring, including a real- time submarine observatory that continuously monitored Lo¯"ihi’s seismic activity for 3 months, captured some of the volcano’s earthquake swarms. The 1996 swarm, the largest recorded in Hawai"i, was preceded earlier in the year by at least one eruption and accompanied by the formation of a 300-m deep pit crater, Pele’s Pit. Seismic and petrologic data indicate that magma was stored in a 8–9 km deep reservoir prior to the 1996 eruption. -
Supplementary Material
Supplementary material S1 Eruptions considered Askja 1875 Askja, within Iceland’s Northern Volcanic Zone (NVZ), erupted in six phases of varying intensity, lasting 17 hours on 28–29 March 1875. The main eruption included a Subplinian phase (Unit B) followed by hydromagmatic fall and with some proximal pyroclastic flow (Unit C) and a magmatic Plinian phase (Unit D). Units C and D consisted of 4.5 x 108 m3 and 1.37 x 109 m3 of rhyolitic tephra, respectively [1–3]. Eyjafjallajökull 2010 Eyjafjallajökull is situated in the Eastern Volcanic Zone (EVZ) in southern Iceland. The Subplinian 2010 eruption lasted from 14 April to 21 May, resulting in significant disruption to European airspace. Plume heights ranged from 3 to 10 km and dispersing 2.7 x 105 m3 of trachytic tephra [4]. Hverfjall 2000 BP Hverfjall Fires occurred from a 50 km long fissure in the Krafla Volcanic System in Iceland’s NVZ. Magma interaction with an aquifer resulted in an initial basaltic hydromagmatic fall deposit from the Hverfjall vent with a total volume of 8 x 107 m3 [5]. Eldgja 10th century The flood lava eruption in the first half of the 10th century occurred from the Eldgja fissure within the Katla Volcanic System in Iceland’s EVZ. The mainly effusive basaltic eruption is estimated to have lasted between 6 months and 6 years, and included approximately 16 explosive episodes, both magmatic and hydromagmatic. A subaerial eruption produced magmatic Unit 7 (2.4 x 107 m3 of tephra) and a subglacial eruption produced hydromagmatic Unit 8 (2.8 x 107 m3 of tephra). -
Pyroclastic Deposits I: Pyroclastic Fall Deposits
Pyroclastic Deposits I: Pyroclastic Fall Deposits EAS 458 Volcanology Introduction . We have seen that physics is useful in understanding volcanic processes, but physical models must be constrained by and tested against observation. We have 1925 years of historic observations of Vesuvius (79 AD to present) . Far less for most other volcanoes . In all, a very, very small fraction of eruptions . Most descriptions are of limited use . Observations about volcanic processes must depend primarily on geologic observations . The geologic record of volcanic eruptions consists primarily of the deposits produced by them. 1 Pyroclastic Deposits . Three types of pyroclastic deposits . Fall Deposits . Fallout from an eruptive column . Flow Deposits . Produced by pyroclastic flows . Surge Deposits . Often associated with flow deposits . Associated with explosive events, such as phreatomagmatic explosions Pyroclastic Deposits . Characteristics . Fall Deposits . Mantle topography . Parallel bedding . Well sorted . Often graded . Flow Deposits . Topographically constrained . Poorly sorted . Often graded . Surge Deposits . Partially topographically constrained . Cross bedding characteristic . Intermediate sorting . Often graded 2 Pyroclastic Fall Deposits . General term: tephra . Types . Scoria (mafic , larger size) . Pumice (silicic, larger size) . Ash (fine grained) Fall Deposits: Bedding . Except very near vent, “fall” particles settle vertically. Therefore, extensive deposits (such as those of Plinian eruptions) will be equally thick at any given distance and direction from the vent. Hence, they mantle topography . (Scoria cones produced by Hawaiian and Strobolian eruptions obviously don’t mantle topography) 3 Fall Deposits: Sorting . The distance a particle will travel from the vent depends on: . Ejection velocity . Particle size . For conditions at any particular time and place, particles of a small range of sizes will fall out. -
“Poseidic” Explosive Eruptions at Loihi Seamount, Hawaii
Downloaded from geology.gsapubs.org on October 5, 2010 “Poseidic” explosive eruptions at Loihi Seamount, Hawaii C. Ian Schipper*1, James D.L. White1, Bruce F. Houghton2, Nobumichi Shimizu3, and Robert B. Stewart4 1Geology Department, University of Otago, PO Box 56, Leith Street, Dunedin 9016, New Zealand 2School of Ocean and Earth Science and Technology (SOEST), University of Hawai’ i at Ma¯noa, 1680 East-West Road, Honolulu, Hawaii 98622, USA 3Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 4Soil and Earth Sciences, Institute of Natural Resources (INR), Massey University, PB 11-222, Palmerston North 4474, New Zealand ABSTRACT (A.D. 1996) of Loihi’s ~400 ka history (Moore Much remains unknown about submarine explosive eruptions. Their deposits are found et al. 1982; Garcia et al. 2006). to great depths in all the world’s oceans, but eruptions are typically described by analogy Here we describe the southern cone on the to a subaerial nomenclature that ignores the substantial and inevitable infl uences of hydro- southeast summit plateau of Loihi (18°54′N, static pressure and magma-water interaction at submerged edifi ces. Here we explore mag- 155°15′W), examined in October 2006 with matic volatile exsolution and magma-water interaction for a pyroclastic cone-forming erup- the Hawaiian Undersea Research Laboratory’s tion at ~1 km depth on Loihi Seamount, Hawaii. We examine vesicle textures in lapilli—the Pisces IV submersible. The cone is ~60 m high, physical manifestation of degassing; dissolved volatiles in matrix glasses and olivine-hosted 4 × 106 m3 in volume, with a faintly discernable glass inclusions—the geochemical record of ascent and volatile exsolution; and fi ne ash summit rim we interpret as the edge of a partly morphology—the evidence for if and how external water assisted in fragmentation. -
Exploring Submarine Arc Volcanoes Steven Carey University of Rhode Island, [email protected]
University of Rhode Island DigitalCommons@URI Graduate School of Oceanography Faculty Graduate School of Oceanography Publications 2007 Exploring Submarine Arc Volcanoes Steven Carey University of Rhode Island, [email protected] Haraldur Sigurdsson University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs Terms of Use All rights reserved under copyright. Citation/Publisher Attribution Carey, S., and H. Sigurdsson. 2007. Exploring submarine arc volcanoes. Oceanography 20(4):80–89, https://doi.org/10.5670/ oceanog.2007.08. Available at: https://doi.org/10.5670/oceanog.2007.08 This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. This article has This been published in or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any permitted articleonly photocopy by is of machine, reposting, this means or collective or other redistirbution SP ec I A L Iss U E On Ocean E X P L O R ATIO N Oceanography , Volume 20, Number 4, a quarterly journal of The 20, Number 4, a quarterly , Volume O ceanography Society. Copyright 2007 by The 2007 by Copyright Society. ceanography Exploring O ceanography Society. All rights All reserved. Society. ceanography O Submarine Arc Volcanoes or Th e [email protected] Send Society. ceanography to: correspondence all B Y S T even C A R E Y an D H A R A LDUR SIGURD ss O N Three quarters of Earth’s volcanic activ- although a significant part of arc volca- tion of tsunamis (Latter, 1981). -
Mt. Pico, Pico Island, Azores, October 2012 (Photo: Hans Johansson)
Cover photograph: Mt. Pico, Pico Island, Azores, October 2012 (photo: Hans Johansson) Abstract The Azores is situated in the North Atlantic Ocean and is one of the most active volcanic regions in the Northern Hemisphere. The volcanic history of the islands is fairly well known and several explosive trachytic eruptions have been reported but the geo‐ chemical compositions of the glass component of the tephra as well as the dispersal of tephras to distal areas are less well known. The purpose of this study is twofold: (1) to present major element geochemistry of the glass component from several historic as well as prehistoric tephras, including the trachybasaltic Capelinhos AD 1957‐58 eruption on the island of Faial, and the trachytic explosive eruptions of Sete Cidades (c. AD 1440), Fogo A (c. 5000 BP), Fogo AD 1563 and Furnas AD 1630 on the island of São Miguel; (2) to present a refined tephrostratigraphy for the island of Pico. Analyses of major element geochemistry suggest that tephras from the three active stratovolcanoes on São Miguel can be separated in biplots showing e.g. FeOtot vs.TiO2 and FeOtot vs. CaO. The tephrostratigraphy of Caveiro bog on the island of Pico is based on a radiocarbon dated core with eight tephra layers extending back to c. 7000 BP. All tephras are of trachybasaltic/basaltic trachyandesitic composition except the oldest layer, which is of basanitic composition. An attempt was made to correlate the tephra record of Caveiro bog with the previously investigated Lake Caveiro. A tephra‐based correlation between the Caveiro bog and Lake Caveiro is not straightforward and only three tephras in Caveiro bog can possibly be correlated with tephras found in the sediments of Lake Caveiro. -
ETD Template
Syn-eruptive incision of Koko Crater, Oahu, Hawaii by condensed steam and hot cohesive debris flows: a re-interpretation of the type locality of “surge-eroded U-shaped channels” by Jessica Keri Bluth B.S., State University of New York at Binghamton, 2001 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2004 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by Jessica Keri Bluth It was defended on June 25, 2004 and approved by Dr. Michael Ramsey Dr. Charles Jones Dr. Ian Skilling Committee Chairperson ii Syn-eruptive incision of Koko Crater, Oahu by condensed steam and hot cohesive debris flows: a re-interpretation of the type locality of “surge-eroded U-shaped channels” Jessica K. Bluth, M.S. Department of Geology and Planetary Science University of Pittsburgh, 2004 Phreatomagmatic fall, low-concentration PDC deposits and remobilized equivalents dominate the products of craters (tuff cones/rings) of Koko fissure, south-east Oahu. At Koko crater, Fisher (1977) described “U-shaped” channels, which he interpreted as due to erosion by low-concentration PDCs (surges), with minor modification by stream and debris flows. Similar channels on tuff cones and rings elsewhere in the world have been interpreted as “surge-eroded” by subsequent authors. However, no evidence for erosion by PDCs was observed during recent fieldwork, which suggested rather the following model. An important observation is that initial incision is always correlated with the emplacement of vesiculated ash layers (derived from Hanauma Bay), and is only very rarely associated with other facies. -
Basaltic Lava Domes, Lava Lakes, and Volcanic Segmentation on the Southern East Pacific Rise Scott M
University of South Carolina Scholar Commons Faculty Publications Earth, Ocean and Environment, School of the 10-10-2000 Basaltic Lava Domes, Lava Lakes, and Volcanic Segmentation on the Southern East Pacific Rise Scott M. White University of South Carolina - Columbia, [email protected] Ken C. Macdonald University of California - Santa Barbara Rachel M. Haymon University of California - Santa Barbara Follow this and additional works at: https://scholarcommons.sc.edu/geol_facpub Part of the Earth Sciences Commons Publication Info Published in Journal of Geophysical Research, Volume 105, Issue B10, 2000, pages 23519-23536. White, S. M., Macdonald, K. C., & Haymon, R. M. (2000). Basaltic lava domes, lava lakes, and volcanic segmentationon the southern East Pacific Rise. Journal of Geophysical Research, 105 (B10), 23519-23536. © Journal of Geophysical Research 2000, American Geophysical Union This Article is brought to you by the Earth, Ocean and Environment, School of the at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105,NO. B10, PAGES 23,519-23,536,OCTOBER 10, 2000 Basaltic lava domes, lava lakes, and volcanic segmentation on the southern East Pacific Rise ScottM. White, Ken C. Macdonald,and RachelM. Haymon Departmentof GeologicalSciences and Marine ScienceInstitute, University of California, SantaBarbara Abstract. Meter-scaleDSL-120 sonarmapping and coregisteredArgo -
The Quaternary Plant Fossil Record from the Volcanic Azores Archipelago (Portugal, North Atlantic Ocean): a Review
Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 The Quaternary plant fossil record from the volcanic Azores Archipelago (Portugal, North Atlantic Ocean): a review Carlos A. Góis-Marques, Lea de Nascimento, Miguel Menezes de Sequeira, José María Fernández-Palacios & José Madeira To cite this article: Carlos A. Góis-Marques, Lea de Nascimento, Miguel Menezes de Sequeira, José María Fernández-Palacios & José Madeira (2018): The Quaternary plant fossil record from the volcanic Azores Archipelago (Portugal, North Atlantic Ocean): a review, Historical Biology, DOI: 10.1080/08912963.2018.1444761 To link to this article: https://doi.org/10.1080/08912963.2018.1444761 Published online: 28 Feb 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 HISTORICAL BIOLOGY, 2018 https://doi.org/10.1080/08912963.2018.1444761 The Quaternary plant fossil record from the volcanic Azores Archipelago (Portugal, North Atlantic Ocean): a review Carlos A. Góis-Marquesa,b , Lea de Nascimentoc , Miguel Menezes de Sequeirab,d , José María Fernández-Palaciosc and José Madeiraa aLaboratório Associado, Departamento de Geologia, Faculdade de Ciências da Universidade de Lisboa and Instituto Dom Luiz (IDL), Universidade de Lisboa, Lisboa, Portugal; bFaculdade de Ciências da Vida, Madeira Botanical Group (GBM), Universidade da Madeira, Funchal, Portugal; cIsland Ecology and Biogeography Group, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Spain; dCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Portugal ABSTRACT ARTICLE HISTORY Plant fossils are known from the Azores Islands, yet poorly studied. -
Eruptive History and 40Ar/39Ar Geochronology of the Milos Volcanic 2 Field, Greece 3
https://doi.org/10.5194/gchron-2020-30 Preprint. Discussion started: 13 October 2020 c Author(s) 2020. CC BY 4.0 License. 1 Eruptive history and 40Ar/39Ar geochronology of the Milos volcanic 2 field, Greece 3 4 Xiaolong Zhou1, Klaudia Kuiper1, Jan Wijbrans1, Katharina Boehm1, Pieter Vroon1 5 1Department of Earth Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. 6 Correspondence to: Xiaolong Zhou ([email protected]) 7 Abstract. High-resolution geochronology is essential to determine the growth-rate of volcanoes, which is one of the key factors 8 to establish the periodicity of explosive volcanic eruptions. However, there are less high-resolution eruptive histories (>106 9 years) determined for long-lived submarine arc volcanic complexes than for subaerial complexes, since the submarine 10 volcanoes are far more difficult to observe than subaerial ones. In this study, high-resolution geochronology and major element 11 data are presented for Milos Volcanic Field (VF) in the South Aegean Volcanic Arc, Greece. The Milos VF has been active 12 for over 3 Myrs, and the first two million years of its eruptive history occurred in a submarine setting that has emerged above 13 sea level nowadays. The long submarine volcanic history of the Milos VF makes it an excellent natural laboratory to study the 14 growth-rate of a long-lived submarine arc volcanic complex. This study reports twenty-one new high-precision 40Ar/39Ar ages 15 and major element compositions for eleven volcanic units of the Milos VF. This allows us to refine the volcanic evolution of 16 Milos into nine phases and five volcanic quiescence periods of longer than 200 kyrs, on the basis of age, composition, volcano 17 type and location. -
October 2018 Journal of the Institution of Environmental Sciences CONTENTS > How and Why Are the Oceans Changing?
October 2018 Journal of the Institution of Environmental Sciences CONTENTS > How and why are the oceans changing? he number of people living on Earth will grow to due to the scales of change and variability, and the FEATURE 14 nine billion by 2050, with the population rising commitment, infrastructure and investment demanded in Exploring submarine volcanoes EDITORIAL fastest in low-lying coastal plains and cities. Driven the marine realm. Added to this, integrated cross-sectoral Ken Rubin describes our changing view of the seabed and its inhabitants, as we discover T more about underwater volcanoes. by growing public and political awareness, attention is approaches in businesses and governments can bring turning urgently to the ocean and coastal regions to about changes through influence and participative provide security for people and economic infrastructure processes, as much as by legislation and by an integrated against the sea’s dangers, including maritime accidents, vision of the land–sea interface. Finally, there is a need FEATURE 27 extreme weather, flooding and submarine geohazards. for appropriate, smart financial and policy instruments The cetaceans of the British Isles and a changing marine environment At the same time, there is a focus on the sea’s ability to de-risk investment in sustainable activities and recover Chiara Giulia Bertulli and Peter Evans describe ongoing shifts in abundance and to provide food, clean energy and minerals, whilst the economic potential of industries eroded by past distribution. protecting and -
40Ar/39Ar Ages and Residual Volatile Contents in Degassed Subaerial and Subglacial Glassy Volcanic Rocks from Iceland
Chemical Geology 403 (2015) 99–110 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo 40Ar/39Ar ages and residual volatile contents in degassed subaerial and subglacial glassy volcanic rocks from Iceland P.L. Clay a,b,⁎, H. Busemann a,b, S.C. Sherlock a, T.L. Barry c, S.P. Kelley a,D.W.McGarviea a CEPSAR, The Open University, Milton Keynes MK7 6AA, United Kingdom b School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom c Dept. of Geology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom article info abstract 40 39 Article history: Major volatile contents (H2O, CO2,F,Cl,andS)and Ar/ Ar ages have been determined in variably degassed rhy- Received 24 February 2014 olite obsidians from Pleistocene–Holocene aged subaerial and subglacial eruption environments from the Received in revised form 23 February 2015 Torfajökull volcanic center and the monogenetic volcano at Prestahnúkur (Iceland). Icelandic subglacial rhyolites Accepted 24 February 2015 preserve residual H Ocontentsof0.08–0.69 wt.%, undetectable CO , 840–1780 ppm F, 430–2000 ppm Cl and 6– Available online 11 March 2015 2 2 45 ppm S. Most subglacial obsidians have degassed volatile signatures at the time of their eruption under ice. Editor: L. Reisberg One eruption (Bláhnúkur, Torfajökull) showed H2O contents which exceed those expected for quenching at atmo- spheric pressures (up to 0.69 wt.% H2O) and are consistent with eruption at ~40kbarofpressureorequivalentto Keywords: under ~450 m of ice. Altered and microcrystalline groundmass in some subglacial rhyolites yield variable volatile 40Ar/39Ar dating contents that are likely the result of micro-scale variability and the presence of alteration products.