Durham Research Online

Total Page:16

File Type:pdf, Size:1020Kb

Durham Research Online Durham Research Online Deposited in DRO: 03 March 2017 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Jutzeler, M. and Manga, M. and White, J.D.L. and Talling, P.J. and Proussevitch, A. and Le Friant, A. and Ishizuka, O. (2017) 'Submarine deposits from pumiceous pyroclastic density currents traveling over water : an outstanding example from oshore Montserrat (IODP 340).', Geological Society of America bulletin., 129 (3-4). pp. 392-414. Further information on publisher's website: https://doi.org/10.1130/B31448.1 Publisher's copyright statement: c 2016 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Jutzeler et al. Submarine deposits from pumiceous pyroclastic density currents traveling over water: An outstanding example from offshore Montserrat (IODP 340) M. Jutzeler1,2,3,†, M. Manga4, J.D.L. White2, P.J. Talling1, A.A. Proussevitch5, S.F.L. Watt6, M. Cassidy7, R.N. Taylor8, A. Le Friant9, and O. Ishizuka10 1National Oceanography Centre, Southampton SO14 3ZH, UK 2Department of Geology, University of Otago, Dunedin 9054, New Zealand 3School of Physical Sciences and Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart TAS 7001, Australia 4Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA 5Climate Change Research Center, University of New Hampshire, Durham, New Hampshire 03824, USA 6School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK 7Institute of Geosciences, Johannes Gutenberg University, 55128 Mainz, Germany 8School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK 9Institut de Physique du Globe de Paris, Université Paris Diderot, 75238 Paris, France 10Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8567, Japan ABSTRACT fragments, and glass shards. Pumice clasts mentation (e.g., Cas and Wright, 1991; McPhie are very poorly segregated from other par- et al., 1993; Carey, 2000; Kano, 2003; Manville Pyroclastic density currents have been ticle types, and lithic clasts occur throughout et al., 2010). In addition to their volcanological observed to both enter the sea, and to travel the deposit; fine particles are weakly den- significance and substantial effects on marine over water for tens of kilometers. Here, we sity graded. We interpret the unit to record benthic life (Wiesner et al., 1995; Wetzel, 2009), identified a 1.2-m-thick, stratified pumice multiple closely spaced (<2 d) hot pyroclastic they are broadly important in geological studies lapilli- ash cored at Site U1396 offshore Mont- density currents that flowed over the ocean, because they are commonly deposited as wide- serrat (Integrated Ocean Drilling Program releasing pyroclasts onto the water surface, spread blankets on the seafloor, which makes [IODP] Expedition 340) as being the first de- and settling of the various pyroclasts into the them excellent chronostratigraphic markers posit to provide evidence that it was formed water column. Our settling and hot and cold (Lowe, 2011; Larsen et al., 2014). Furthermore, by submarine deposition from pumice-rich flotation experiments show that waterlogging these voluminous accumulations of pyroclasts pyroclastic density currents that traveled of pumice clasts at the water surface would record large-scale explosive eruptions of the sort above the water surface. The age of the sub- have been immediate. The overall poor hy- that pose geological hazards for coastal popula- marine deposit is ca. 4 Ma, and its magma draulic sorting of the deposit resulted from tions (e.g., Carey et al., 1996; Mastin and Witter, source is similar to those for much younger mixing of particles from multiple pulses of 2000; Kano, 2003; Manville et al., 2010). Here, Soufrière Hills deposits, indicating that the vertical settling in the water column, attesting we document an anomalous deposit cored at island experienced large-magnitude, subaer- to complex sedimentation. Slow-settling par- Site U1396 of Integrated Ocean Drilling Pro- ial caldera-forming explosive eruptions much ticles were deposited on the seafloor together gram (IODP) Expedition 340 offshore Mont- earlier than recorded in land deposits. The with faster-descending particles that were serrat (Lesser Antilles; Expedition 340 Scien- deposit’s combined sedimentological char- delivered at the water surface by subsequent tists, 2012). This stratified pumice lapilli- ash acteristics are incompatible with deposition pyroclastic flows. The final sediment pulses unit, which formed at ca. 4 Ma, has textural from a submarine eruption, pyroclastic fall were eventually deflected upon their arrival characteristics, in particular stratification, sort- over water, or a submarine seafloor-hugging on the seafloor and were deposited in later- ing, and grading, that are dissimilar to those of turbidity current derived from a subaerial ally continuous facies. This study emphasizes previously described submarine volcaniclastic pyro clastic density current that entered the interaction between products of explosive facies. It is much thicker (1.2 m) than other water at the shoreline. The stratified pumice volcanism and the ocean and discusses sedi- volcani clastic units at the same site (Expedition lapilli-ash unit can be subdivided into at least mentological complexities and hydrodynam- 340 Scientists, 2012; Wall-Palmer et al., 2014), three depositional units, with the lowermost ics associated with particle delivery to water. and it contains abundant highly compositionally one being clast supported. The unit contains evolved pumice clasts. grains in five separate size modes and has INTRODUCTION We used flotation and settling column ex- a >12 phi range. Particles are chiefly sub- periments and assessment of multiple deposit rounded pumice clasts, lithic clasts, crystal Pumice-rich volcaniclastic deposits are features (stratigraphy, grain size, componentry, widely recognized in the marine record. They microtomography, and pumice vesicularity) to †Present address: School of Physical Sciences may originate via pyroclastic density currents investigate the nature of particle transport for (Earth Sciences), University of Tasmania, Private Bag entering or traveling over water, pyroclastic fall this unit. Based on facies characteristics that do 79, Hobart TAS 7001, Australia; jutzeler@ gmail .com. onto water, submarine eruptions, or by resedi- not match those from other transport processes, GSA Bulletin; March/April 2017; v. 129; no. 3/4; p. 392–414; doi: 10.1130/B31448.1; 16 figures; 1 table; Data Repository item 2016253; published online 27 September 2016. 392 © 2016 The Authors.Geological Gold Open Society Access: ofThis America paper is published Bulletin, under v. 129, the terms no. 3/4 of the CC-BY license. Submarine deposits from pumiceous pyroclastic density currents we argue that this unit is the product of a two- dilute pyroclastic density currents, until they 2014; Jutzeler et al., 2014b, 2015a). Pumice step transport process involving multiple dilute lose energy (Carey et al., 1996; Allen and Cas, clasts can also be resedimented in fluvial and pyroclastic density currents that traveled tens of 2001; Dufek et al., 2007; Maeno and Taniguchi, coastal environments, and eventually enter the kilometers over the sea surface, coupled with 2007; Trofimovs et al., 2008). Subaerial over- ocean as already-waterlogged pumice, or as quick waterlogging and settling of pyroclasts water pyroclastic density currents and subaque- floating clasts that form pumice rafts (Manville that were delivered to the water surface and then ous turbidity currents can both transport pum- et al., 1998, 2002; Riggs et al., 2001; Kataoka settled through the water column in multiple ice clasts for at least tens of kilometers offshore and Nakajo, 2002; Kataoka, 2005; Larsen et al., sedimentation pulses. This mechanism of sedi- (Lacroix, 1904; Sigurdsson et al., 1982; Cas and 2014). Settling through the water column leads mentation has been witnessed, reproduced, and Wright, 1991; Cole and DeCelles, 1991; Fisher to hydraulic sorting (Jutzeler et al., 2015b) of modeled (Lacroix, 1904; Sigurdsson et al., 1982; et al., 1993; Carey et al., 1996; White, 2000; the clasts by their drag (i.e., clast size, density, Cas and Wright, 1991; Fisher et al., 1993; Carey Allen and Cas, 2001; Freundt, 2003; Dufek and shape). Water settling of large volumes of et al., 1996; Allen and Cas, 2001; Freundt, 2003; et al., 2007; Maeno and Taniguchi, 2007; Allen volcanic clasts can form vertical plumes of fine Dufek et al., 2007; Maeno and Taniguchi, 2007; et al., 2012; Schindlbeck et al., 2013; Kutterolf ash (Manville and Wilson,
Recommended publications
  • Supplementary Material
    Supplementary material S1 Eruptions considered Askja 1875 Askja, within Iceland’s Northern Volcanic Zone (NVZ), erupted in six phases of varying intensity, lasting 17 hours on 28–29 March 1875. The main eruption included a Subplinian phase (Unit B) followed by hydromagmatic fall and with some proximal pyroclastic flow (Unit C) and a magmatic Plinian phase (Unit D). Units C and D consisted of 4.5 x 108 m3 and 1.37 x 109 m3 of rhyolitic tephra, respectively [1–3]. Eyjafjallajökull 2010 Eyjafjallajökull is situated in the Eastern Volcanic Zone (EVZ) in southern Iceland. The Subplinian 2010 eruption lasted from 14 April to 21 May, resulting in significant disruption to European airspace. Plume heights ranged from 3 to 10 km and dispersing 2.7 x 105 m3 of trachytic tephra [4]. Hverfjall 2000 BP Hverfjall Fires occurred from a 50 km long fissure in the Krafla Volcanic System in Iceland’s NVZ. Magma interaction with an aquifer resulted in an initial basaltic hydromagmatic fall deposit from the Hverfjall vent with a total volume of 8 x 107 m3 [5]. Eldgja 10th century The flood lava eruption in the first half of the 10th century occurred from the Eldgja fissure within the Katla Volcanic System in Iceland’s EVZ. The mainly effusive basaltic eruption is estimated to have lasted between 6 months and 6 years, and included approximately 16 explosive episodes, both magmatic and hydromagmatic. A subaerial eruption produced magmatic Unit 7 (2.4 x 107 m3 of tephra) and a subglacial eruption produced hydromagmatic Unit 8 (2.8 x 107 m3 of tephra).
    [Show full text]
  • Explosive Subaqueous Eruptions: the Influence of Volcanic Jets on Eruption Dynamics and Tephra Dispersal in Underwater Eruptions
    EXPLOSIVE SUBAQUEOUS ERUPTIONS: THE INFLUENCE OF VOLCANIC JETS ON ERUPTION DYNAMICS AND TEPHRA DISPERSAL IN UNDERWATER ERUPTIONS by RYAN CAIN CAHALAN A DISSERTATION Presented to the Department of Earth ScIences and the Graduate School of the UniversIty of Oregon In partIaL fulfiLLment of the requirements for the degree of Doctor of PhiLosophy December 2020 DISSERTATION APPROVAL PAGE Student: Ryan CaIn CahaLan Title: ExplosIve Subaqueous EruptIons: The Influence of Volcanic Jets on EruptIon DynamIcs and Tephra DIspersaL In Underwater EruptIons This dissertatIon has been accepted and approved in partIaL fulfiLLment of the requirements for the Doctor of PhiLosophy degree in the Department of Earth ScIences by: Dr. Josef Dufek ChaIrperson Dr. Thomas GIachettI Core Member Dr. Paul WaLLace Core Member Dr. KeLLy Sutherland InstItutIonaL RepresentatIve and Kate Mondloch Interim VIce Provost and Dean of the Graduate School OriginaL approvaL sIgnatures are on fiLe wIth the UniversIty of Oregon Graduate School. Degree awarded December 2020 II © 2020 Ryan Cain Cahalan III DISSERTATION ABSTRACT Ryan CaIn CahaLan Doctor of PhiLosophy Department of Earth ScIences December 2020 Title: ExplosIve Subaqueous EruptIons: The Influence of Volcanic Jets on EruptIon DynamIcs and Tephra DIspersaL In Underwater EruptIons Subaqueous eruptIons are often overlooked in hazard consIderatIons though they represent sIgnificant hazards to shipping, coastLInes, and in some cases, aIrcraft. In explosIve subaqueous eruptIons, volcanic jets transport fragmented tephra and exsolved gases from the conduit into the water column. Upon eruptIon the volcanic jet mIxes wIth seawater and rapidly cools. This mIxing and assocIated heat transfer ultImateLy determInes whether steam present in the jet wILL completeLy condense or rise to breach the sea surface and become a subaeriaL hazard.
    [Show full text]
  • “Poseidic” Explosive Eruptions at Loihi Seamount, Hawaii
    Downloaded from geology.gsapubs.org on October 5, 2010 “Poseidic” explosive eruptions at Loihi Seamount, Hawaii C. Ian Schipper*1, James D.L. White1, Bruce F. Houghton2, Nobumichi Shimizu3, and Robert B. Stewart4 1Geology Department, University of Otago, PO Box 56, Leith Street, Dunedin 9016, New Zealand 2School of Ocean and Earth Science and Technology (SOEST), University of Hawai’ i at Ma¯noa, 1680 East-West Road, Honolulu, Hawaii 98622, USA 3Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 4Soil and Earth Sciences, Institute of Natural Resources (INR), Massey University, PB 11-222, Palmerston North 4474, New Zealand ABSTRACT (A.D. 1996) of Loihi’s ~400 ka history (Moore Much remains unknown about submarine explosive eruptions. Their deposits are found et al. 1982; Garcia et al. 2006). to great depths in all the world’s oceans, but eruptions are typically described by analogy Here we describe the southern cone on the to a subaerial nomenclature that ignores the substantial and inevitable infl uences of hydro- southeast summit plateau of Loihi (18°54′N, static pressure and magma-water interaction at submerged edifi ces. Here we explore mag- 155°15′W), examined in October 2006 with matic volatile exsolution and magma-water interaction for a pyroclastic cone-forming erup- the Hawaiian Undersea Research Laboratory’s tion at ~1 km depth on Loihi Seamount, Hawaii. We examine vesicle textures in lapilli—the Pisces IV submersible. The cone is ~60 m high, physical manifestation of degassing; dissolved volatiles in matrix glasses and olivine-hosted 4 × 106 m3 in volume, with a faintly discernable glass inclusions—the geochemical record of ascent and volatile exsolution; and fi ne ash summit rim we interpret as the edge of a partly morphology—the evidence for if and how external water assisted in fragmentation.
    [Show full text]
  • Eruptive History and 40Ar/39Ar Geochronology of the Milos Volcanic 2 Field, Greece 3
    https://doi.org/10.5194/gchron-2020-30 Preprint. Discussion started: 13 October 2020 c Author(s) 2020. CC BY 4.0 License. 1 Eruptive history and 40Ar/39Ar geochronology of the Milos volcanic 2 field, Greece 3 4 Xiaolong Zhou1, Klaudia Kuiper1, Jan Wijbrans1, Katharina Boehm1, Pieter Vroon1 5 1Department of Earth Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. 6 Correspondence to: Xiaolong Zhou ([email protected]) 7 Abstract. High-resolution geochronology is essential to determine the growth-rate of volcanoes, which is one of the key factors 8 to establish the periodicity of explosive volcanic eruptions. However, there are less high-resolution eruptive histories (>106 9 years) determined for long-lived submarine arc volcanic complexes than for subaerial complexes, since the submarine 10 volcanoes are far more difficult to observe than subaerial ones. In this study, high-resolution geochronology and major element 11 data are presented for Milos Volcanic Field (VF) in the South Aegean Volcanic Arc, Greece. The Milos VF has been active 12 for over 3 Myrs, and the first two million years of its eruptive history occurred in a submarine setting that has emerged above 13 sea level nowadays. The long submarine volcanic history of the Milos VF makes it an excellent natural laboratory to study the 14 growth-rate of a long-lived submarine arc volcanic complex. This study reports twenty-one new high-precision 40Ar/39Ar ages 15 and major element compositions for eleven volcanic units of the Milos VF. This allows us to refine the volcanic evolution of 16 Milos into nine phases and five volcanic quiescence periods of longer than 200 kyrs, on the basis of age, composition, volcano 17 type and location.
    [Show full text]
  • 40Ar/39Ar Ages and Residual Volatile Contents in Degassed Subaerial and Subglacial Glassy Volcanic Rocks from Iceland
    Chemical Geology 403 (2015) 99–110 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo 40Ar/39Ar ages and residual volatile contents in degassed subaerial and subglacial glassy volcanic rocks from Iceland P.L. Clay a,b,⁎, H. Busemann a,b, S.C. Sherlock a, T.L. Barry c, S.P. Kelley a,D.W.McGarviea a CEPSAR, The Open University, Milton Keynes MK7 6AA, United Kingdom b School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom c Dept. of Geology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom article info abstract 40 39 Article history: Major volatile contents (H2O, CO2,F,Cl,andS)and Ar/ Ar ages have been determined in variably degassed rhy- Received 24 February 2014 olite obsidians from Pleistocene–Holocene aged subaerial and subglacial eruption environments from the Received in revised form 23 February 2015 Torfajökull volcanic center and the monogenetic volcano at Prestahnúkur (Iceland). Icelandic subglacial rhyolites Accepted 24 February 2015 preserve residual H Ocontentsof0.08–0.69 wt.%, undetectable CO , 840–1780 ppm F, 430–2000 ppm Cl and 6– Available online 11 March 2015 2 2 45 ppm S. Most subglacial obsidians have degassed volatile signatures at the time of their eruption under ice. Editor: L. Reisberg One eruption (Bláhnúkur, Torfajökull) showed H2O contents which exceed those expected for quenching at atmo- spheric pressures (up to 0.69 wt.% H2O) and are consistent with eruption at ~40kbarofpressureorequivalentto Keywords: under ~450 m of ice. Altered and microcrystalline groundmass in some subglacial rhyolites yield variable volatile 40Ar/39Ar dating contents that are likely the result of micro-scale variability and the presence of alteration products.
    [Show full text]
  • Glaciovolcanism at Volcán Sollipulli, Southern Chile: Lithofacies Analysis and Interpretation
    Journal of Volcanology and Geothermal Research 303 (2015) 59–78 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Glaciovolcanism at Volcán Sollipulli, southern Chile: Lithofacies analysis and interpretation Stefan M. Lachowycz a,⁎, David M. Pyle a, Jennie S. Gilbert b, Tamsin A. Mather a,KatyMeec, José A. Naranjo d, Laura K. Hobbs b a Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom b Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom c British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, United Kingdom d Servicio Nacional de Geología y Minería, Avenida Santa María 0104, Santiago, Chile article info abstract Article history: Magma–ice–meltwater interactions produce diverse landforms and lithofacies, reflecting the multitude of factors Received 18 December 2014 that influence glaciovolcanism, including both magmatic (e.g., composition, eruption rate) and glacial (e.g., ice Accepted 20 June 2015 thickness, thermal regime) conditions. This is exemplified by the walls of the partly ice-filled summit caldera Available online 3 July 2015 of Volcán Sollipulli, a stratovolcano in southern Chile, which include lithofacies from eruptions of a wide range of magma compositions beneath or in contact with ice. Here we analyse these lithofacies and hence propose Keywords: new interpretations of the eruptive and glacial history of Sollipulli. The facies include a thick, laterally extensive Volcano–ice interaction fi Glaciovolcanic lithofacies sequence of fragmental glaciovolcanic deposits, comprising massive, ma c lava pillow-bearing hyaloclastite Hyaloclastite overlain by sills and then hyaloclastic debris flow deposits (similar to Dalsheidi-type sequences).
    [Show full text]
  • Chapter 8 the Dynamics of Hawaiian
    Characteristics of Hawaiian Volcanoes Editors: Michael P. Poland, Taeko Jane Takahashi, and Claire M. Landowski U.S. Geological Survey Professional Paper 1801, 2014 Chapter 8 The Dynamics of Hawaiian-Style Eruptions: A Century of Study By Margaret T. Mangan1, Katharine V. Cashman2, and Donald A. Swanson1 Abstract This chapter, prepared in celebration of the Hawaiian Of endless fascination to the observers of Hawaiian eruptions Volcano Observatoryʼs centennial, provides a historical lens is the “marvelous. superlative mobility” of molten lava (Perret, through which to view modern paradigms of Hawaiian-style 1913a). This observation is fundamental, for ultimately the fluidity eruption dynamics. The models presented here draw heavily of basaltic magma is what distinguishes the classic Hawaiian-style from observations, monitoring, and experiments conducted on eruption from other forms of volcanism. Eruption of free-flowing Kīlauea Volcano, which, as the site of frequent and accessible tholeiitic basalt feeds the iconic images of Hawaiian curtains of eruptions, has attracted scientists from around the globe. fire, lava fountains, lava lakes, Pele’s hair, and thread-lace scoria Long-lived eruptions in particular—Halema‘uma‘u 1907–24, (fig. 1). Moreover, thin flows of fluid basalt are central to Hawaiian Kīlauea Iki 1959, Mauna Ulu 1969–74, Pu‘u ‘Ō‘ō-Kupaianaha shield building, requiring quasi-steady-state magma supply and 1983–present, and Halema‘uma‘u 2008–present—have offered throughput for hundreds of thousands of years. incomparable opportunities to conceptualize and constrain Early observations of the eruptive activity at Kīlauea and theoretical models with multidisciplinary data and to field- Mauna Loa volcanoes demonstrated that their broad, shield-like test model results.
    [Show full text]
  • Identification of Hydrovolcanism and Its Significance for Hydrocarbon
    Xian et al. Journal of Palaeogeography (2018) 7:11 https://doi.org/10.1186/s42501-018-0010-6 Journal of Palaeogeography REVIEW Open Access Identification of hydrovolcanism and its significance for hydrocarbon reservoir assessment: A review Ben-Zhong Xian1,2*, Yan-Xin He1, Hua-Peng Niu1,2, Jun-Hui Wang1,2, Jian-Ping Liu1 and Zhen Wang1 Abstract Investigations of modern volcanic eruptions have demonstrated that ancient volcanic eruptions widely involved water, which was thus named as hydrovolcanic eruptions. Hydrovolcanisms are distinctive in many aspects, such as dynamics, eruptive pattern, texture and structure of rock, and vesicularity. First, normal sediments covered directly by volcanic rocks are the indicators of eruption environments. In addition, microfeatures, special structures, lithofacies or facies associations, and geochemical index of volcanic rocks can also provide significant evidences. Moreover, perlitic texture, quenching fragmentation, surface feature, cementation type, vesicularity, and pillow structure, parallel bedding, large-scale low-angle cross-bedding, antidune cross-bedding of pyroclast are keys to indicating hydrovolcanisms. Clearly, these marks are not equally reliable for identifying eruption environments, and most of them are effective and convincible in limited applications only. For explosive eruptions, the most dependable identification marks include quenching textures, vesicularity in pyroclasts and special large-scale cross-bedding. However, for effusive eruptions, useful indicators mainly include pillow
    [Show full text]
  • The First Physical Evidence of Subglacial Volcanism Under The
    www.nature.com/scientificreports OPEN The frst physical evidence of subglacial volcanism under the West Antarctic Ice Sheet Received: 23 February 2017 Nels A. Iverson1, Ross Lieb-Lappen2, Nelia W. Dunbar3, Rachel Obbard 4, Ellen Kim4 & Accepted: 14 August 2017 Ellyn Golden4 Published: xx xx xxxx The West Antarctic ice sheet (WAIS) is highly vulnerable to collapsing because of increased ocean and surface temperatures. New evidence from ice core tephra shows that subglacial volcanism can breach the surface of the ice sheet and may pose a great threat to WAIS stability. Micro-CT analyses on englacial ice core tephra along with detailed shard morphology characterization and geochemical analysis suggest that two tephra layers were derived from subglacial to emergent volcanism that erupted through the WAIS. These tephra were erupted though the center of the ice sheet, deposited near WAIS Divide and preserved in the WDC06A ice core. The sources of these tephra layers were likely to be nearby subglacial volcanoes, Mt. Resnik, Mt. Thiel, and/or Mt. Casertz. A widespread increase in ice loss from WAIS could trigger positive feedback by decreasing ice mass and increasing decompression melting under the WAIS, increasing volcanism. Both tephra were erupted during the last glacial period and a widespread increase in subglacial volcanism in the future could have a considerable efect on the stability of the WAIS and resulting sea level rise. Te West Antarctic ice sheet (WAIS), a large and unstable marine-based ice sheet, is highly vulnerable to accel- erating ice loss caused by erosion of buttressing ice shelves by upwelling warm ocean water1 and could also be impacted by subglacial volcanic eruptions2, 3.
    [Show full text]
  • Dynamics of Deep Submarine Silicic Explosive Eruptions in the Kermadec Arc, As Reflected in Pumice Vesicularity Textures
    ÔØ ÅÒÙ×Ö ÔØ Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures Melissa D. Rotella, Colin J.N. Wilson, Simon J. Barker, C. Ian Schip- per, Ian C. Wright, Richard J. Wysoczanski PII: S0377-0273(15)00173-0 DOI: doi: 10.1016/j.jvolgeores.2015.05.021 Reference: VOLGEO 5556 To appear in: Journal of Volcanology and Geothermal Research Received date: 10 April 2015 Accepted date: 29 May 2015 Please cite this article as: Rotella, Melissa D., Wilson, Colin J.N., Barker, Simon J., Ian Schipper, C., Wright, Ian C., Wysoczanski, Richard J., Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures, Journal of Volcanology and Geothermal Research (2015), doi: 10.1016/j.jvolgeores.2015.05.021 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures Melissa D. Rotella1, Colin J. N. Wilson1, Simon J. Barker1,2, C. Ian Schipper1, Ian C. Wright3, Richard J. Wysoczanski4 1School of Geography, Environment and Earth Sciences Victoria University of Wellington P.O.
    [Show full text]
  • Chapter 1 Chapter 1 Under the Glacier
    UvA-DARE (Digital Academic Repository) When the glacier left the volcano: Behaviour and fate of glaciovolcanic glass in different planetary environments de Vet, S.J. Publication date 2013 Link to publication Citation for published version (APA): de Vet, S. J. (2013). When the glacier left the volcano: Behaviour and fate of glaciovolcanic glass in different planetary environments. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 ▲ Glacial ice and volcanic sands meet at the beach near the iceberg lake Jökullsárlón in South-West Iceland. 8 | chapter 1 Chapter 1 Under the glacier 1. Introduction Parallels between landscapes in Iceland and those at the surface of planet Mars allow studies of terrestrial landscape processes to be used for characterising Martian landform genetics.
    [Show full text]
  • Seismo-Acoustic Evidence for Vent Drying During Shallow Submarine Eruptions at Bogoslof Volcano, Alaska
    Bulletin of Volcanology (2020) 82: 2 https://doi.org/10.1007/s00445-019-1326-5 RESEARCH ARTICLE Seismo-acoustic evidence for vent drying during shallow submarine eruptions at Bogoslof volcano, Alaska David Fee1 · John Lyons2 · Matthew Haney2 · Aaron Wech2 · Christopher Waythomas2 · Angela K. Diefenbach3 · Taryn Lopez1 · Alexa Van Eaton3 · David Schneider2 Received: 3 October 2018 / Accepted: 10 September 2019 / Published online: 13 December 2019 © The Author(s) 2019 Abstract Characterizing the state of the volcanic vent is key for interpreting observational datasets and accurately assessing volcanic hazards. This is particularly true for remote, complex eruptions such as the 2016–2017 Bogoslof volcano, Alaska eruption sequence. Bogoslof’s eruptions in this period were either shallow submarine or subaerial, or some combination of both. Our results demonstrate how low-frequency sound waves (infrasound), integrated with seismic and satellite data, can provide unique insight into shallow vent processes, otherwise not available. We use simple metrics, such as the infrasound frequency index (FI), event duration, and acoustic-seismic amplitude ratio, to look at changes in the elastic energy radiation and infer changes in seawater access to the vent. Satellite imagery before and after selected eruptions is used to ground-truth inferences on vent conditions. High FI and gradual increases in infrasound frequency content at Bogoslof correspond with transitions from submarine to subaerial vent conditions and a diminished or absent role of water, likely resulting in a drying out of the vent region. Event durations generally correlate with high FI and the range of FI values for each event, suggesting long duration events were more effective at drying out the vent region.
    [Show full text]