Identification of Hydrovolcanism and Its Significance for Hydrocarbon

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Hydrovolcanism and Its Significance for Hydrocarbon Xian et al. Journal of Palaeogeography (2018) 7:11 https://doi.org/10.1186/s42501-018-0010-6 Journal of Palaeogeography REVIEW Open Access Identification of hydrovolcanism and its significance for hydrocarbon reservoir assessment: A review Ben-Zhong Xian1,2*, Yan-Xin He1, Hua-Peng Niu1,2, Jun-Hui Wang1,2, Jian-Ping Liu1 and Zhen Wang1 Abstract Investigations of modern volcanic eruptions have demonstrated that ancient volcanic eruptions widely involved water, which was thus named as hydrovolcanic eruptions. Hydrovolcanisms are distinctive in many aspects, such as dynamics, eruptive pattern, texture and structure of rock, and vesicularity. First, normal sediments covered directly by volcanic rocks are the indicators of eruption environments. In addition, microfeatures, special structures, lithofacies or facies associations, and geochemical index of volcanic rocks can also provide significant evidences. Moreover, perlitic texture, quenching fragmentation, surface feature, cementation type, vesicularity, and pillow structure, parallel bedding, large-scale low-angle cross-bedding, antidune cross-bedding of pyroclast are keys to indicating hydrovolcanisms. Clearly, these marks are not equally reliable for identifying eruption environments, and most of them are effective and convincible in limited applications only. For explosive eruptions, the most dependable identification marks include quenching textures, vesicularity in pyroclasts and special large-scale cross-bedding. However, for effusive eruptions, useful indicators mainly include pillow structure, peperite and facies associations. Condensation rate of magma, exsolution of volatile affected by eruptive settings and magma−water interaction, and quenching in hydrovolcanisms have an influence on formation and scale of primary pores, fractures and their evolution during diagenetic stage. Therefore, this review provides systematic identification marks for ancient hydrovolcanisms, and promotes understanding of the influence of eruptive environments on hydrocarbon reservoirs of volcanic rocks in oil−gas bearing sedimentary basins. Keywords: Hydrovolcanism, Volcanic reservoir, Eruption environment, Hydrocarbon reservoir, Oil−gas bearing sedimentary basin 1 Introduction the Earth account for 85% of the global volcanic Hydrovolcanism is the term that describes the inter- eruptions, approximately 3.485 km3/yr. and well above action between meteoric or connate water and lava, subaerial eruptions (White et al. 2003), which demon- magmatic heat, or gases at or near the Earth’s surface, strate that hydrovolcanisms widely exist in volcanic and it encompasses the physical and chemical dynamics eruptions. However, due to the difficulty of field mon- that determine the resulting intrusive or extrusive behav- itoring and the high cost of submarine sampling, ior and the character of eruptive products and deposits current research degree of eruption process and pet- (Valentine and Fisher 1999;Wohletzetal.2013). rological characteristics of hydrovolcanisms is still lower Hydrovolcanisms contain subaqueous eruptions and (Carey 2000; White et al. 2003). subaerial eruptions involved with water. The statistical The water involved in a hydrovolcanism can come results indicate that subaqueous volcanic eruptions on from ground water, connate water, marine, fluvial or la- custrine water, glacier and rain water (Wohletz et al. 2013). Research on the round crater lake of Quaternary * Correspondence: [email protected] “ ” 1College of Geosciences, China University of Petroleum (Beijing), Beijing volcanic field in Eifel, western Germany (named maar 102249, China at the time) sets the work on hydrovolcanism (phreato- 2State Key Laboratory of Petroleum Resources and Prospecting, China magmatic eruption) since 1983 (Fisher et al. 1983). University of Petroleum (Beijing), Beijing 102249, China © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Xian et al. Journal of Palaeogeography (2018) 7:11 Page 2 of 17 People come to realize that the involvement of water, systematically summarize the identification marks of which is completely different with air in physical proper- hydrovolcanism and discuss their limits and reliability ties, changes the dynamic condition and eruption style based on depositional environment and volcanic eruption of volcanic eruptions, as well as the process of disper- products, in order to provide identification marks for an- sion, transportation and sedimentation of eruption prod- cient volcanic eruptions, increase the understanding of ucts (Cas and Giordano 2014; Dziak et al. 2015), and hydrocarbon reservoirs of hydrovolcanisms, and offer new leads to the specificity in such factors as grain size distri- ideas for volcanic reservoir evaluation. bution, fragmentation, rock texture, sedimentary struc- ture and vesicle abundance (Sun and Fan 2005). 2 Identification marks of hydrovolcanism In addition to a large number of submarine volcanic There are subaerial eruption and subaqueous eruption eruptions, the case studies on eruptions that occurred as types of volcanic eruption according to their different under lacustrine, for example, indicated by phenomenon geographical environments. The eruption environment, and data from Karymskoye Lake in Russian (Belousov however, is not exactly equivalent to the depositional en- and Belousova 2001), famous Taupo Volcano in New vironment. Products of subaerial eruption can deposit Zealand (Manville et al. 2009), Sirinia Basin in Southwest on land as well as under water; similarly, the products of Romanian−Eastern Europe (Seghedi 2011) and Tocomar subaqueous eruption can also deposit both on land and Volcano in Argentina (Petrinovic and Colombo Piñol under water. The hydrovolcanism discussed here empha- 2006), etc. have demonstrated the occurrence of hydrovol- sizes the volcanic eruption which has high interaction canisms in lakes (Stix 1991; White et al. 2003; White et al. with the water, and is approximately the same as phre- 2015). Lava and pyroclastic rocks have been found gener- atomagmatic eruption, including subaqueous eruption ally developed along with hydrovolcanism when investi- and subaerial eruption involved with water. gating the Paleogene of the Jianghan Basin (Run et al. The identification marks of the subaqueous volcanic 1996), the Yingcheng Formation of the Songliao Basin eruption will be described in detail in terms of the char- (Zhang et al. 2007), the Carboniferous of the Santanghu acteristics of the eruptive products (Section 3) and the Basin (Wang et al. 2010) and the Carboniferous of the associated depositional environment records (Section 4) Junggar Basin (Yu et al. 2004). The physical properties of of the volcanic rocks. water in density, viscosity (rheology), heat capacity, ther- mal conductivity and phase state are significantly corre- 3 Characteristics of the eruptive products lated with the peculiarity of hydrovolcanism. For instance, Eruptive process is influenced by magma composition, magma−water interaction will lead to water vaporization, explosive degree, transportation and deposition. Such quenching and vapor explosion, fragmentation, etc., and characteristics as the microtextures, special structures, then lead to differences in eruption process and volcanic lithofacies or facies sequences and oxidation index of productfeatures(Whiteetal.2003), further affecting the eruptive products (volcanic rocks) can reflect these pro- characteristics of pores or fractures and the quality of res- cesses. In turn, these characteristics of the volcanic rocks ervoirs in the hydrovolcanism. can be used to infer the type and process of eruption, Petroleum exploration history of more than 120 years and further identify the eruption environment (Table 1). with volcanic rocks in the world reveals that consider- able petroliferous sedimentary basins contain volcanic 3.1 Microtextures facies of different sizes (Zou et al. 2008). The prospect- Microtextures of eruptive products provide a wealth of ing of the 11 Chinese basins, such as Bohai Bay Basin, information for researching physical and chemical prop- Songliao Basin (Wang et al. 2003a, 2003b), Junggar erties of magma, and features of eruptive processes and Basin (Kuang et al. 2008) and Santanghu Basin (Zhao subsequent diagenesis. The following five microtextures et al. 2006), demonstrated that the prediction of high- are discussed for identifying hydrovolcanism (Table 1). quality volcanic reservoirs is the key to successful explo- rations (Wang et al. 2003a, 2003b; Zou et al. 2008;Xian 3.1.1 Perlitic texture et al. 2013). Recent investigations demonstrated that the Perlite is a kind of acidic lava commonly developed when performance of reservoir was controlled by diagenesis acidic lava has interacted with water, the moisture content (including epigenetic weathering), volcanism and tec- of which is 2%−6%. Perlitic texture, an arc-shaped fissure tonic activity (Chen et al. 2003; Wang et al. 2003a, texture looking like pearl, which is a typical texture of 2003b; Dong et al. 2012), as well as volcanic eruption perlite, indicates that it may be formed in a violent environment (Xian et al. 2013). To date, effective identi- quenching
Recommended publications
  • Geology, Geochemistry and Earthquake History of Loieihi Seamount, Hawaiei's Youngest Volcano
    ARTICLE IN PRESS Chemie der Erde ] (]]]]) ]]]–]]] www.elsevier.de/chemer INVITED REVIEW Geology, geochemistry and earthquake history of Lo¯"ihi Seamount, Hawai"i’s youngest volcano Michael O. Garciaa,Ã, Jackie Caplan-Auerbachb, Eric H. De Carloc, M.D. Kurzd, N. Beckera aDepartment of Geology and Geophysics, University of Hawai"i, Honolulu, HI 96822, USA bAlaska Volcano Observatory, U.S.G.S., Alaska Science Center, Anchorage, AK 99508, USA cDepartment of Oceanography, University of Hawai"i, Honolulu, HI 96822, USA dDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 6 June 2005; accepted 20 September 2005 Abstract A half-century of investigations are summarized here on the youngest Hawaiian volcano, Lo¯"ihi Seamount. It was discovered in 1952 following an earthquake swarm. Surveying in 1954 determined it has an elongate shape, which is the meaning of its Hawaiian name. Lo¯"ihi was mostly forgotten until two earthquake swarms in the 1970s led to a dredging expedition in 1978, which recovered young lavas. The recovery of young lavas motivated numerous expeditions to investigate the geology, geophysics, and geochemistry of this active volcano. Geophysical monitoring, including a real- time submarine observatory that continuously monitored Lo¯"ihi’s seismic activity for 3 months, captured some of the volcano’s earthquake swarms. The 1996 swarm, the largest recorded in Hawai"i, was preceded earlier in the year by at least one eruption and accompanied by the formation of a 300-m deep pit crater, Pele’s Pit. Seismic and petrologic data indicate that magma was stored in a 8–9 km deep reservoir prior to the 1996 eruption.
    [Show full text]
  • Phreatomagmatic Eruptions of 2014 and 2015 in Kuchinoerabujima Volcano Triggered by a Shallow Intrusion of Magma
    Journal of Natural Disaster Science, Volume 37,Number 2,2016,pp67-78 Phreatomagmatic eruptions of 2014 and 2015 in Kuchinoerabujima Volcano triggered by a shallow intrusion of magma Nobuo Geshi1, Masato Iguchi2, and Hiroshi Shinohara1 1 Geological Survey of Japan, AIST 2 Disaster Prevention Research Institute, Kyoto University, (Received:Sep 2, 2016 Accepted:Oct.28, 2016) Abstract The 2014 and 2015 eruptions of Kuchinoerabujima Volcano followed a ~15-year precursory activation of the hydrothermal system induced by a magma intrusion event. Continuous heat transfer from the degassing magma body heated the hydrothermal system and the increase of the fluid pressure in the hydrothermal system caused fracturing of the unstable edifice, inducing a phreatic explosion. The 2014 eruption occurred from two fissures that traced the eruption fissures formed in the 1931 eruption. The explosive eruption detonated the hydrothermally-altered materials and part of the intruding magma. The rise of fumarolic activities before the past two activities in 1931-35 and 1966-1980 also suggest activation of the hydrothermal system by magmatic intrusions prior to the eruption. The long-lasting precursory activities in Kuchinoerabujima suggest complex processes of the heat transfer from the magma to the hydrothermal system. Keywords: Kuchinoerabujima Volcano, phreatomagmatic eruption, hydrothermal system, magma intrusion 1. Introduction Phreatic eruptions are generally caused by the rapid extrusion of geothermal fluid from a hydrothermal system within a volcanic edifice (Barberi et al., 1992). Hydrothermal activities and phreatic eruptions are related to magmatic activities directly or indirectly, as the hydrothermal activities of a volcano are basically driven by heat from magma (Grapes et al., 1974).
    [Show full text]
  • Supplementary Material
    Supplementary material S1 Eruptions considered Askja 1875 Askja, within Iceland’s Northern Volcanic Zone (NVZ), erupted in six phases of varying intensity, lasting 17 hours on 28–29 March 1875. The main eruption included a Subplinian phase (Unit B) followed by hydromagmatic fall and with some proximal pyroclastic flow (Unit C) and a magmatic Plinian phase (Unit D). Units C and D consisted of 4.5 x 108 m3 and 1.37 x 109 m3 of rhyolitic tephra, respectively [1–3]. Eyjafjallajökull 2010 Eyjafjallajökull is situated in the Eastern Volcanic Zone (EVZ) in southern Iceland. The Subplinian 2010 eruption lasted from 14 April to 21 May, resulting in significant disruption to European airspace. Plume heights ranged from 3 to 10 km and dispersing 2.7 x 105 m3 of trachytic tephra [4]. Hverfjall 2000 BP Hverfjall Fires occurred from a 50 km long fissure in the Krafla Volcanic System in Iceland’s NVZ. Magma interaction with an aquifer resulted in an initial basaltic hydromagmatic fall deposit from the Hverfjall vent with a total volume of 8 x 107 m3 [5]. Eldgja 10th century The flood lava eruption in the first half of the 10th century occurred from the Eldgja fissure within the Katla Volcanic System in Iceland’s EVZ. The mainly effusive basaltic eruption is estimated to have lasted between 6 months and 6 years, and included approximately 16 explosive episodes, both magmatic and hydromagmatic. A subaerial eruption produced magmatic Unit 7 (2.4 x 107 m3 of tephra) and a subglacial eruption produced hydromagmatic Unit 8 (2.8 x 107 m3 of tephra).
    [Show full text]
  • Volcanic Eruption Impacts Student Worksheet
    Volcanic Eruption Impacts Student Worksheet Explosive and Effusive Volcanoes The type of volcanic eruption is largely determined by magma composition. Flux-mediated melting at subduction zones creates a felsic magma with high levels of carbon dioxide and water. These dissolved gases explode during eruption. Effusive volcanoes have a hotter, more mafic magma with lower levels of dissolved gas, allowing them to erupt more calmly (effusive eruption). Sinabung (Indonesia) Mount Sinabung is a stratovolcano located 40 km from the Lake Toba supervolcano in North Sumatra. It lies along the Sunda Arc, where the Indo-Australian plate subducts beneath the Sunda and Burma plates. After 1200 years of dormancy, Sinabung began erupting intermittently in 2010. Major eruptions have occurred regularly since November 2013. In November and December 2015, ash plumes reached 6 – 11 km in height on multiple occasions. Pyroclastic flows and ashfall blanketed the region in January 2014 and lava flows travelled down the south flank, advancing 2.5 km by April 2014. Pyroclastic flows in February 2014 killed 17 people in a town 3 km from the vent. In June 2015, ash falls affected areas 10 – 15 km from the summit on many occasions. A lahar in May 2016, caused fatalities in a village 20 km from Sinabung. Pyroclastic flows occurred frequently throughout 2016 and 2017 Eruption of Sinabung 6 October 2016 Major eruptions occurred in 2018 and 2019. In (Y Ginsu, public domain) February 2018, an eruption destroyed a lava dome of 1.6 million cubic metres. At least 10 pyroclastic flows extended up to 4.9 km and an ash plume rose more than 16 km in altitude.
    [Show full text]
  • The Independent Volcanic Eruption Source Parameter Archive
    Journal of Volcanology and Geothermal Research 417 (2021) 107295 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Invited Research Article The Independent Volcanic Eruption Source Parameter Archive (IVESPA, version 1.0): A new observational database to support explosive eruptive column model validation and development Thomas J. Aubry a,b,⁎,SamanthaEngwellc, Costanza Bonadonna d, Guillaume Carazzo e,SimonaScollof, Alexa R. Van Eaton g,IsabelleA.Taylorh,DavidJessope,i,j, Julia Eychenne j,MathieuGouhierj, Larry G. Mastin g, Kristi L. Wallace k, Sébastien Biass l, Marcus Bursik m, Roy G. Grainger h,A.MarkJellinekn, Anja Schmidt a,o a Department of Geography, University of Cambridge, Cambridge, UK b Sidney Sussex College, Cambridge, UK c British Geological Survey, The Lyell Centre, Edinburgh, UK d Department of Earth Sciences, University of Geneva, Geneva, Switzerland e Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France f Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy g U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, Washington, USA h COMET, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford OX1 3PU, UK i Observatoire Volcanologique et Sismologique de Guadeloupe, Institut de Physique du Globe de Paris, F- 97113 Gourbeyre, France j Université Clermont Auvergne, CNRS, IRD, OPGC Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
    [Show full text]
  • Explosive Subaqueous Eruptions: the Influence of Volcanic Jets on Eruption Dynamics and Tephra Dispersal in Underwater Eruptions
    EXPLOSIVE SUBAQUEOUS ERUPTIONS: THE INFLUENCE OF VOLCANIC JETS ON ERUPTION DYNAMICS AND TEPHRA DISPERSAL IN UNDERWATER ERUPTIONS by RYAN CAIN CAHALAN A DISSERTATION Presented to the Department of Earth ScIences and the Graduate School of the UniversIty of Oregon In partIaL fulfiLLment of the requirements for the degree of Doctor of PhiLosophy December 2020 DISSERTATION APPROVAL PAGE Student: Ryan CaIn CahaLan Title: ExplosIve Subaqueous EruptIons: The Influence of Volcanic Jets on EruptIon DynamIcs and Tephra DIspersaL In Underwater EruptIons This dissertatIon has been accepted and approved in partIaL fulfiLLment of the requirements for the Doctor of PhiLosophy degree in the Department of Earth ScIences by: Dr. Josef Dufek ChaIrperson Dr. Thomas GIachettI Core Member Dr. Paul WaLLace Core Member Dr. KeLLy Sutherland InstItutIonaL RepresentatIve and Kate Mondloch Interim VIce Provost and Dean of the Graduate School OriginaL approvaL sIgnatures are on fiLe wIth the UniversIty of Oregon Graduate School. Degree awarded December 2020 II © 2020 Ryan Cain Cahalan III DISSERTATION ABSTRACT Ryan CaIn CahaLan Doctor of PhiLosophy Department of Earth ScIences December 2020 Title: ExplosIve Subaqueous EruptIons: The Influence of Volcanic Jets on EruptIon DynamIcs and Tephra DIspersaL In Underwater EruptIons Subaqueous eruptIons are often overlooked in hazard consIderatIons though they represent sIgnificant hazards to shipping, coastLInes, and in some cases, aIrcraft. In explosIve subaqueous eruptIons, volcanic jets transport fragmented tephra and exsolved gases from the conduit into the water column. Upon eruptIon the volcanic jet mIxes wIth seawater and rapidly cools. This mIxing and assocIated heat transfer ultImateLy determInes whether steam present in the jet wILL completeLy condense or rise to breach the sea surface and become a subaeriaL hazard.
    [Show full text]
  • Controls on Rhyolite Lava Dome Eruptions in the Taupo Volcanic Zone
    Controls on rhyolite lava dome eruptions in the Taupo Volcanic Zone Paul Allan Ashwell A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Geological Sciences at the University of Canterbury October 2013 P a g e | II Dedicated to Eva Ashwell P a g e | III View from Ruawahia, across the 1886AD fissure and Wahanga dome towards the Bay of Plenty and White Island (extreme distance, centre left) P a g e | IV Abstract he evolution of rhyolitic lava from effusion to cessation of activity is poorly understood. T Recent lava dome eruptions at Unzen, Colima, Chaiten and Soufrière Hills have vastly increased our knowledge on the changes in behaviour of active domes. However, in ancient domes, little knowledge of the evolution of individual extrusion events exists. Instead, internal structures and facies variations can be used to assess the mechanisms of eruption. Rhyolitic magma rising in a conduit vesiculates and undergoes shear, such that lava erupting at the surface will be a mix of glass and sheared vesicles that form a permeable network, and with or without phenocryst or microlites. This foam will undergo compression from overburden in the shallow conduit and lava dome, forcing the vesicles to close and affecting the permeable network. High temperature, uniaxial compression experiments on crystal-rich and crystal-poor lavas have quantified the evolution of porosity and permeability in such environments. The deformation mechanisms involved in uniaxial deformation are viscous deformation and cracking. Crack production is controlled by strain rate and crystallinity, as strain is localised in crystals in crystal rich lavas.
    [Show full text]
  • Preliminary Volcano-Hazard Assessment for Augustine Volcano, Alaska
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary Volcano-Hazard Assessment for Augustine Volcano, Alaska by Christopher F. Waythomas and Richard B. Waitt Open-File Report 98-106 This report is preliminary and subject to revision as new data become available. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey Alaska Volcano Observatory Anchorage, Alaska 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Thomas J. Casadevall, Acting Director For additional information: Copies of this report may be purchased from: U.S. Geological Survey U.S. Geological Survey Alaska Volcano Observatory Branch of Information Services 4200 University Drive Box 25286 Anchorage, AK 99508 Denver, CO 80225-0286 CONTENTS Summary of hazards at Augustine Volcano....................................... 1 Introduction ............................................................... 3 Purposeandscope ...................................................... 3 Physical setting of Augustine Volcano ...................................... 4 Relation to previous studies on Augustine hazards ............................. 5 Prehistoric eruptive history ................................................... 5 Historical eruptions ......................................................... 8 Hazardous phenomena at Augustine Volcano ..................................... 8 Volcanic hazards ....................................................... 12 Volcanicashclouds
    [Show full text]
  • Pyroclastic Deposits I: Pyroclastic Fall Deposits
    Pyroclastic Deposits I: Pyroclastic Fall Deposits EAS 458 Volcanology Introduction . We have seen that physics is useful in understanding volcanic processes, but physical models must be constrained by and tested against observation. We have 1925 years of historic observations of Vesuvius (79 AD to present) . Far less for most other volcanoes . In all, a very, very small fraction of eruptions . Most descriptions are of limited use . Observations about volcanic processes must depend primarily on geologic observations . The geologic record of volcanic eruptions consists primarily of the deposits produced by them. 1 Pyroclastic Deposits . Three types of pyroclastic deposits . Fall Deposits . Fallout from an eruptive column . Flow Deposits . Produced by pyroclastic flows . Surge Deposits . Often associated with flow deposits . Associated with explosive events, such as phreatomagmatic explosions Pyroclastic Deposits . Characteristics . Fall Deposits . Mantle topography . Parallel bedding . Well sorted . Often graded . Flow Deposits . Topographically constrained . Poorly sorted . Often graded . Surge Deposits . Partially topographically constrained . Cross bedding characteristic . Intermediate sorting . Often graded 2 Pyroclastic Fall Deposits . General term: tephra . Types . Scoria (mafic , larger size) . Pumice (silicic, larger size) . Ash (fine grained) Fall Deposits: Bedding . Except very near vent, “fall” particles settle vertically. Therefore, extensive deposits (such as those of Plinian eruptions) will be equally thick at any given distance and direction from the vent. Hence, they mantle topography . (Scoria cones produced by Hawaiian and Strobolian eruptions obviously don’t mantle topography) 3 Fall Deposits: Sorting . The distance a particle will travel from the vent depends on: . Ejection velocity . Particle size . For conditions at any particular time and place, particles of a small range of sizes will fall out.
    [Show full text]
  • COV4 Meeting Schedule Monday, 23 January, 2006
    COV4 Meeting Schedule Monday, 23 January, 2006 Sala 1 (large)† 8H15 Welcoming Statements 8H30 Invited Speaker M. Hall: LIVING WITH VOLCANOES 9H00 - 9H30 Invited Speaker A. Lavell: SOCIETY AND RISK: RISK MANAGEMENT AND VOLCANIC HAZARDS 9H30 - 10H00 Plenary Symposium IV-B: Monitoring Volcanoes J. EWERT: ASSESSING VOLCANIC THREAT AND PRIORITIZING VOLCANO MONITORING IN THE UNITED STATES 10H00 - Plenary Symposium II: Ash Falls and Aerosols 10H30 W. Rose: ASH-FALL AND AEROSOLS, AN OVERVIEW 10H30 - 11H00 Coffee Break Sala 1 (large) Sala 2 (medium) IV-B: Monitoring Volcanoes II: Ash Falls and Aerosols Chairs: J. Ewert, A. García, H. Kumagai & J. Chairs: J.-L. Le Pennec, C. Connor, T. Johnson Casadevall, D. Johnston & D. Schneider 11H00 - S. Carn: MONITORING GLOBAL VOLCANIC A. Neri: ASSESSING ASH FALL HAZARD 11H20 DEGASSING WITH OMI FROM WEAK EXPLOSIVE PLUMES 11H20 - C. Oppenheimer: NEW DEVELOPMENTS IN C. Bonadonna: PROBABILISTIC MODELLING 11H40 VOLCANIC GAS SURVEILLANCE OF TEPHRA DISPERSON 11H40 - B. Galle: DEVELOPMENT OF OPTICAL B. Houghton: PROXIMAL TEPHRA HAZARDS: 12H00 REMOTE SENSING INSTRUMENTS FOR RECENT ERUPTION STUDIES APPLIED TO VOLCANOLOGICAL APPLICATIONS VOLCANIC RISK IN THE AUCKLAND VOLCANIC FIELD, NEW ZEALAND 12H00-12H20 F. Donnadieu: ERUPTION DYNAMICS OF P. Baxter: GRAIN SIZE ANALYSIS OF ARENAL VOLCANO, COSTA RICA: INSIGHTS VOLCANIC ASH FOR THE ASSESSMENT OF FROM DOPPLER RADAR AND SEISMIC HEALTH HAZARD MEASUREMENTS 12H20 - 14H00 Lunch in the Centro Cultural Metropolitano- Plaza Grande IV-B: Monitoring-Cont. II: Ash- Cont. 14H00- A. Gerst: REAL-TIME 4D MONITORING OF D. Andronico: ASH EMISSIONS AT THE 14H20 ERUPTIVE PROCESSES WITH DOPPLER SUMMIT OF ETNA DURING THE 2004-05 RADARS- A NEW TOOL FOR HAZARDS FLANK ERUPTION MITIGATION AND VOLCANO SCIENCE 14H20-14H40 M.
    [Show full text]
  • “Poseidic” Explosive Eruptions at Loihi Seamount, Hawaii
    Downloaded from geology.gsapubs.org on October 5, 2010 “Poseidic” explosive eruptions at Loihi Seamount, Hawaii C. Ian Schipper*1, James D.L. White1, Bruce F. Houghton2, Nobumichi Shimizu3, and Robert B. Stewart4 1Geology Department, University of Otago, PO Box 56, Leith Street, Dunedin 9016, New Zealand 2School of Ocean and Earth Science and Technology (SOEST), University of Hawai’ i at Ma¯noa, 1680 East-West Road, Honolulu, Hawaii 98622, USA 3Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 4Soil and Earth Sciences, Institute of Natural Resources (INR), Massey University, PB 11-222, Palmerston North 4474, New Zealand ABSTRACT (A.D. 1996) of Loihi’s ~400 ka history (Moore Much remains unknown about submarine explosive eruptions. Their deposits are found et al. 1982; Garcia et al. 2006). to great depths in all the world’s oceans, but eruptions are typically described by analogy Here we describe the southern cone on the to a subaerial nomenclature that ignores the substantial and inevitable infl uences of hydro- southeast summit plateau of Loihi (18°54′N, static pressure and magma-water interaction at submerged edifi ces. Here we explore mag- 155°15′W), examined in October 2006 with matic volatile exsolution and magma-water interaction for a pyroclastic cone-forming erup- the Hawaiian Undersea Research Laboratory’s tion at ~1 km depth on Loihi Seamount, Hawaii. We examine vesicle textures in lapilli—the Pisces IV submersible. The cone is ~60 m high, physical manifestation of degassing; dissolved volatiles in matrix glasses and olivine-hosted 4 × 106 m3 in volume, with a faintly discernable glass inclusions—the geochemical record of ascent and volatile exsolution; and fi ne ash summit rim we interpret as the edge of a partly morphology—the evidence for if and how external water assisted in fragmentation.
    [Show full text]
  • Exploring Submarine Arc Volcanoes Steven Carey University of Rhode Island, [email protected]
    University of Rhode Island DigitalCommons@URI Graduate School of Oceanography Faculty Graduate School of Oceanography Publications 2007 Exploring Submarine Arc Volcanoes Steven Carey University of Rhode Island, [email protected] Haraldur Sigurdsson University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs Terms of Use All rights reserved under copyright. Citation/Publisher Attribution Carey, S., and H. Sigurdsson. 2007. Exploring submarine arc volcanoes. Oceanography 20(4):80–89, https://doi.org/10.5670/ oceanog.2007.08. Available at: https://doi.org/10.5670/oceanog.2007.08 This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. This article has This been published in or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any permitted articleonly photocopy by is of machine, reposting, this means or collective or other redistirbution SP ec I A L Iss U E On Ocean E X P L O R ATIO N Oceanography , Volume 20, Number 4, a quarterly journal of The 20, Number 4, a quarterly , Volume O ceanography Society. Copyright 2007 by The 2007 by Copyright Society. ceanography Exploring O ceanography Society. All rights All reserved. Society. ceanography O Submarine Arc Volcanoes or Th e [email protected] Send Society. ceanography to: correspondence all B Y S T even C A R E Y an D H A R A LDUR SIGURD ss O N Three quarters of Earth’s volcanic activ- although a significant part of arc volca- tion of tsunamis (Latter, 1981).
    [Show full text]