Torfajökull, Iceland) Jonathan D

Total Page:16

File Type:pdf, Size:1020Kb

Torfajökull, Iceland) Jonathan D https://doi.org/10.1130/G46004.1 Manuscript received 13 January 2019 Revised manuscript received 27 March 2019 Manuscript accepted 31 March 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 17 April 2019 Widespread tephra dispersal and ignimbrite emplacement from a subglacial volcano (Torfajökull, Iceland) Jonathan D. Moles1, Dave McGarvie2, John A. Stevenson3, Sarah C. Sherlock1, Peter M. Abbott4,5,6, Frances E. Jenner1, and Alison M. Halton1 1Faculty of Science, Technology, Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK 2Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 3British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK 4Department of Geography, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK 5Institute of Geological Sciences, University of Bern, Baltzerstrasse 1, 3012 Bern, Switzerland 6School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK ABSTRACT Alternatively, a direct link to the regional paleo- The tephra dispersal mechanisms of rhyolitic glaciovolcanic eruptions are little known, but climate archive could be established through the can be investigated through the correlation of eruptive products across multiple depositional identification of tephra from the same eruptions settings. Using geochemistry and geochronology, we correlate a regionally important Pleisto- within ice cores and marine sediments. cene tephra horizon—the rhyolitic component of North Atlantic Ash Zone II (II-RHY-1)—and The distal tephra in this study is II-RHY-1, the Thórsmörk Ignimbrite with rhyolitic tuyas at Torfajökull volcano, Iceland. The eruption the rhyolitic component of North Atlantic Ash breached an ice mass >400 m thick, leading to the widespread dispersal of II-RHY-1 across Zone II, which is dated to the last glacial period the North Atlantic and the Greenland ice sheet. Locally, pyroclastic density currents traveled at 55,380 ± 2367 yr b2k (before A.D. 2000; across the ice surface, depositing the variably welded Thórsmörk Ignimbrite beyond the ice 2σ) (Greenland Ice Core Chronology 2005 margin and ~30 km from source. The widely dispersed products of this eruption represent a [GICC05]; Svensson et al., 2008). II-RHY-1 is valuable isochronous tie line between terrestrial, marine, and ice-core paleoenvironmental an important part of the tephrostratigraphy of records. Using the tephra horizon, estimates of ice thickness and extent derived from the the North Atlantic region due to its widespread eruption deposits can be directly linked to the regional climate archive, which records the distribution and occurrence at a time of abrupt eruption at the onset of Greenland Stadial 15.2. climatic change: the onset of Greenland Sta- dial (GS) 15.2 (Bramlette and Bradley, 1941; INTRODUCTION cinsky and Fink, 2000), and the Hallett Volcanic Zielinski et al., 1997; Austin et al., 2004; Aus- The stratigraphic correlation of volcanic Province, Antarctica (Smellie et al., 2011). Cur- tin and Abbott, 2010). Atmospheric transport products, particularly tephra, is a powerful rent knowledge of the behavior of rhyolitic gla- of the tephra resulted in distal fallout onto the means of studying the past eruptive behavior ciovolcanic eruptions is drawn from proximal Greenland ice sheet and sea ice (Ruddiman and of volcanoes and linking together disparate deposits only (e.g., Stevenson et al., 2011; Owen Glover, 1972; Ram and Gayley, 1991), leading paleo envi ron mental records (Lowe, 2011). The et al., 2013a). Without any established correla- to sea-ice rafting of the tephra as far as 2300 km more depositional settings in which an eruption tions between glaciovolcanic rhyolites and dis- to the south and southwest of Iceland (Ruddiman is identified, the more information can be pooled tal tephras, it is not known whether these erup- and Glover, 1972; Wastegård et al., 2006). The together to understand the eruption and the pre- tions have produced widespread tephra deposits volume of airfall tephra, ice-rafted tephra, and vailing environmental conditions. However, it (Tuffen et al., 2002, 2007; McGarvie, 2009). redeposited tephra in the marine stratigraphy is can be challenging to find correlative volcanic Glaciovolcanic edifices, such as tuyas, are substantial, but poorly constrained (Ruddiman products across multiple realms, especially ter- valuable paleoenvironmental indicators that re- and Glover, 1972; Lackschewitz and Wallrabe- restrial settings that are subjected to periodic cord the presence of ice at the time of their erup- Adams, 1997; Brendryen et al., 2011; Voelker glaciation (Larsen and Eiríksson, 2008). In this tion, and can preserve evidence of the coeval ice and Haflidason, 2015). paper, we use correlation methods to (1) assess thickness and basal thermal regime (Jones, 1968; The II-RHY-1 tephra has been identified in a the tephra dispersal mechanisms of rhyolitic Smellie and Skilling, 1994; Smellie et al., 2011). terrestrial setting as the Thórsmörk Ignimbrite, a glacio volcanic eruptions, and (2) precisely Integration of this information with climate rec- variably welded ignimbrite in southern Iceland inte grate glaciovolcanism-derived paleoenvi- ords has been restricted by the large uncertainties (Sigurdsson, 1982; Lacasse et al., 1996; Tom- ronmental data with the regional climate record. in eruption ages (e.g., 40Ar/39Ar ages, with typical linson et al., 2010; Guillou et al., 2019). It has Rhyolite glaciovolcanism is an abundant uncertainties of thousands of years) relative to been suggested that Tindfjallajökull volcano was feature of the active volcanic zones of Iceland the time scales of climate variability (e.g., the the source of the ignimbrite (Jørgensen, 1980); (McGarvie, 2009) and is also reported in the decadal to centennial scale climate shifts during however, recent observations on the physical Cascades volcanic arc, northwestern USA (Les- the last glacial period; Svensson et al., 2008). volcanology of this deposit by Moles et al. CITATION: Moles, J.D., et al., 2019, Widespread tephra dispersal and ignimbrite emplacement from a subglacial volcano (Torfajökull, Iceland): Geology, v. 47, p. 577–580, https:// doi .org /10 .1130 /G46004.1 Geological Society of America | GEOLOGY | Volume 47 | Number 6 | www.gsapubs.org 577 Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/47/6/577/4707802/577.pdf by guest on 29 September 2021 (2018) suggest that this is not the case. Further- Torfajökull volcano Tindallajökull Thórsmörk North Atlanc Ring Fracture Rhyolites Other rhyolites volcano Ignimbrite Ash Zone II more, Grönvold et al. (1995) noted a geochemi- } Kirkjufell Unnamed ridge Rhyolite Ash Pumice Tomlinson II-RHY-1 (locaon map in cal similarity between II-RHY-1 and rhyolites Illihnúkur Bláhnúkur Fiamme Fiamme } et al. (2010) Data Repository, Fig. DR1) Laufafell Hábarmur Dated samples: at Torfajökull volcano, particularly the “Ring Rauðfossaöll North Hábarmur .4 Gvendarhyrna circled markers ( ) B l Fracture Rhyolites”. These suggested sources, atla 21 K ul as well as nearby volcanoes Eyjafjallajökull and 19°W A 1. 3 64°N Katla, are considered here. .0 Eyjaallajök1821–182 ) 81 0. METHODS Torfajökull Torfajökull Ring .6 Potential correlations between samples Fracture Rhyolites CaO (wt% Thórsmörk Ignim. 40 from distal, medial, and proximal settings Other silicic rocks 0. were investigated using both geochemistry .2 and geochronology. II-RHY-1 tephra shards II-RHY-1 and Tindallajökull 00 Thórsmörk Ignimbrite were extracted from four North Atlantic ma- 0. rine sediment cores (Table DR1 and Fig. DR1 2.02.5 3.03.5 4.04.5 5.0 in the GSA Data Repository1). The occurrence FeO (wt%) } and stratigraphic position of II-RHY-1 in the } C 160 cores were determined by Abbott et al. (2018). N Ash and glassy fiamme samples were collected 0 km 5 10 Katla Eyjaallajökull 140 from the Thórsmörk Ignimbrite (Fig. 1A; Table ) DR2). Proximal rhyolite lavas were sampled D ⁴⁰Ar/ ³⁹Ar ages (± 2σ) } 120 i 100 = inverse isochron age at Tindfjallajökull (four samples; Table DR3) } p = plateau age Y (ppm 0 } } and Torfajökull (16 samples; Table DR4). The } p 100 08 selected Torfajökull lavas include those known a) II-RHY-1* p i p p 80 to have erupted during the last glacial period 06 } i } Age (k i } i p } i } (i.e., Ring Fracture Rhyolites, Bláhnúkur, and 04 *GICC05 age ± 2σ “unnamed ridge”; McGarvie, 1984; McGarvie ⁴⁰Ar/ ³⁹Ar ages not determined : 60 (Svennson et al., 2008) 600 800 1000 1200 1400 1600 02 et al., 2006; Clay et al., 2015; Table DR5). Zr (ppm) These deposits contain a significant proportion of fragmental material (e.g., hyaloclastite, ash), Figure 1. A: Location map of Thórsmörk Ignimbrite and nearby volcanoes in southern Iceland. Geological mapping from Jørgensen (1980), Jóhannesson and Sæmundsson (1989), Sæmunds- though samples were sourced from fresh lavas son and Friðleifsson (2001), and Moles et al. (2018). B: Selected major elements plot of tephra to minimize alteration effects. II-RHY-1, Thórsmörk Ignimbrite, and rhyolites from potential source volcanoes. Katla compo- The geochemistry of the samples was de- sition from Lacasse et al. (2007); Eyjafjallajökull (A.D. 1821–1823 eruption) from Larsen et al. termined using electron probe microanalysis (1999). Lavas are plotted as mean and standard
Recommended publications
  • Volcanic Ash Over Europe During the Eruption of Eyjafjallajökull on Iceland, April–May 2010 In: Atmospheric Environment (2011) Elsevier
    Final Draft of the original manuscript: Langmann, B.; Folch, A.; Hensch, M.; Matthias, V.: Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April–May 2010 In: Atmospheric Environment (2011) Elsevier DOI: 10.1016/j.atmosenv.2011.03.054 1 Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, 2 April-May 2010 3 4 Baerbel Langmann1), Arnau Folch2), Martin Hensch3) and Volker Matthias4) 5 6 1) Institute of Geophysics, University of Hamburg, KlimaCampus, Hamburg, Germany, 7 e-mail: [email protected] 8 2) Barcelona Supercomputing Center - Centro Nacional de Supercomputación, Barcelona, 9 Spain, e-mail: [email protected] 10 3) Nordic Volcanological Center, University of Iceland, Reykjavik, Iceland, e-mail: 11 [email protected] 12 4) Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany, 13 e-mail: [email protected] 14 15 Abstract 16 During the eruption of Eyjafjallajökull on Iceland in April/May 2010, air traffic over Europe 17 was repeatedly interrupted because of volcanic ash in the atmosphere. This completely 18 unusual situation in Europe leads to the demand of improved crisis management, e.g. 19 European wide regulations of volcanic ash thresholds and improved forecasts of theses 20 thresholds. However, the quality of the forecast of fine volcanic ash concentrations in the 21 atmosphere depends to a great extent on a realistic description of the erupted mass flux of fine 22 ash particles, which is rather uncertain. Numerous aerosol measurements (ground based and 23 satellite remote sensing, and in situ measurements) all over Europe have tracked the volcanic 24 ash clouds during the eruption of Eyjafjallajökull offering the possibility for an 25 interdisciplinary effort between volcanologists and aerosol researchers to analyse the release 26 and dispersion of fine volcanic ash in order to better understand the needs for realistic 27 volcanic ash forecasts.
    [Show full text]
  • Glacial Rebound and Plate Spreading: Results from the First Countrywide GPS Observations in Iceland
    Geophys. J. Int. (2009) 177, 691–716 doi: 10.1111/j.1365-246X.2008.04059.x Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland ∗ T. Arnad´ ottir,´ 1 B. Lund,2 W. Jiang,1 H. Geirsson,3 H. Bjornsson,¨ 4 P. Einarsson4 and T. Sigurdsson5 1Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland. E-mail: [email protected] 2Department of Earth Sciences, Uppsala University, Villavagen¨ 16, 752 36 Uppsala, Sweden 3Physics Department, Icelandic Meteorological Office, Reykjav´ık, Iceland 4Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland 5National Land Survey of Iceland, Akranes, Iceland Downloaded from https://academic.oup.com/gji/article/177/2/691/2023257 by guest on 30 September 2021 Accepted 2008 December 10. Received 2008 December 5; in original form 2008 June 12 SUMMARY Iceland is one of the few places on Earth where a divergent plate boundary can be observed on land. Direct observations of crustal deformation for the whole country are available for the first time from nationwide Global Positioning System (GPS) campaigns in 1993 and 2004. The plate spreading across the island is imaged by the horizontal velocity field and high uplift rates (≥10 mm yr−1) are observed over a large part of central and southeastern Iceland. Several earthquakes, volcanic intrusions and eruptions occurred during the time spanned by the measurements, causing local disturbances of the deformation field. After correcting for the largest earthquakes during the observation period, we calculate the strain rate field and find that the main feature of the field is the extension across the rift zones, subparallel to the direction of plate motion.
    [Show full text]
  • A Detection of Milankovitch Frequencies in Global Volcanic Activity
    A detection of Milankovitch frequencies in global volcanic activity Steffen Kutterolf1*, Marion Jegen1, Jerry X. Mitrovica2, Tom Kwasnitschka1, Armin Freundt1, and Peter J. Huybers2 1Collaborative Research Center (SFB) 574, GEOMAR, Wischhofstrasse 1-3, 24148 Kiel, Germany 2Department of Earth & Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA ABSTRACT 490 k.y. in the Central American Volcanic Arc A rigorous detection of Milankovitch periodicities in volcanic output across the Pleistocene- (CAVA; Fig. 1). We augment these data with Holocene ice age has remained elusive. We report on a spectral analysis of a large number of 42 tephra layers extending over ~1 m.y. found well-preserved ash plume deposits recorded in marine sediments along the Pacifi c Ring of in Deep Sea Drilling Project (DSDP) and Fire. Our analysis yields a statistically signifi cant detection of a spectral peak at the obliquity Ocean Drilling Program (ODP) Legs offshore period. We propose that this variability in volcanic activity results from crustal stress changes of Central America. The marine tephra records associated with ice age mass redistribution. In particular, increased volcanism lags behind in Central America are dated using estimated the highest rate of increasing eustatic sea level (decreasing global ice volume) by 4.0 ± 3.6 k.y. sedimentation rates and/or through correlation and correlates with numerical predictions of stress changes at volcanically active sites. These with radiometrically dated on-land deposits results support the presence of a causal link between variations in ice age climate, continental (e.g., Kutterolf et al., 2008; also see the GSA stress fi eld, and volcanism.
    [Show full text]
  • Iceland Is Cool: an Origin for the Iceland Volcanic Province in the Remelting of Subducted Iapetus Slabs at Normal Mantle Temperatures
    Iceland is cool: An origin for the Iceland volcanic province in the remelting of subducted Iapetus slabs at normal mantle temperatures G. R. Foulger§1 & Don L. Anderson¶ §Department of Geological Sciences, University of Durham, Science Laboratories, South Rd., Durham, DH1 3LE, U.K. ¶California Institute of Technology, Seismological Laboratory, MC 252-21, Pasadena, CA 91125, U. S. A. Abstract The time-progressive volcanic track, high temperatures, and lower-mantle seismic anomaly predicted by the plume hypothesis are not observed in the Iceland region. A model that fits the observations better attributes the enhanced magmatism there to the extraction of melt from a region of upper mantle that is at relatively normal temperature but more fertile than average. The source of this fertility is subducted Iapetus oceanic crust trapped in the Caledonian suture where it is crossed by the mid-Atlantic ridge. The extraction of enhanced volumes of melt at this locality on the spreading ridge has built a zone of unusually thick crust that traverses the whole north Atlantic. Trace amounts of partial melt throughout the upper mantle are a consequence of the more fusible petrology and can explain the seismic anomaly beneath Iceland and the north Atlantic without the need to appeal to very high temperatures. The Iceland region has persistently been characterised by complex jigsaw tectonics involving migrating spreading ridges, microplates, oblique spreading and local variations in the spreading direction. This may result from residual structural complexities in the region, inherited from the Caledonian suture, coupled with the influence of the very thick crust that must rift in order to accommodate spreading-ridge extension.
    [Show full text]
  • Extending the Late Holocene White River Ash Distribution, Northwestern Canada STEPHEN D
    ARCTIC VOL. 54, NO. 2 (JUNE 2001) P. 157– 161 Extending the Late Holocene White River Ash Distribution, Northwestern Canada STEPHEN D. ROBINSON1 (Received 30 May 2000; accepted in revised form 25 September 2000) ABSTRACT. Peatlands are a particularly good medium for trapping and preserving tephra, as their surfaces are wet and well vegetated. The extent of tephra-depositing events can often be greatly expanded through the observation of ash in peatlands. This paper uses the presence of the White River tephra layer (1200 B.P.) in peatlands to extend the known distribution of this late Holocene tephra into the Mackenzie Valley, northwestern Canada. The ash has been noted almost to the western shore of Great Slave Lake, over 1300 km from the source in southeastern Alaska. This new distribution covers approximately 540000 km2 with a tephra volume of 27 km3. The short time span and constrained timing of volcanic ash deposition, combined with unique physical and chemical parameters, make tephra layers ideal for use as chronostratigraphic markers. Key words: chronostratigraphy, Mackenzie Valley, peatlands, White River ash RÉSUMÉ. Les tourbières constituent un milieu particulièrement approprié au piégeage et à la conservation de téphra, en raison de l’humidité et de l’abondance de végétation qui règnent en surface. L’observation des cendres contenues dans les tourbières permet souvent d’élargir notablement les limites spatiales connues des épisodes de dépôts de téphra. Cet article recourt à la présence de la couche de téphra de la rivière White (1200 BP) dans les tourbières pour agrandir la distribution connue de ce téphra datant de l’Holocène supérieur dans la vallée du Mackenzie, située dans le Nord-Ouest canadien.
    [Show full text]
  • Supplementary Material
    Supplementary material S1 Eruptions considered Askja 1875 Askja, within Iceland’s Northern Volcanic Zone (NVZ), erupted in six phases of varying intensity, lasting 17 hours on 28–29 March 1875. The main eruption included a Subplinian phase (Unit B) followed by hydromagmatic fall and with some proximal pyroclastic flow (Unit C) and a magmatic Plinian phase (Unit D). Units C and D consisted of 4.5 x 108 m3 and 1.37 x 109 m3 of rhyolitic tephra, respectively [1–3]. Eyjafjallajökull 2010 Eyjafjallajökull is situated in the Eastern Volcanic Zone (EVZ) in southern Iceland. The Subplinian 2010 eruption lasted from 14 April to 21 May, resulting in significant disruption to European airspace. Plume heights ranged from 3 to 10 km and dispersing 2.7 x 105 m3 of trachytic tephra [4]. Hverfjall 2000 BP Hverfjall Fires occurred from a 50 km long fissure in the Krafla Volcanic System in Iceland’s NVZ. Magma interaction with an aquifer resulted in an initial basaltic hydromagmatic fall deposit from the Hverfjall vent with a total volume of 8 x 107 m3 [5]. Eldgja 10th century The flood lava eruption in the first half of the 10th century occurred from the Eldgja fissure within the Katla Volcanic System in Iceland’s EVZ. The mainly effusive basaltic eruption is estimated to have lasted between 6 months and 6 years, and included approximately 16 explosive episodes, both magmatic and hydromagmatic. A subaerial eruption produced magmatic Unit 7 (2.4 x 107 m3 of tephra) and a subglacial eruption produced hydromagmatic Unit 8 (2.8 x 107 m3 of tephra).
    [Show full text]
  • PDF Available Here
    Edinburgh Research Explorer Vegetational response to tephra deposition and land-use change in Iceland: a modern analogue and multiple working hypothesis approach to tephropalynology Citation for published version: Edwards, KJ, Dugmore, AJ & Blackford, JJ 2004, 'Vegetational response to tephra deposition and land-use change in Iceland: a modern analogue and multiple working hypothesis approach to tephropalynology', Polar Record, vol. 40, no. 213, pp. 113-120. https://doi.org/10.1017/S0032247403003000 Digital Object Identifier (DOI): 10.1017/S0032247403003000 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Polar Record Publisher Rights Statement: Published in Polar Record by Cambridge University Press (2004) General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Polar Record 40 (213): 113–120 (2004). Printed in the United Kingdom. DOI: 10.1017/S0032247403003000 113 Vegetational response to tephra deposition and land-use change in Iceland: a modern analogue and multiple working hypothesis approach to tephropalynology Kevin J.
    [Show full text]
  • Structural Geology of the Cat Mountain Rhyolite in the Northern Tucson Mountains, Pima County, Arizona
    Structural geology of the Cat Mountain rhyolite in the northern Tucson Mountains, Pima County, Arizona Item Type text; Thesis-Reproduction (electronic) Authors Knight, Louis Harold, 1943- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 12:31:24 Link to Item http://hdl.handle.net/10150/551931 STRUCTURAL GEOLOGY OF THE CAT MOUNTAIN RHYOLITE IN THE NORTHERN TUCSON MOUNTAINS, PIMA COUNTY, ARIZONA Ly Louis H. Knight, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 196? STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill­ ment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknow­ ledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Repeated Caldera Collapse and Ignimbrite Emplacement at a Peralkaline Volcano Nina Jordan, Silvio G
    Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano Nina Jordan, Silvio G. Rotolo, Rebecca Williams, Fabio Speranza, William Mcintosh, Michael Branney, Stéphane Scaillet To cite this version: Nina Jordan, Silvio G. Rotolo, Rebecca Williams, Fabio Speranza, William Mcintosh, et al.. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano. Journal of Volcanology and Geothermal Research, Elsevier, 2018, 349, pp.47-73. 10.1016/j.jvolgeores.2017.09.013. insu-01618160 HAL Id: insu-01618160 https://hal-insu.archives-ouvertes.fr/insu-01618160 Submitted on 17 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano Nina J. Jordan, Silvio G. Rotolo, Rebecca Williams, Fabio Speranza, William C. McIntosh, Michael J. Branney, Stéphane Scaillet PII: S0377-0273(17)30078-1 DOI: doi:10.1016/j.jvolgeores.2017.09.013 Reference: VOLGEO 6196 To appear in: Journal of Volcanology and Geothermal Research Received date: 31 January 2017 Revised date: 1 September 2017 Accepted date: 17 September 2017 Please cite this article as: Nina J.
    [Show full text]
  • Compositional Zoning of the Bishop Tuff
    JOURNAL OF PETROLOGY VOLUME 48 NUMBER 5 PAGES 951^999 2007 doi:10.1093/petrology/egm007 Compositional Zoning of the Bishop Tuff WES HILDRETH1* AND COLIN J. N. WILSON2 1US GEOLOGICAL SURVEY, MS-910, MENLO PARK, CA 94025, USA 2SCHOOL OF GEOGRAPHY, GEOLOGY AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF AUCKLAND, PB 92019 AUCKLAND MAIL CENTRE, AUCKLAND 1142, NEW ZEALAND Downloaded from https://academic.oup.com/petrology/article/48/5/951/1472295 by guest on 29 September 2021 RECEIVED JANUARY 7, 2006; ACCEPTED FEBRUARY 13, 2007 ADVANCE ACCESS PUBLICATION MARCH 29, 2007 Compositional data for 4400 pumice clasts, organized according to and the roofward decline in liquidus temperature of the zoned melt, eruptive sequence, crystal content, and texture, provide new perspec- prevented significant crystallization against the roof, consistent with tives on eruption and pre-eruptive evolution of the4600 km3 of zoned dominance of crystal-poor magma early in the eruption and lack of rhyolitic magma ejected as the BishopTuff during formation of Long any roof-rind fragments among the Bishop ejecta, before or after onset Valley caldera. Proportions and compositions of different pumice of caldera collapse. A model of secular incremental zoning is types are given for each ignimbrite package and for the intercalated advanced wherein numerous batches of crystal-poor melt were plinian pumice-fall layers that erupted synchronously. Although released from a mush zone (many kilometers thick) that floored the withdrawal of the zoned magma was less systematic than previously accumulating rhyolitic melt-rich body. Each batch rose to its own realized, the overall sequence displays trends toward greater propor- appropriate level in the melt-buoyancy gradient, which was self- tions of less evolved pumice, more crystals (0Á5^24 wt %), and sustaining against wholesale convective re-homogenization, while higher FeTi-oxide temperatures (714^8188C).
    [Show full text]
  • Explosive Subaqueous Eruptions: the Influence of Volcanic Jets on Eruption Dynamics and Tephra Dispersal in Underwater Eruptions
    EXPLOSIVE SUBAQUEOUS ERUPTIONS: THE INFLUENCE OF VOLCANIC JETS ON ERUPTION DYNAMICS AND TEPHRA DISPERSAL IN UNDERWATER ERUPTIONS by RYAN CAIN CAHALAN A DISSERTATION Presented to the Department of Earth ScIences and the Graduate School of the UniversIty of Oregon In partIaL fulfiLLment of the requirements for the degree of Doctor of PhiLosophy December 2020 DISSERTATION APPROVAL PAGE Student: Ryan CaIn CahaLan Title: ExplosIve Subaqueous EruptIons: The Influence of Volcanic Jets on EruptIon DynamIcs and Tephra DIspersaL In Underwater EruptIons This dissertatIon has been accepted and approved in partIaL fulfiLLment of the requirements for the Doctor of PhiLosophy degree in the Department of Earth ScIences by: Dr. Josef Dufek ChaIrperson Dr. Thomas GIachettI Core Member Dr. Paul WaLLace Core Member Dr. KeLLy Sutherland InstItutIonaL RepresentatIve and Kate Mondloch Interim VIce Provost and Dean of the Graduate School OriginaL approvaL sIgnatures are on fiLe wIth the UniversIty of Oregon Graduate School. Degree awarded December 2020 II © 2020 Ryan Cain Cahalan III DISSERTATION ABSTRACT Ryan CaIn CahaLan Doctor of PhiLosophy Department of Earth ScIences December 2020 Title: ExplosIve Subaqueous EruptIons: The Influence of Volcanic Jets on EruptIon DynamIcs and Tephra DIspersaL In Underwater EruptIons Subaqueous eruptIons are often overlooked in hazard consIderatIons though they represent sIgnificant hazards to shipping, coastLInes, and in some cases, aIrcraft. In explosIve subaqueous eruptIons, volcanic jets transport fragmented tephra and exsolved gases from the conduit into the water column. Upon eruptIon the volcanic jet mIxes wIth seawater and rapidly cools. This mIxing and assocIated heat transfer ultImateLy determInes whether steam present in the jet wILL completeLy condense or rise to breach the sea surface and become a subaeriaL hazard.
    [Show full text]
  • “Poseidic” Explosive Eruptions at Loihi Seamount, Hawaii
    Downloaded from geology.gsapubs.org on October 5, 2010 “Poseidic” explosive eruptions at Loihi Seamount, Hawaii C. Ian Schipper*1, James D.L. White1, Bruce F. Houghton2, Nobumichi Shimizu3, and Robert B. Stewart4 1Geology Department, University of Otago, PO Box 56, Leith Street, Dunedin 9016, New Zealand 2School of Ocean and Earth Science and Technology (SOEST), University of Hawai’ i at Ma¯noa, 1680 East-West Road, Honolulu, Hawaii 98622, USA 3Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 4Soil and Earth Sciences, Institute of Natural Resources (INR), Massey University, PB 11-222, Palmerston North 4474, New Zealand ABSTRACT (A.D. 1996) of Loihi’s ~400 ka history (Moore Much remains unknown about submarine explosive eruptions. Their deposits are found et al. 1982; Garcia et al. 2006). to great depths in all the world’s oceans, but eruptions are typically described by analogy Here we describe the southern cone on the to a subaerial nomenclature that ignores the substantial and inevitable infl uences of hydro- southeast summit plateau of Loihi (18°54′N, static pressure and magma-water interaction at submerged edifi ces. Here we explore mag- 155°15′W), examined in October 2006 with matic volatile exsolution and magma-water interaction for a pyroclastic cone-forming erup- the Hawaiian Undersea Research Laboratory’s tion at ~1 km depth on Loihi Seamount, Hawaii. We examine vesicle textures in lapilli—the Pisces IV submersible. The cone is ~60 m high, physical manifestation of degassing; dissolved volatiles in matrix glasses and olivine-hosted 4 × 106 m3 in volume, with a faintly discernable glass inclusions—the geochemical record of ascent and volatile exsolution; and fi ne ash summit rim we interpret as the edge of a partly morphology—the evidence for if and how external water assisted in fragmentation.
    [Show full text]