Mastitis, Mammary Gland Immunity, and Nutrition Daniela Resende Bruno, DVM, Phd Texas Veterinary Medical Diagnostic Laboratory - Amarillo

Total Page:16

File Type:pdf, Size:1020Kb

Mastitis, Mammary Gland Immunity, and Nutrition Daniela Resende Bruno, DVM, Phd Texas Veterinary Medical Diagnostic Laboratory - Amarillo The Mid-South Ruminant Nutrition Conference does not support one product over another and any mention herein is meant as an example, not an endorsement. Mastitis, Mammary Gland Immunity, and Nutrition Daniela Resende Bruno, DVM, PhD Texas Veterinary Medical Diagnostic Laboratory - Amarillo INTRODUCTION the mastitis depends on the animal response to the insult, for example the entrance and installation of the Although intensive research and prevention pathogen inside the gland, and on virulence factors measures have been carried out for decades to control present on the bacteria. bovine mastitis, it continues to cause the biggest economic impact to the dairy industry worldwide. There are various genetic, physiological, and Severe economic losses, which are estimated to be environmental factors that can compromise host approximately $200/cow/yr in the United States, are defense mechanisms during the functional transitions due to reduced milk production, discarded milk, of the mammary gland (Sordillo, 2005). Nowadays, replacement costs, extra labor, treatment, and the lactating cow has been genetically selected to veterinary service costs (Smith and Hogan, 2001). In produce more milk, which is the basis of the dairy addition, mastitis increases the risk of antibiotic industry. However this increase in milk volume residues in milk due to treatments and decreases milk metabolically stresses dairy cows and affects quality due to an increase in somatic cell count, as mammary gland immunity by impairing defense well as proteolytic and lipolytic enzymes, which mechanisms decreasing the resistance to mastitis increase the enzymatic breakdown of milk protein (Heringstad et al., 2003). In addition, the milking and fat (National Mastitis Council, 1991). procedure can cause trauma to teat and tissues, making it easier for the invasion and colonization of Intramammary infections (IMI) result in a mastitis causing pathogens in the mammary gland. typical inflammatory response characterized by an influx of somatic cells composed primarily of Housing is also a factor that aggravates the neutrophils accompanied by variable numbers of incidence of mastitis, first due to excess numbers of macrophages and lymphocytes (Rainard and Riollet, animals in a limited space; and also because of the 2003). The response is driven by the action of a use of bedding material that easily allows for variety of inflammatory mediators including bacterial survival and growth, which over exposes cytokines, chemokines, prostaglandins, and animals and challenges their immune defense leukotrienes; all of which play pivotal roles in mechanisms (Hogan and Smith, 2003). Prevention of mammary gland defenses by mediating and intramammary infections leads to better milk quality, regulating inflammation and immunity. The ensuing which in turn is beneficial for the dairy industry inflammatory response induced by entry of bacteria because high quality milk means extended shelf life, into the mammary gland is variable; the intensity increased cheese yield, and increased consumption of typically dictating an outcome ranging from dairy products. successful elimination of the pathogen to establishment of chronic infection. There are several factors both infectious and non-infectious, that can cause bovine mastitis; and There are 2 groups of bacterial pathogens that there is an increase in the evidence that nutritional can cause mastitis in dairy cows: contagious factors are associated with mastitis in cows and pathogens such as Streptococcus agalactiae, heifers (Heinrichs et al., 2009). Despite all the Mycoplasma bovis, and Staphylococcus aureus, and measures taken by dairy producers to prevent environmental pathogens such as Escherichia coli intramammary infections in their herds, it is not and Klebsiella sp. Contagious microorganisms reside always clearly understood that there is a strong on the skin of the teat and interior of the udder, and relationship between nutrition and susceptibility to are transmitted from cow-to-cow during the milking mastitis. When the consumption of minerals and procedure through milking equipment and milker’s vitamins by dairy cows is not optimal, it can have hands. Environmental pathogens are found in the negative effects on immunity. Animals become more environment, such as in the cattle shed and milking susceptible to diseases such as mastitis, because a parlor; and, in an opportunistic way, enter the teat depressed immune system is not able to fight off canal when the cow comes in contact with a bacteria that invade the udder. contaminated environment (Table 1). The severity of 2010 Mid-South Ruminant Nutrition Conference 19 Arlington, Texas The Mid-South Ruminant Nutrition Conference does not support one product over another and any mention herein is meant as an example, not an endorsement. Table 1: Differences between contagious and environmental mastitis Contagious Environmental Microorganisms Staphylococcus aureus Escherichia coli Streptococcus agalactiae Klebsiella pneumoniae Mycoplasma bovis Klebsiella oxytoca Streptococcus uberis Streptococcus disgalactiae Enterococcus faecalis Enterococcus faecium Candida, yeast Corynebacterium pyogenes Primary source Udders of infected cows The environment of the cow Indicators of problem Bulk tank SCC > 300,000 cells/ml; High rate of clinical mastitis, usually in early Frequent cases of clinical mastitis, often in lactation or during hot weather; the same cows; and Large numbers of dry cows that have mastitis Bacterial culturing results shows S. during the early dry period; and agalactiae and/or S. aureus infections. Increase in the herd's somatic cell. Control Develop program to prevent the spread of Reduce the number of bacteria to which the bacteria at milking time. teat end is exposed. Eliminate existing infections by treating all Improve cleanliness of cow surroundings, cows at dry-off and culling chronic cows. especially in late dry period and at calving. Improve pre-milking procedures to ensure clean, dry teats are being milked. Researchers have studied the relationship On the other hand, the acquired immunity also known between the supplementation of trace minerals and as specific immunity, is the basis of vaccination. It vitamins and immune system function and mammary recognizes specific determinants of a pathogen that gland health. Several studies have shown that activate a selective response leading to its susceptibility to intramammary infections can be elimination. Antibodies, macrophages, and influenced by the levels of vitamins A and E and lymphocytes recognize pathogenic factors and incite minerals such as Se, Cu, and Zn in the diet. The a response. This type of immunity has memory, and results obtained from those experiments were used to is increased by repeated exposure to the same establish the daily intake requirements of minerals pathogen. and vitamins for dairy cows, and are published in the most recent dairy cattle version of the National As part of the innate immune system, physical Research Council (NRC, 2001). barriers of the udder, including teat skin, teat sphincter muscle, and keratin plug, work together to IMMUNITY OF THE MAMMARY GLAND prevent bacterial entrance (Figure 1). However, failure in their normal function results in Defense mechanisms can be divided into innate intramammary infection. Abrasion and cracks on teat immunity and acquired immunity. The innate skin favor bacterial colonization, increasing the risk immunity, also known as non-specific immunity, is of bacterial entrance, mainly between milking the predominant defense during early stages of procedures when the duct is dilated. Another infection. This first defense is activated quickly at the protective factor on the teat is the keratin plug, which site of infection by numerous stimuli; however, it is secreted by cells that line the teat. This substance does not have memory and is not increased by has bactericidal properties, and also entraps and repeated exposure to the same insult. This non- prevents the upward movement of bacteria into the specific defense is initiated at the teat end, which is a mammary gland decreasing the chance of physical barrier, and continues with immune cells intramammary infections, consequently decreasing such as macrophages, neutrophils, natural killer (NK) somatic cell count (SCC) (Kellogg et al., 2004). cells, and by other soluble factors, such as cytokines. 2010 Mid-South Ruminant Nutrition Conference 20 Arlington, Texas The Mid-South Ruminant Nutrition Conference does not support one product over another and any mention herein is meant as an example, not an endorsement. the teat breaks down and the teat canal is open for the entrance of mastitis pathogens (Figure 2). In addition to impaired neutrophil function, decreased lymphocyte responsiveness to mitogen stimulation contributes to this increased susceptibility to new intramammary infections (Mallard et al., 1998). Increased production of reactive oxygen species (ROS), the so called free radicals, is expected in late pregnancy, parturition, and initiation of lactation due to metabolic demands on these stages of lactation Figure 1: Physical barriers of the mammary gland (Sordillo and Aitken, 2009). New intramammary infections during the periparturient period have a For the best protection of the mammary gland significant impact on milk production efficiency due against intramammary infections, innate and acquired to the damage on milk producing cells (Oliver and immune systems must interact in a synchronized Sordillo,
Recommended publications
  • Calcium Borogluconate Livestock
    Calcium Borogluconate Livestock Identification Chemical Name: CAS Number: D-gluconic acid cyclic 4,5 ester with boric acid 5743-34-0 calcium salt Other Names: Other Codes: none found Cal Aqua, Cal-Nate 1069, Cal-MPK, Cal-MP 1700, Calciphos, calcium gluconate, and others Summary Recommendation Synthetic / Allowed or Suggested Non-Synthetic: Prohibited: Annotation: Synthetic Allowed (consensus) Preventive measures and use of non-synthetic alternatives must be documented (consensus) in the Farm Plan. (consensus) Characterization Composition: C12H20B2CaO16 Properties: Crystals, freely soluble in water. Solubility in water of 1:1 at 15°C., 2.8:1 at 100°C. Acidic: a 20% aqueous solution has a pH of 3.5 (Budavari, 1996). How Made: Calcium borogluconate is prepared by the reaction of five parts calcium gluconate to one part boric acid in an aqueous solution (MacPherson and Stewart, 1938). In Orlando in 1995, the NOSB considered boric acid in a separate TAP review for crop use and voted it to be synthetic and allowed. Annotation is “May be used for structural pest contol. No direct contact with food or crops being certified.” Calcium gluconate is prepared by a number of methods, including the reaction of gluconic acid with calcium hydroxide. Calcium hydroxide was also reviewed by the NOSB for processing at the Orlando meeting and was voted synthetic and allowed. Gluconic acid may be synthesized (Budavari, 1996). However, it is most commonly produced in the U.S. by fermentation (Sergha, 1994). The organism responsible for fermentation is Aspergillus niger. Genetic engineering to improve production of gluconic acid has been the subject of research, but it is not clear if gluconic acid is now produced by GMOs (Nagarajan, 1994).
    [Show full text]
  • Milk Fever in Dairy Cows: a Review of Pathophysiology and Control Principles
    Available online at www.sciencedirect.com The Veterinary Journal The Veterinary Journal 176 (2009) 58–69 www.elsevier.com/locate/tvjl Milk fever in dairy cows: A review of pathophysiology and control principles Peter J. DeGaris, Ian J. Lean * Bovine Research Australasia, Camden 2570, Australia University of Sydney, Camden 2570, Australia Accepted 18 December 2007 Abstract The periparturient or transition period of 4 weeks before and 4 weeks after calving is characterised by a greatly increased risk of dis- ease. Hypocalcaemia around calving is a risk factor for many of these diseases and is an indirect risk factor for increased culling. The incidence of clinical hypocalcaemia (milk fever) in the field generally ranges from 0–10%, but may exceed 25% of cows calving. In research trials conducted on milk fever the incidence has approached 80% of cows calving. Homeostasis of calcium (Ca) is regulated by calcitonin, parathyroid hormone and 1,25(OH)2 vitamin D3. Age increases the risk of milk fever by approximately 9% per lactation. Control of milk fever has revolved around stimulation of homeostatic mechanisms through feeding a pre-calving diet low in Ca. More recently, the role of the dietary cation anion difference (DCAD) in the prevention of Ca disorders has been examined, both by field research and meta-analysis. The most appropriate form of the DCAD equation has been contentious, but recent meta-analyses have shown that the equation (Na+ +K+) À (ClÀ +S2À) is most effective for predicting milk fever risk. Decreased risk of milk fever is linear with DCAD, whereas the effect of DCAD on urinary pH is curvilinear.
    [Show full text]
  • Judging Dairy Cattle
    Judging Dairy Cattle The primary function of the dairy cow is the economical production of milk. It has been proven that quality type or form is directly related to function. In other words, a dairy cow with good quality type has the potential to efficiently and economically produce milk. Your task, as a producer of dairy cows, is to breed good quality cows. In this leaflet we will work towards these objectives to help you accomplish your task. Learn the desirable points of conformation in a quality dairy cow and heifer. Show you how to determine if a particular animal possesses these desirable points. The first step is to learn the parts of the dairy animal. Parts of the Dairy Cow Judging the Dairy Cow 4-H Manitoba 2019 Once you know the parts of the body, the next step to becoming a successful dairy judge is to learn what the ideal animal looks like. In this section, we will work through the parts of a dairy cow and learn the desirable and undesirable characteristics. Holstein Canada has developed a scorecard which places relative emphasis on the six areas of importance in the dairy cow. This scorecard is used by all dairy breeds in Canada. The Holstein Cow Scorecard uses these six areas: 1. Frame / Capacity 2. Rump 3. Feet and Legs 4. Mammary System 5. Dairy Character When you judge, do not assign numerical scores. Use the card for relative emphasis only. When cows are classified by the official breed classifiers, classifications and absolute scores are assigned. 2 HOLSTEIN COW SCORE CARD 18 1.
    [Show full text]
  • From Birth to Colostrum: Early Steps Leading to Lamb Survival Raymond Nowak, Pascal Poindron
    From birth to colostrum: early steps leading to lamb survival Raymond Nowak, Pascal Poindron To cite this version: Raymond Nowak, Pascal Poindron. From birth to colostrum: early steps leading to lamb survival. Reproduction Nutrition Development, EDP Sciences, 2006, 46 (4), pp.431-446. 10.1051/rnd:2006023. hal-00900627 HAL Id: hal-00900627 https://hal.archives-ouvertes.fr/hal-00900627 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reprod. Nutr. Dev. 46 (2006) 431–446 431 c INRA, EDP Sciences, 2006 DOI: 10.1051/rnd:2006023 Review From birth to colostrum: early steps leading to lamb survival Raymond N*, Pascal P Laboratoire de Comportements, Neurobiologie et Adaptation, UMR 6175 CNRS-INRA-Université François Rabelais-Haras Nationaux, Unité de Physiologie de la Reproduction et des Comportements, INRA, 37380 Nouzilly, France Abstract – New-born lambs have limited energy reserves and need a rapid access to colostrum to maintain homeothermy and survive. In addition to energy, colostrum provides immunoglobulins which ensure passive systemic immunity. Therefore, getting early access to the udder is essential for the neonate. The results from the literature reviewed here highlight the importance of the birth site as the location where the mutual bonding between the mother and her young takes place.
    [Show full text]
  • Udder Morphology, Milk Production and Udder Health in Small Ruminants
    J. Vrdoljak et al.: Udder morphology, milk production and udder health in small ruminants, et al.: Udder morphology, J. Vrdoljak REVIEW | UDK: 636.37 | DoI: 10.15567/mljekarstvo.2020.0201 REcEIVED: 17.10.2019. | AccEptED: 20.03.2020. Udder morphology, milk production and udder health in small ruminants Josip Vrdoljak1, Zvonimir Prpić 2*, Dubravka Samaržija 3, Ivan Vnučec 2, Miljenko Konjačić 2, Nikolina Kelava Ugarković 2 1Pleter usluge d.o.o., Čerinina 23, 10000 Zagreb, Croatia 2University of Zagreb, Faculty of Agriculture, Department of Animal Science and Technology, Svetošimunska cesta 25, 10000 Zagreb, Croatia 3University of Zagreb, Faculty of Agriculture, Department of Dairy Science, Svetošimunska cesta 25, 10000 Zagreb, Croatia *Corresponding author: E-mail: [email protected] Abstract Mljekarstvo In recent years there has been an increasing trend in research of sheep and goat udder morphology, not only from the view of its suitability for machine milking, but also in terms of milk yield and mam- 70 (2), 75-84 (2020) mary gland health. More precisely, herds consisting of high-yielding sheep and goats as a result of long-term and one-sided selection to increase milk yield, have been characterised by distortion of the udder morphology caused by increasing the pressure of udder weight on its suspensory system. Along with the deteriorated milking traits, which is negatively reflected on the udder health, some udder mor- phology traits are often emphasized as factor of production longevity of dairy sheep and goats. Since the intention of farmers and breeders nowadays is to increase the milk yield of sheep and goats while maintaining desirable udder morphology and udder health, the aim of this paper is to give a detailed overview of the current knowledge about the relationship of morphological udder traits with milk yield, and the health of the mammary gland of sheep and goats.
    [Show full text]
  • The Structure of the Cow's Udder
    UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION BULLETIN 344 The Structure of the Cow's Udder C. W. T u RN ER COLUMBIA, MISSOURI JANUARY, 1935 UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE Agricultural Experiment Station EXECUTIVE BOARD OF CURATORS.-MERCER ARNOLD, joplin; H. J. BLANTON. Pario: GEORGE C. WILLSON, St. Louio STATION STAFF, JANUARY, 1935 WALTER WILLIAMS, L.L. D., President FREDERICK A. MIDDLEBUSH, Ph. D ., Acting President F B . MUMFORD, M S~ D. Agr., Director S. B. SHIRKY, A.M., Asst. to Director MISS ELLA PAHMEIER, Secretary AGRICULTURAL CHEMISTRY E. MARION BROWN, A.M.* A. G. HoGAN, Ph.D. Mtss CLARA FuHR, M.S.* L. D. HAIGH, Ph.D. E. W. CowAN, A.M. HOME ECONOMICS J.UTHitP. R. RICHARDSON, Ph.D. U. S. AsHwOJ.TH. Ph.D MABEL CAMPBELL, A.M. A.M. ]ESSIE ALICE CLINE, A.M. S. R. JoHNSON, ADELLA EPPEL GINTER, M.S. HELEN BERESFORD, B.S. AGRICULTtlRAL ECONOMICS BERTHA BtSBI!Y, Ph.D. 0. R. JoHNsoN, A.M ]ESSIE v. COLES, Ph.D. BEN H. FRA>lE, A.M. BERTHA K. WHIPPLE, M.S F. L. THOl<SEN, Ph.D c. H. HAl<llAil, Ph.D. HORTICULTURE AGRICULTURAL ENGINEERING T. J. TALBI!kT, A.M. J. C. WooLEY, M .S. A. E. MuRNEEJ<, Ph.D. MAcJ: M. JoNES. M.S. H. G. SwARTWOUT, A.M. G. W. GILES, B.S. in A. E. GEO. CARL VINSON, Ph.D. FRAN!t Holi.SFALL, ]R., A.M. ANIMAL HUSBANDRY R. A. ScRilOEDER, 11.S. in Agr. GEOilGI! E. SMITH, B S. in Agr. E.
    [Show full text]
  • Use of Preventive Measures Against Milk Fever in Punjab, Pakistan
    Swedish University of Agricultural Sciences Faculty of Veterinary Medicine and Animal Science Use of preventive measures against milk fever in Punjab, Pakistan Syed Ahad Raza Zaidi Degree project / Swedish University of Agricultural Sciences, Degree project, 30 hp Department of Animal Nutrition and Management, 583 Master Thesis Uppsala 2016 Animal Science ii Swedish University of Agricultural Sciences Faculty of Veterinary Medicine and Animal Science Department of Animal Nutrition and Management Use of preventive measures against milk fever in Punjab, Pakistan Syed Ahad Raza Zaidi Supervisor: Cecilia Kronqvist, SLU, Department of Animal Nutrition and Management Examiner: Kjell Holtenius, SLU, Department of Animal Nutrition and Management Extent: 30 hp Course title: Degree project in Animal Science Course code: EX0551 Programme: Master in Animal Sciences Level: Avancerad A2E Place of publication: Uppsala Year of publication: 2016 Series name, part no: Examensarbete / Sveriges lantbruksuniversitet, Institutionen för husdjurens utfodring och vård, 583 On-line published: http://epsilon.slu.se Key words: Milk fever in Pakistan; Prevention strategies; Use of Vitamin D; Restricted milking; Oral prophylaxis; Feeding strategy; Dairy animals; Questionnaire survey In this series Degree projects (corresponding 15, 30, 45 or 60 credits) at the Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, are published. The department's degree projects are published on the SLU website www.slu.se. Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Fakulteten för veterinärmedicin och Faculty of Veterinary Medicine and Animal Science husdjursvetenskap Department of Animal Nutrition and Management Institutionen för husdjurens utfodring och vård PO Box 7024 Box 7024 SE-750 07 Uppsala 750 07 Uppsala Phone +46 (0) 18 67 10 00 Tel.
    [Show full text]
  • Internet Research Cheetahs Page of 1
    Internet Research Cheetahs CHEETAHS http://animals.nationalgeographic.com/animals/mammals/cheetah/ The cheetah is the world's fastest land mammal. With acceleration that would leave most automobiles in the dust, a cheetah can go from 0 to 60 miles (96 kilometers) an hour in only three seconds. These big cats are quite nimble at high speed and can make quick and sudden turns in pursuit of prey. Before unleashing their speed, cheetahs use exceptionally keen eyesight to scan their grassland environment for signs of prey—especially antelope and hares. This big cat is a daylight hunter that benefits from stealthy movement and a distinctive spotted coat that allows it to blend easily into high, dry grasses. When the moment is right a cheetah will sprint after its quarry and attempt to knock it down. Such chases cost the hunter a tremendous amount of energy and are usually over in less than a minute. If successful, the cheetah will often drag its kill to a shady hiding place to protect it from opportunistic animals that sometimes steal a kill before the cheetah can eat. Cheetahs need only drink once every three to four days. Female cheetahs typically have a litter of three cubs and live with them for one and a half to two years. Young cubs spend their first year learning from their mother and practicing hunting techniques with playful games. Male cheetahs live alone or in small groups, often with their littermates. Most wild cheetahs are found in eastern and southwestern Africa. Perhaps only 7,000 to 10,000 of these big cats remain, and those are under pressure as the wide-open grasslands they favor are disappearing at the hands of human settlers.
    [Show full text]
  • The Role of Magnesium in Milk Fever (Hypocalcaemia)
    TECHNICAL BULLETIN MB 3 THE ROLE OF MAGNESIUM IN MILK FEVER (HYPOCALCAEMIA) About Milk Fever Milk fever results when increased demand for calcium Milk fever around the time of calving is the most common overcomes an animal’s ability to maintain Ca homeostasis. metabolic disease of dairy cattle. Most cases occur within At calving, calcium requirements increase dramatically as milk 48 hours of calving, but cases can also be seen in the week production begins. This drain on serum calcium by the udder before calving and up to 10 days after calving. must be met by mobilisation of calcium stores in the body to Mineral homeostasis in cattle is very complex and is influenced prevent hypocalcaemia. This requires the cow’s hormonal by many factors. regulating system (via PTH) to ‘switch on’ rapidly during the Homeostasis of serum calcium (Ca) involves the interaction peri-calving period. of three hormones, parathyroid hormone (PTH), 1,25-dihydroxyvitamin D (1,25-DHD) and calcitonin. In simple Role of Magnesium Magnesium (Mg) is also an essential element in a cow’s diet, and terms, PTH and 1,25DHD increase serum Ca, and calcitonin has many roles within the body. Magnesium is an essential part lowers it. of the structure of DNA, a catalyst for many enzymes, critical The parathyroid gland monitors the level of Ca in carotid for the activity of ATP, for correct functioning of nerves, bone arterial blood. Parathyroid hormone is released in response to development, health of rumen microbes and for parathyroid low Ca level. hormone (PTH) secretion and activity. PTH has three actions to restore the level of Ca in the blood: Low serum Mg inhibits PTH secretion, as well as causing resistance 1.
    [Show full text]
  • Mastitis Control Programs Bovine Mastitis and Milking Management J
    AS1129 (Revised) Mastitis Control Programs Bovine Mastitis and Milking Management J. W. Schroeder, Extension Dairy Specialist astitis complex; no simple solutions are Mavailable for its control. Some aspects are well- understood and documented in the scientific literature. Others are controversial, and opinions often are presented as facts. The information and interpretations presented here represent the best judgments accepted by the National Mastitis Council. To simplify understanding of mastitis, you’ll need to consider that three major factors are involved in this Figure 1 disease: the microorganisms that cause it, the cow as host and the environment, which Cows contract udder infection to reduce this exposure and can influence the cow and the at different ages and stages of enhance resistance to udder microorganisms. (Figure 1) the lactation cycle. Cows also disease. More than 100 different vary in their ability to overcome Practical measures are microorganisms can cause an infection once it has been available to maintain common mastitis, and these vary greatly established. Therefore, the forms of mastitis at relatively in the route by which they reach cow plays an active role in the low and acceptable levels in the cow and the nature of the development of mastitis. the majority of herds. While disease they cause. The cows’ environment continued research is needed to influences the numbers and control the less common forms types of bacteria they are of intramammary infection, exposed to and their ability to herd problems are often the resist these microorganisms. result of failure to apply the However, through appropriate proven mastitis-control practices management practices, the consistently and to consider all North Dakota State University environment can be controlled aspects of the disease problem.
    [Show full text]
  • Pathogenesis of Bovine Alphaherpesvirus 2 in Calves Following Different Routes of Inoculation1 Bruna P
    Pesq. Vet. Bras. 40(5):360-367, May 2020 DOI: 10.1590/1678-5150-PVB-6588 Original Article Livestock Diseases ISSN 0100-736X (Print) ISSN 1678-5150 (Online) PVB-6588 LD Pathogenesis of Bovine alphaherpesvirus 2 in calves following different routes of inoculation1 Bruna P. Amaral2,3, José C. Jardim4 , Juliana F. Cargnelutti3,5, Mathias Martins6,7 , Rudi Weiblen2,3 and Eduardo F. Flores2,3* ABSTRACT.-Amaral B.P., Jardim J.C., Cargnelutti J.F., Martins M., Weiblen R. & Flores E.F. 2020. Pathogenesis of Bovine alphaherpesvirus 2 in calves inoculated by different routes. Pesquisa Veterinária Brasileira 40(5):360-367. Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Av. Roraima 1000, Rua Z, Prédio 63A, Santa Maria, RS 97105-900, Brazil. E-mail: Título Original Bovine alphaherpesvirus 2 (BoHV-2) is the agent of herpetic mammilitis (BHM), a cutaneous and self-limiting disease affecting the udder [email protected] teats of cows. The pathogenesis of BoHV-2 is pourly understood, hampering the development of therapeutic drugs, vaccines [Título traduzido]. and other control measures. This study investigated the pathogenesis of BoHV-2 in calves after inoculation through different routes. Three- to four-months seronegative calves were 7 -1 inoculated with BoHV-2 (10 TCID50.mL ) intramuscular (IM, n=4), intravenous (IV, n=4) Autores and serological monitoring. Calves inoculated by the IV route presented as light increase orin bodytransdermal temperature (TD) afterbetween mild days scarification 6 to 9 post-inoculation (n=4) and submitted (pi). Virus to virological, inoculation clinical by the by hyperemia, small vesicles, mild exudation and scab formation, between days 2 and 8pi.
    [Show full text]
  • (Parturient Paresis) and Its Economic Impact in Dairy Cattle Production
    Central Journal of Veterinary Medicine and Research Review Article *Corresponding author Tewodros Alemneh, Woreta City Office of Agriculture and Environmental Protection, South Gondar Zone, Am- Milk Fever (Parturient Paresis) hara Regional State, Ethiopia, Tel: 251920499820; Email: [email protected] and Its Economic Impact in Dairy Submitted: 22 April 2020 Accepted: 26 June 2020 Cattle Production Published: 30 June 2020 ISSN: 2379-948X Etagegnehu Bzuneh¹, Tewodros Alemneh²* and Mebrate Copyright Getabalew¹ © 2020 Bzuneh E, et al. ¹Department of Animal Sciences, Debre Berhan University, Ethiopia OPEN ACCESS ²Woreta City Office of Agriculture and Environmental Protection, Ethiopia Keywords Abstract • Milk fever • Parturient paresis Milk fever (parturient paresis) is a metabolic disturbance or production disease of • Hypocalcaemia dairy cows that occur just before or soon after calving due to low calcium (Ca++) level • Dairy cows (hypocalcaemia) in the blood. It is associated with the drain of calcium within the fetus • Peri-parturient period and milk during pregnancy and calving, respectively. It can be clinical or sub-clinical • Economic impact based on clinical signs. High producing dairy cows are the most susceptible to milk fever during the peri-parturient period. Milk yield, parity, age, breed, Body Condition Score (BCS), and diet composition of the cows are the most common factors that contribute for the occurrence, incidence and severity of milk fever. Economically, it reduces milk yield and fertility that leads to culling of high producing dairy cows from a herd. Diagnosis of milk fever is based on history taking, clinical examination and laboratory diagnosis. It is commonly treated with oral calcium solutions and intravenous (IV) calcium borogluconate.
    [Show full text]