Biology of Parasitism (Bop)? MBL Agreed

Total Page:16

File Type:pdf, Size:1020Kb

Biology of Parasitism (Bop)? MBL Agreed TrendsTalk What was the motivation behind Laboratory about hosting the course; the Biology of Biology of Parasitism (BoP)? MBL agreed. When did it first start? Parasitism: A Broad Although we were not part of the course How is the course structured and when it started, we reached out to John how has that evolved over time? and Deep David (Professor Emeritus, Harvard T.H. The original course was structured in two Parasitology Chan School of Public Health), the first parts: six weeks of lectures and topic- BoP course director, and Dyann Wirth based lab instruction followed by four Discovery Course (Chair, Immunology and Infectious Dis- weeks of independent research projects, eases, Harvard T.H. Chan School of Pub- culminating in presentations at the MBL lic Health), a faculty member of the course annual meeting. The lectures and labs cov- at its inception who subsequently ered a broad range of approaches and medically-important parasites, with a bit more immunology focus than current day. Over the years, the scientific emphases of the course have changed as the field of parasitology has evolved, however, the emphasis on molecular approaches and the latest science has been a constant throughout. The course has always been designed to go both broad and deep, exposing the students to a wide variety of cutting edge techniques, research questions and parasite systems. The length of the course changed over the years from 10 to 7 weeks, with the 4 weeks of independent student research being eliminated. The shortening of the course reflects the increased demands on the time of students and faculty, which make it difficult for people to be away from Biology of Parasism, Class of 2016 their home laboratory for 10 weeks. From the start, the course has been struc- tured around morning lectures from lumi- [8_TD$IF] Since 1980, the Marine Biological Labo- became course director. They both point naries and rising stars in the field, followed ratory (MBL) at Woods Hole, MA, USA, to the critical role of Joshua Lederberg, by experimental work in the afternoons has hosted the Biology of Parasitism who realized that advances of modern and evenings. The current course is (BoP) course. For the duration of the science and medicine had left parasitic divided into topic-based lab/lecture course, graduate students and postdocs diseases behind and felt that a parasitol- [9_TD$IF]‘modules’, each 1–2 weeks long and work alongside and interact informally ogy course similar to the bacteriology run by a different expert in the field. In fi with experts in the eld. Photini Sinnis course at Cold Spring Harbor could trans- 2017, the modules will focus on the[10_TD$IF] fi and Gary Ward, two former students of form the eld. Ken Warren, a leader in the immune response to helminths and Toxo- fi the MBL Discovery courses, are the eld of parasitology who had galvanized plasma; the biology and insecticide resis- course directors for 2017. In this short the support of the Rockefeller and Mac- tance of mosquitoes that transmit interview with Trends in Parasitology, Arthur Foundations for the Great malaria; developmental differentiation of Photini and Gary spoke about their com- Neglected Diseases, worked with Leder- Giardia; drug resistance in African trypa- fi mitment to teaching the next generation berg to nd faculty and a venue for the nosomes; mechanisms of malaria sporo- of scientists and shared the secrets to the course. They approached both Cold zoite motility; and metabolomics of success of BoP. Spring Harbor and the Marine Biological Trypanosoma cruzi. Trends in Parasitology, June 2017, Vol. 33, No. 6 415 A typical day in the course begins with a every sense of the word, including geo- recent survey of course alumni from the 2hlecture[1_TD$IF] in the morning from an invited graphic diversity and diversity of research last decade revealed that 56% of speaker chosen by the module directors interests/organisms. It is almost always a respondents considered their experience to complement the work being done in very international class. in the course [13_TD$IF]7‘transformative’. 26% of the the lab portion of the course. A subset of BoP alumni are currently finishing up their the students joins the speaker for lunch in We admit 16 students per year, typically doctoral studies, 45% are postdoctoral the dining hall. All students return to the mid- to late graduate students and post- fellows and 23% are faculty members at lab after lunch to begin the experimental docs. We occasionally admit more senior academic institutions. work for the day, which usually lasts well applicants; for example, two years ago into the evening. Between experiments, we admitted a junior faculty member What is the secret to the success the students wander in and out of the who was looking to move his research of BoP? break room where they interact informally focus from nematode-insect interactions Bringing bright, motivated students with that day’s speaker and the speaker to parasitic worms of humans and other together with established leaders and ris- for the next day. Lunch and breakroom vertebrates. ing stars in the field, and providing them time with visiting lecturers are two of the with a stimulating but informal setting for many informal networking opportunities There has been a lot of scientific interaction. This environment available to the students; many a postdoc discussion on the needs and encourages students to ask questions, have been arranged in the BoP break attitudes of students towards challenge ideas and engage intellectually room in the wee hours of the morning. education and the best with the faculty and one another. The pedagogical approaches to faculty are committed to a high level of When did you first become address them. How has BoP engagement with the students and they involved with the course? What dealt with these challenges? Are organize experimental modules to be flex- motivated you? there any examples of success ible and incorporate new ideas that arise Similar to many former BoP course direc- you would like to share? during their time with the students. The tors, we were both students in one of the Active learning plays a very big part in this informal interactions that take place MBL Discovery courses and have partici- course; the students spend many hours in between students and faculty extend to pated in the BoP course over the years as the lab, learning by doing. They work interactions with the broader MBL scien- lecturers and module directors. Both of us alongside experts in the field, using state tific community. The MBL is a special are committed to teaching the next gen- of the art equipment to address real prob- place to be in the summer: there is an eration of scientists and believe that BoP lems in parasitology research. This is a atmosphere of scientific engagement and course is a uniquely effective way to major part of the excitement and attrac- excitement from which everyone benefits. engage some of the best and brightest tion of the course, both for the students http://dx.doi.org/10.1016/j.pt.2017.03.006 students and postdocs in parasitology and the faculty: these are not lab exer- research and connect them with the cises, these are real experiments asking larger parasitology community. It is fun important questions, the outcome of Science & Society and rewarding for us and all who have which is not known by anyone at the start served as course faculty to follow the of the module. The module directors set Promoting Science great things that these students go on the general parameters of what will be to do in their careers. studied, but within that context the stu- in Secondary School dents have a lot of flexibility to design their Education What are the criteria for student own experiments or take them in new and 1,y selection? interesting directions. This is why MBL Anthony Chiovitti, y Admission into the course is competitive. calls BoP a [12_TD$IF]‘Discovery Course’. Jacinta C. Duncan,1, and Applications are reviewed by a committee Abdul Jabbar2,y,* of current and former course faculty. The The quality of the research done in the fl committee reviews the applications for course is re ected in the many papers Engaging[65_TD$IF] secondary school stu- research experience, strong letters of ref- subsequently published in which BoP stu- dents with science education is erence, a personal statement that makes dents are acknowledged for having gen- crucial for a society that demands a good case for how the candidate will erated the idea or the preliminary data a high level of scientific literacy in benefit from the course and a clear com- that led to the published study. In terms mitment to parasitology research. We of the students themselves and the effect order to deal with the economic strive to admit a class that is diverse in the course has had on their careers, a and social challenges of the 21st 416 Trends in Parasitology, June 2017, Vol. 33, No. 6.
Recommended publications
  • Sociobiology and Conflict. Evolutionary Perspectives On
    S. Afr. J. Zool. 1992,27(2) 91 Book Reviews demonstration of heritability. If there is no heritable variance in a trait, selection cannot operate. Glib statements like the following: ' ... for any socially living mammalian species the competing sets of needs under discussion are very general and basic. We must there­ Sociobiology and Conflict. Evolutionary fore assume thal the varill1lce in the balance between tlwse sets of basic needs has strong genetic roots' (van der Molen, p. 65, my perspectives on competition, coopera­ emphasis) tion, violence and warfare. are inadequate. Without the demonstration of heritability, adapta­ tionist explanations remain 'just-so stories'. This point has been made many times in the past, but the message has still not been Edited by J. van der Dennen and V. Falger received and understood. It is 15 years since the pUblication of Published by Chapman and Hall, London Wilson's opus magnum, Sociobiology. Surely this is time enough 338 pages for workers who posit genetic explanations to begin to accumulate some genetic data? Some of us still like to believe that biology is a science - even when it is applied to the human species. A tho­ This book comprises 14 essays that explore the potential signifi­ rough scientific treatment demands critical examination of all prior cance of sociobiological theorising to an understanding of human assumptions. aggressive behaviour, 'in the hope that we might better understand Then there is the far more fundamental question as to whether and come to terms with the problems of human conflict' (p. 14). or not theories regarding the selective origin of I18gressive behavi­ The thesis advanced by the majority of the contributors is predica­ our in individuals - regardless of their merits and demerits - ted on the following notions: (i) that aggressive behaviour in can tell us anything whatsoever about the conduct of war between humans has a genetic basis which is sufficiently deterministic to nations.
    [Show full text]
  • History and Scope of Microbiology the Story of Invisible Organisms
    A study material for M.Sc. Biochemistry (Semester: IV) Students on the topic (EC-1; Unit I) History and Scope of Microbiology The story of invisible organisms Dr. Reena Mohanka Professor & Head Department of Biochemistry Patna University Mob. No.:- +91-9334088879 E. Mail: [email protected] MICROBIOLOGY 1. WHAT IS A MICROBIOLOGY? Micro means very small and biology is the study of living things, so microbiology is the study of very small living things normally too small that are usually unable to be viewed with the naked eye. Need a microscope to see them Virus - 10 →1000 nanometers Bacteria - 0.1 → 5 micrometers (Human eye ) can see 0.1 mm to 1 mm Microbiology has become an umbrella term that encompasses many sub disciplines or fields of study. These include: - Bacteriology: The study of bacteria - Mycology: Fungi - Protozoology: Protozoa - Phycology: Algae - Parasitology: Parasites - Virology: Viruses WHAT IS THE NEED TO STUDY MICROBIOLOGY • Genetic engineering • Recycling sewage • Bioremediation: use microbes to remove toxins (oil spills) • Use of microbes to control crop pests • Maintain balance of environment (microbial ecology) • Basis of food chain • Nitrogen fixation • Manufacture of food and drink • Photosynthesis: Microbes are involved in photosynthesis and accounts for >50% of earth’s oxygen History of Microbiology Anton van Leeuwenhoek (1632-1723) (Dutch Scientist) • The credit of discovery of microbial world goes to Anton van Leeuwenhoek. He made careful observations of microscopic organisms, which he called animalcules (1670s). • Antoni van Leeuwenhoek described live microorganisms that he observed in teeth scrapings and rain water. • Major contributions to the development of microbiology was the invention of the microscope (50-300X magnification) by Anton von Leuwenhoek and the implementation of the scientific method.
    [Show full text]
  • Chapter 1 Microbiology—The Science
    Chapter 1 Microbiology—The Science Terms Introduced in This Chapter After reading Chapter 1, you should be familiar with the following terms. These terms are defined in Chapter 1 and in the Glossary. Abiogenesis Mycology Antibiotic Nonpathogens Bacteriologist Obligate intracellular pathogens Bacteriology Opportunistic pathogens Biogenesis Paleomicrobiology Biology Parasites Bioremediation Parasitologist Biotechnology Parasitology Decomposers Pasteurization Etiologic agent Pathogens Etiology Petri dish Fastidious microorganisms Phycologist Genetic engineering Phycology In vitro Phytoplankton In vivo Plankton Indigenous microflora Protozoologist Infectious diseases Protozoology Koch's Postulates Pure culture Microbial ecology Saprophyte Microbial intoxications Toxin Microbiologist Ubiquitous Microbiology Virologist Microorganisms Virology Microscope Zoonoses (sing., zoonosis) Mycologist Zooplankton Insight Additional Careers in Microbiology Agricultural Microbiology Agricultural microbiology is an excellent career field for individuals with interests in agriculture and microbiology. Included in the field of agricultural microbiology are studies of the beneficial and harmful roles of microbes in soil formation and fertility; in carbon, nitrogen, phosphorus, and sulfur cycles; in diseases of plants; in the digestive processes of cows and other ruminants; and in the production of crops and foods. Many different viruses, bacteria, and fungi cause plant diseases. A food microbiologist is concerned with the production, processing, storage, cooking,
    [Show full text]
  • Parasitology
    Parasitology 020314TR Online Ordering Available Parasitology Table of Contents A Culture of Service™ 1 Books Headquarters 2 Parasitology Transports 1430 West McCoy Lane Santa Maria, CA 93455 800.266.2222 : phone 6 Total Fix Procedure 805.346.2760 : fax [email protected] 7 Fecal Concentrating Systems www.HardyDiagnostics.com 8 Centrifuge Tubes Distribution Centers Santa Maria, California 9 Stains and Reagents Olympia, Washington Salt Lake City, Utah Phoenix, Arizona 11 Staining Accessories Dallas, Texas Springboro, Ohio 12 Control Slides for Stains Lake City, Florida Albany, New York 13 Parasite Suspensions Raleigh, North Carolina 14 Culture Media 15 11 Ways to Make a Better Slide 17 Microscope Supplies 19 Rapid Tests The Quality Management System at the Hardy Diagnostics manufacturing facility is certified to ISO 13485. Copyright © 2014 Hardy Diagnostics Books Cases in Human Parasitology This book contains 62 case studies that focus solely on parasites which adversely affect humans. Challenging cases with details regarding non-parasitic infections whose symptoms closely resemble those of parasitic infections are included. By Judith S. Heelan, 256 pages, softcover, ASM Press, 2004, Each................................................................................5812961 Diagnostic Medical Parasitology This book contains updates and advances in the field of diagnostic medical parasitology and reports on the dramatic changes that have occurred in this field. Newly recognized parasites, alternative diagnostic techniques defined
    [Show full text]
  • Parasitology Meets Ecology on Its Own Terms: Margolis Et Al
    Parasitology Meets Ecology on Its Own Terms: Margolis et al. Revisited Author(s): Albert O. Bush, Kevin D. Lafferty, Jeffrey M. Lotz and Allen W. Shostak Source: The Journal of Parasitology, Vol. 83, No. 4 (Aug., 1997), pp. 575-583 Published by: The American Society of Parasitologists Stable URL: http://www.jstor.org/stable/3284227 Accessed: 10-06-2015 22:17 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The American Society of Parasitologists is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Parasitology. http://www.jstor.org This content downloaded from 128.111.90.61 on Wed, 10 Jun 2015 22:17:26 UTC All use subject to JSTOR Terms and Conditions J. Parasitol., 83(4), 1997 p. 575-583 ? American Society of Parasitologists 1997 PARASITOLOGYMEETS ECOLOGYON ITS OWN TERMS: MARGOLISET AL. REVISITED* Albert O. Busht, Kevin D. Laffertyt, Jeffrey M. Lotz?, and Allen W. Shostakll Departmentof Zoology, BrandonUniversity, Brandon, Manitoba, Canada R7A 6A9 ABSTRACT:We consider 27 populationand communityterms used frequentlyby parasitologistswhen describingthe ecology of parasites.We provide suggestions for various terms in an attemptto foster consistent use and to make terms used in parasite ecology easier to interpretfor those who study free-living organisms.We suggest strongly that authors,whether they agree or disagree with us, provide complete and unambiguousdefinitions for all parametersof their studies.
    [Show full text]
  • Pathogen Prevalence and Human Mate Preferences Steven W
    Pathogen Prevalence and Human Mate Preferences Steven W. Gangestad University of New Mexico David M. Buss University of Michigan Members of host species in pathogen-host coevolutionary races may be selected to choose mates who possess features of physical appearance associated with pathogen resistance. Human data from 29 cultures indicate that people in geographical areas carrying rela- tively greater prevalences of pathogens value a mate’s physical attractiveness more than people in areas with relatively little pathogen incidence. The relationship between pathogen prevalence and the value people place on physical attractiveness remained strong even after potential confounds such as distance from the equator, geographical region, and average income were statistically controlled for. Discussion focuses on poten- tial limitations of the data, alternative explanations for the findings, and the nature of adaptations to the problems posed by pathogen prevalence. KEY WORDS: Mate preferences; Physical attractiveness; Parasites; Host-parasite coevolution. athogens may profoundly affect the evolution of their hosts (e.g., Anderson and May 1982; Clarke 1976; Hamilton 1980, 1982; Hamil- ton and Zuk 1982; Tooby 1982). Pathogens with extremely short P intergenerational times have been claimed to be responsible for no less an evolutionary outcome than sexual reproduction (Hamilton 1980; Seger and Hamilton 1986). Pathogens that possess intermediate intergenera- tional times such that parasite-host coevolution maintains additive genetic variance in host fitness may influence sexual selection pressures (Hamilton and Zuk 1982). Specifically, heritable differences in pathogen resistance may prompt “good genes” sexual selection-selection for mate preferences based on mate qualities that discriminate individuals with regard to their pathogen resistance (e.g., Andersson 1986; Grafen 1990; Heywood 1989; Iwasa, Pomiankowski, and Nee 1991; Pomiankowski 1987).
    [Show full text]
  • Best Practice Guidelines for Studies of Parasite Community Ecology Cambridge.Org/Jhl
    Journal of Helminthology Best practice guidelines for studies of parasite community ecology cambridge.org/jhl R. Poulin Review Article Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand Cite this article: Poulin R (2019). Best practice Abstract guidelines for studies of parasite community ecology. Journal of Helminthology 93,8–11. In recent decades, parasite community ecology has produced hundreds of studies on an ever- https://doi.org/10.1017/S0022149X18000767 growing number of host species, and developed into an active sub-discipline of parasitology. However, this growth has been characterized by a lack of standards in the practices used by Received: 20 June 2018 researchers, with many common approaches being flawed, unjustified or misleading. Here, Accepted: 30 July 2018 in the hope of promoting advances in the study of parasite community ecology, I identify First published online: 24 August 2018 some of the most common errors or weaknesses in past studies, and propose ten simple Key words: rules for best practice in the field. They cover issues including, among others, taxonomic reso- community structure; experiments; lution, proper and justifiable analytical methods, higher-level replication, controlling for sam- hypotheses; replication; sampling effort; pling effort or species richness, accounting for spatial distances, using experimental taxonomic resolution approaches, and placing raw data in the public domain. While knowledge of parasite commu- Author for correspondence: nities has expanded in breadth, with more and more host species being studied, true progress R. Poulin, E-mail: [email protected] has been very limited with respect to our understanding of fundamental general processes shaping these communities.
    [Show full text]
  • Biological Control of Marine Pests Author(S): Kevin D
    Biological Control of Marine Pests Author(s): Kevin D. Lafferty and Armand M. Kuris Source: Ecology, Vol. 77, No. 7 (Oct., 1996), pp. 1989-2000 Published by: Ecological Society of America Stable URL: http://www.jstor.org/stable/2265695 Accessed: 10-06-2015 23:59 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology. http://www.jstor.org This content downloaded from 128.111.90.61 on Wed, 10 Jun 2015 23:59:30 UTC All use subject to JSTOR Terms and Conditions Ecology, 77(7), 1996, pp. 1989-2000 ? 1996 by the Ecological Society of America BIOLOGICAL CONTROL OF MARINE PESTS1 KEVIN D. LAFFERTY AND ARMAND M. KURIS Department of Biological Sciences and Marine Science Institute, University of California, Santa Barbara, California 93106 USA Abstract. Biological control, as used in terrestrial systems, may hold promise for use against exotic marine species. We first review some marine pests, displaying their diversity, the damage they cause, and possible controls. We then contrast approaches for marine and terrestrial pest control, providing guidelines for adapting terrestrial controls to the marine environment.
    [Show full text]
  • SC/BIOL 4360 3.00 Parasitology Winter 2021 Course Description
    Department of Biology Course Outline SC/BIOL 4360 3.00 Parasitology Winter 2021 Course Description Please note that this is a course that depends on remote teaching and learning. There will be no in-person interactions or activities on campus. This course will be delivered in a SYNCHRONOUS remote format using the recurring Zoom meeting link https://yorku.zoom.us/j/94401465350 Biology of animal parasites; developmental, structural and functional adaptations to the parasitic environments; immune and other responses of hosts; parasitic diseases. Three lecture hours per week. One term. Three credits. Prerequisites SC/BIOL 2030 4.00 Course Instructor and Contact Information Course Director - Dr. Spencer Mukai Office – 002 Farquharson (Keele Campus), 344 York Hall (Glendon Campus) Email – [email protected] Office hours – during lectures Monday 7:00-10:00 PM via Zoom Schedule Mondays 7:00-10:00 PM. Lectures will be recorded live on Zoom, then posted onto eClass https://passportyork.yorku.ca/ppylogin/ppylogin Please review the technology requirements and FAQs for Moodle eClass. https://lthelp.yorku.ca/95440- student-faq Pre-recorded lectures may also be posted on the course website and asynchronous meetings may be scheduled, if necessary. For all Zoom lectures and meetings, use the recurring Zoom meeting invite link https://yorku.zoom.us/j/94401465350 Evaluation Tests, Assignments and Grading: Mid-Term Exam (Feb. 22, 2021)…..…………………...........................................................................20% Parasite ID Test 1 (Feb. 8, 2021)-
    [Show full text]
  • On the Evolution of the Biological Framework for Insight
    philosophies Article On the Evolution of the Biological Framework for Insight Claudio Neidhöfer Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 52127 Bonn, Germany; [email protected] Abstract: The details of abiogenesis, to date, remain a matter of debate and constitute a key mystery in science and philosophy. The prevailing scientific hypothesis implies an evolutionary process of increasing complexity on Earth starting from (self-) replicating polymers. Defining the cut-off point where life begins is another moot point beyond the scope of this article. We will instead walk through the known evolutionary steps that led from these first exceptional polymers to the vast network of living biomatter that spans our world today, focusing in particular on perception, from simple biological feedback mechanisms to the complexity that allows for abstract thought. We will then project from the well-known to the unknown to gain a glimpse into what the universe aims to accomplish with living matter, just to find that if the universe had ever planned to be comprehended, evolution still has a long way to go. Keywords: evolutionary biology; astrobiology; philosophy of biology; epistemology 1. Introduction Citation: Neidhöfer, C. On the Our aim in this work is to approach the lead question of what the universe aims Evolution of the Biological to accomplish with living matter from an evolutionary biology perspective and, hence, Framework for Insight. Philosophies focus on the capacity of the human mind to handle the issue of the role of life in the 2021, 6, 43. https://doi.org/10.3390/ universe. After addressing the question of the reducibility of biological phenomena, we philosophies6020043 will introduce some of the most important milestones in evolutionary history.
    [Show full text]
  • Ecological Parasitology Electron Theory of Small Molecules
    Nature Vol. 267 16 June 1977 653 panded with both sessile and planktonic stimulant for discussion and further Ecological marine animals. More such compari­ investigation. It is a little disappointing parasitology sons could have been enlightening. that in so extensive a series of reviews The great value of this book lies in there is a sad lack of coordinating Ecological Aspects of Parasitology. the descriptions of various organs from thought. Perhaps, though, that is what Edited by C. R. Kennedy. Pp. x+474. a parasitological viewpoint. Almost the book will help to produce. (North-Holland: Amsterdam and every author points out areas of ex­ R. W. Ashford Oxford, 1976.) Dfl 145; $57.95. tensive ignorance in his field, and it is clear that too few physiologists, bio­ chemists and physicians have a clear R. W. Ashford is Senior Lecturer in the PARASITISM is an ecological term, and Department of Pathology, University of idea of what ecology is about. The Papua, New Guinea. on secondment from parasitology is essentially an ecological book will surely be useful as a study. Some aspects of parasite ecology the Liverpool School of Tropical Medicine. have received extensive coverage for many years, especially those related to qualitative and quantitative epidemio­ for which he gives no references more logy, where the unit of study is the Electron theory recent than 1967. Indeed, if one looks infection rather than the parasite. through the text one gains the The stated object of this book is to of small molecules impression that the phrase "recent remedy the situation whereby some Introduction to the Electron Theory work" should really be synonymous aspects have received little attention.
    [Show full text]
  • (Macro-) Evolutionary Ecology of Parasite Diversity: from Determinants of Parasite Species Richness to Host Diversification Serge Morand *
    International Journal for Parasitology: Parasites and Wildlife 4 (2015) 80–87 Contents lists available at ScienceDirect International Journal for Parasitology: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw (macro-) Evolutionary ecology of parasite diversity: From determinants of parasite species richness to host diversification Serge Morand * CNRS ISEM – CIRAD AGIRs, Centre d’Infectiologie Christophe Mérieux du Laos, Vientiane, Lao Democratic People’s Republic ARTICLE INFO ABSTRACT Article history: The present review summarized the factors or determinants that may explain parasite diversity among Received 30 October 2014 host species and the consequences of this parasite diversity on the evolution of host-life history traits. Revised 3 January 2015 As host–parasite interactions are asymmetrical exploited–exploiter relationships, ecological and epide- Accepted 6 January 2015 miological theories produce hypotheses to find the potential determinants of parasite species richness, while life-history theory helps for testing potential consequences on parasite diversity on the evolution Keywords: of hosts. This review referred only to studies that have specifically controlled or took into account phy- Parasite diversity logenetic information illustrated with parasites of mammals. Several points needing more investigation Species richness Mammals were identified with a special emphasis to develop the metabolic theory of epidemiology. Latitudinal gradient © 2015 The Author. Published by Elsevier Ltd on behalf of Australian
    [Show full text]