Ecological Parasitology Electron Theory of Small Molecules

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Parasitology Electron Theory of Small Molecules Nature Vol. 267 16 June 1977 653 panded with both sessile and planktonic stimulant for discussion and further Ecological marine animals. More such compari­ investigation. It is a little disappointing parasitology sons could have been enlightening. that in so extensive a series of reviews The great value of this book lies in there is a sad lack of coordinating Ecological Aspects of Parasitology. the descriptions of various organs from thought. Perhaps, though, that is what Edited by C. R. Kennedy. Pp. x+474. a parasitological viewpoint. Almost the book will help to produce. (North-Holland: Amsterdam and every author points out areas of ex­ R. W. Ashford Oxford, 1976.) Dfl 145; $57.95. tensive ignorance in his field, and it is clear that too few physiologists, bio­ chemists and physicians have a clear R. W. Ashford is Senior Lecturer in the PARASITISM is an ecological term, and Department of Pathology, University of idea of what ecology is about. The Papua, New Guinea. on secondment from parasitology is essentially an ecological book will surely be useful as a study. Some aspects of parasite ecology the Liverpool School of Tropical Medicine. have received extensive coverage for many years, especially those related to qualitative and quantitative epidemio­ for which he gives no references more logy, where the unit of study is the Electron theory recent than 1967. Indeed, if one looks infection rather than the parasite. through the text one gains the The stated object of this book is to of small molecules impression that the phrase "recent remedy the situation whereby some Introduction to the Electron Theory work" should really be synonymous aspects have received little attention. ot Small Molecules. By A. C. Hurley. with "ten-year-old work". This critic­ The aspects chosen in the first section Pp. 329. £12; $26.25. Electron Corre­ ism should not, of course, be con­ concern the parasite outside the host: lation in Small Molecules. By A. C. strued as a call for "trendiness", but dispersal (C. R. Kennedy), host loca­ Hurley. Pp. 276. £10.50; $23. (Aca­ there is work in the past five years in tion (A. J. Macinnis) and host se.Jection, demic: London and New York, 1977.) the areas quoted above (and indeed in (J. C. Holmes); entry into the host other areas in the book) to which the (D. W. T. Crompton), feeding (C. attention of the readCif should be called Arme), interaction between parasites THESE two books are perhaps meant to even in an introductory book like this. (D. Halvorsen), and host r·esponses to be read together. The author states in As one would expect from an author parasitic infection (D. Wakelin). The his preface to the Introduction that the of Dr Hurley's distinction, ther·e are a bulk of the book is in part two. Here, book consists of the "earlier and lot of good things in the Introduction. "Habitat" is seen as the immediate simpler chapters of what was originally There is, for example, a splendid surroundings of the parasite. There are conceived of as a comprehensiv·e one­ and precise account of Koopmans' two chapters on fish: skin (G. C. volume work". As such, the Introduc­ theorem, a very nice heuristic account Kearn) and gills (C. H. Fernando and tion is to provide what the author of the various cusp conditions in the C. Hanek); and the remaining chapters calls a "royal road from basic quantum wave function, some very helpful deal with the special features of para­ mechanics to the various theories material on the continuous groups in sitic life in different mammalian or which are now yielding such detailed the section on symmetry, a brief and avian organs and cells. In the final information on molecular interactions", clear account of the RKR method, chapter, R. M. Anderson discusses the some of which ar·e discussed in the and many more. There are, however, interaction of host and parasite Electron Correlation volume. some funny slips. The author says, for populations. The Introduction provides an example, that in the quadratic approxi­ With 24 authors covering so wide a account of the basic theory of potential mation to the potential, the equation field, consistency and uniformity are energy curves and surfaces, an outli:ne for nuclear vibrational motion in the not to be expected or even desired. If of the variational method for construct­ diatomic is the simple harmonic the intellectual verbosity of chapter ing approximate electronic wave func­ oscillator equation. But the student who one were maintained throughout, the tions and a short account of the has read his Eyring, Walter and Kim­ book would be hard indeed to read. (generalised) virial and Hellmann­ ball Quantum Chemistry knows that Particularly noteworthy is yet another Feynmann theorems. It also provides this is just not true. The equation definition of parasitism, first credited a brief, but self-contained account of (2.60) from which he begins his with elegant beauty, then, mercifully, molecular symmetry and quite ex­ account of the generalised Hellman­ discredited as being possibly applicable tended accounts of the determinantal Feynmann theorem seems to be to all organisms! approach and of molecular orbitals and simply wrong at an elementary level The rest of the book is clear and the Hartree-Fock method. The (see the author's own original paper, stimulating. The only truly unique accounts are presented chiefly in the Proc. R. Soc. A226, 170 or Appendix 1 feature of the parasitic habitat is the ccnt·ext of ·results for diatomic mole­ in Pople et a!. Jl Chern. Phys. 49, 2960; specific antagonistic reaction that it cules (although small polyatomics 1968), and in view of Dr Hurley's produces. This aspect is given extensive occasionally receive a passing mention) contributions to the foundations of this treatment. D. R. Arthur describes how and a chapter .each is devoted to part of the subject this (if the reviewer amputee mice, unable to groom, are detailed consideration of the hydrogen is not mistaken) is quite incredible. Be subject to massive infestations of lice; ion and of the hydrogen molecule. that as it may, the discussion in this D Wakelin gives a lucid comparison The book is regrettably something part of the book has nothing like the between the immune processes of of a disappointment to the reviewer, if subtlety or power of the discussion of invertebrates and vertebrates, and for no other reason than that it seems the same material oftiered by Epstein in A. D. Befus and R. B. Podesta describe so old-fashioned. A suspicion of this his recent book (The Variation Method the special immunological features of may be gleaned from the first few in Quantum Chemistry, Academic: the intestine. pages in which H becomes dear that the London, 1974); and Epstein's book is Most other aspects of parasite author is going to use c.g.s. units; but it not referred to at all. ecology have clear paraiJels in free is re-inforced, for example, by his At a somewhat different levd, the living organisms. Useful comparisons treatment of spin-coupling and of author's discussion of natural orbitals are made but unfortunately not ex- methods for solving the SCF equations, (continued on p654) © 1977 Nature Publishing Group.
Recommended publications
  • Sociobiology and Conflict. Evolutionary Perspectives On
    S. Afr. J. Zool. 1992,27(2) 91 Book Reviews demonstration of heritability. If there is no heritable variance in a trait, selection cannot operate. Glib statements like the following: ' ... for any socially living mammalian species the competing sets of needs under discussion are very general and basic. We must there­ Sociobiology and Conflict. Evolutionary fore assume thal the varill1lce in the balance between tlwse sets of basic needs has strong genetic roots' (van der Molen, p. 65, my perspectives on competition, coopera­ emphasis) tion, violence and warfare. are inadequate. Without the demonstration of heritability, adapta­ tionist explanations remain 'just-so stories'. This point has been made many times in the past, but the message has still not been Edited by J. van der Dennen and V. Falger received and understood. It is 15 years since the pUblication of Published by Chapman and Hall, London Wilson's opus magnum, Sociobiology. Surely this is time enough 338 pages for workers who posit genetic explanations to begin to accumulate some genetic data? Some of us still like to believe that biology is a science - even when it is applied to the human species. A tho­ This book comprises 14 essays that explore the potential signifi­ rough scientific treatment demands critical examination of all prior cance of sociobiological theorising to an understanding of human assumptions. aggressive behaviour, 'in the hope that we might better understand Then there is the far more fundamental question as to whether and come to terms with the problems of human conflict' (p. 14). or not theories regarding the selective origin of I18gressive behavi­ The thesis advanced by the majority of the contributors is predica­ our in individuals - regardless of their merits and demerits - ted on the following notions: (i) that aggressive behaviour in can tell us anything whatsoever about the conduct of war between humans has a genetic basis which is sufficiently deterministic to nations.
    [Show full text]
  • History and Scope of Microbiology the Story of Invisible Organisms
    A study material for M.Sc. Biochemistry (Semester: IV) Students on the topic (EC-1; Unit I) History and Scope of Microbiology The story of invisible organisms Dr. Reena Mohanka Professor & Head Department of Biochemistry Patna University Mob. No.:- +91-9334088879 E. Mail: [email protected] MICROBIOLOGY 1. WHAT IS A MICROBIOLOGY? Micro means very small and biology is the study of living things, so microbiology is the study of very small living things normally too small that are usually unable to be viewed with the naked eye. Need a microscope to see them Virus - 10 →1000 nanometers Bacteria - 0.1 → 5 micrometers (Human eye ) can see 0.1 mm to 1 mm Microbiology has become an umbrella term that encompasses many sub disciplines or fields of study. These include: - Bacteriology: The study of bacteria - Mycology: Fungi - Protozoology: Protozoa - Phycology: Algae - Parasitology: Parasites - Virology: Viruses WHAT IS THE NEED TO STUDY MICROBIOLOGY • Genetic engineering • Recycling sewage • Bioremediation: use microbes to remove toxins (oil spills) • Use of microbes to control crop pests • Maintain balance of environment (microbial ecology) • Basis of food chain • Nitrogen fixation • Manufacture of food and drink • Photosynthesis: Microbes are involved in photosynthesis and accounts for >50% of earth’s oxygen History of Microbiology Anton van Leeuwenhoek (1632-1723) (Dutch Scientist) • The credit of discovery of microbial world goes to Anton van Leeuwenhoek. He made careful observations of microscopic organisms, which he called animalcules (1670s). • Antoni van Leeuwenhoek described live microorganisms that he observed in teeth scrapings and rain water. • Major contributions to the development of microbiology was the invention of the microscope (50-300X magnification) by Anton von Leuwenhoek and the implementation of the scientific method.
    [Show full text]
  • Chapter 1 Microbiology—The Science
    Chapter 1 Microbiology—The Science Terms Introduced in This Chapter After reading Chapter 1, you should be familiar with the following terms. These terms are defined in Chapter 1 and in the Glossary. Abiogenesis Mycology Antibiotic Nonpathogens Bacteriologist Obligate intracellular pathogens Bacteriology Opportunistic pathogens Biogenesis Paleomicrobiology Biology Parasites Bioremediation Parasitologist Biotechnology Parasitology Decomposers Pasteurization Etiologic agent Pathogens Etiology Petri dish Fastidious microorganisms Phycologist Genetic engineering Phycology In vitro Phytoplankton In vivo Plankton Indigenous microflora Protozoologist Infectious diseases Protozoology Koch's Postulates Pure culture Microbial ecology Saprophyte Microbial intoxications Toxin Microbiologist Ubiquitous Microbiology Virologist Microorganisms Virology Microscope Zoonoses (sing., zoonosis) Mycologist Zooplankton Insight Additional Careers in Microbiology Agricultural Microbiology Agricultural microbiology is an excellent career field for individuals with interests in agriculture and microbiology. Included in the field of agricultural microbiology are studies of the beneficial and harmful roles of microbes in soil formation and fertility; in carbon, nitrogen, phosphorus, and sulfur cycles; in diseases of plants; in the digestive processes of cows and other ruminants; and in the production of crops and foods. Many different viruses, bacteria, and fungi cause plant diseases. A food microbiologist is concerned with the production, processing, storage, cooking,
    [Show full text]
  • Parasitology
    Parasitology 020314TR Online Ordering Available Parasitology Table of Contents A Culture of Service™ 1 Books Headquarters 2 Parasitology Transports 1430 West McCoy Lane Santa Maria, CA 93455 800.266.2222 : phone 6 Total Fix Procedure 805.346.2760 : fax [email protected] 7 Fecal Concentrating Systems www.HardyDiagnostics.com 8 Centrifuge Tubes Distribution Centers Santa Maria, California 9 Stains and Reagents Olympia, Washington Salt Lake City, Utah Phoenix, Arizona 11 Staining Accessories Dallas, Texas Springboro, Ohio 12 Control Slides for Stains Lake City, Florida Albany, New York 13 Parasite Suspensions Raleigh, North Carolina 14 Culture Media 15 11 Ways to Make a Better Slide 17 Microscope Supplies 19 Rapid Tests The Quality Management System at the Hardy Diagnostics manufacturing facility is certified to ISO 13485. Copyright © 2014 Hardy Diagnostics Books Cases in Human Parasitology This book contains 62 case studies that focus solely on parasites which adversely affect humans. Challenging cases with details regarding non-parasitic infections whose symptoms closely resemble those of parasitic infections are included. By Judith S. Heelan, 256 pages, softcover, ASM Press, 2004, Each................................................................................5812961 Diagnostic Medical Parasitology This book contains updates and advances in the field of diagnostic medical parasitology and reports on the dramatic changes that have occurred in this field. Newly recognized parasites, alternative diagnostic techniques defined
    [Show full text]
  • Parasitology Meets Ecology on Its Own Terms: Margolis Et Al
    Parasitology Meets Ecology on Its Own Terms: Margolis et al. Revisited Author(s): Albert O. Bush, Kevin D. Lafferty, Jeffrey M. Lotz and Allen W. Shostak Source: The Journal of Parasitology, Vol. 83, No. 4 (Aug., 1997), pp. 575-583 Published by: The American Society of Parasitologists Stable URL: http://www.jstor.org/stable/3284227 Accessed: 10-06-2015 22:17 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The American Society of Parasitologists is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Parasitology. http://www.jstor.org This content downloaded from 128.111.90.61 on Wed, 10 Jun 2015 22:17:26 UTC All use subject to JSTOR Terms and Conditions J. Parasitol., 83(4), 1997 p. 575-583 ? American Society of Parasitologists 1997 PARASITOLOGYMEETS ECOLOGYON ITS OWN TERMS: MARGOLISET AL. REVISITED* Albert O. Busht, Kevin D. Laffertyt, Jeffrey M. Lotz?, and Allen W. Shostakll Departmentof Zoology, BrandonUniversity, Brandon, Manitoba, Canada R7A 6A9 ABSTRACT:We consider 27 populationand communityterms used frequentlyby parasitologistswhen describingthe ecology of parasites.We provide suggestions for various terms in an attemptto foster consistent use and to make terms used in parasite ecology easier to interpretfor those who study free-living organisms.We suggest strongly that authors,whether they agree or disagree with us, provide complete and unambiguousdefinitions for all parametersof their studies.
    [Show full text]
  • Pathogen Prevalence and Human Mate Preferences Steven W
    Pathogen Prevalence and Human Mate Preferences Steven W. Gangestad University of New Mexico David M. Buss University of Michigan Members of host species in pathogen-host coevolutionary races may be selected to choose mates who possess features of physical appearance associated with pathogen resistance. Human data from 29 cultures indicate that people in geographical areas carrying rela- tively greater prevalences of pathogens value a mate’s physical attractiveness more than people in areas with relatively little pathogen incidence. The relationship between pathogen prevalence and the value people place on physical attractiveness remained strong even after potential confounds such as distance from the equator, geographical region, and average income were statistically controlled for. Discussion focuses on poten- tial limitations of the data, alternative explanations for the findings, and the nature of adaptations to the problems posed by pathogen prevalence. KEY WORDS: Mate preferences; Physical attractiveness; Parasites; Host-parasite coevolution. athogens may profoundly affect the evolution of their hosts (e.g., Anderson and May 1982; Clarke 1976; Hamilton 1980, 1982; Hamil- ton and Zuk 1982; Tooby 1982). Pathogens with extremely short P intergenerational times have been claimed to be responsible for no less an evolutionary outcome than sexual reproduction (Hamilton 1980; Seger and Hamilton 1986). Pathogens that possess intermediate intergenera- tional times such that parasite-host coevolution maintains additive genetic variance in host fitness may influence sexual selection pressures (Hamilton and Zuk 1982). Specifically, heritable differences in pathogen resistance may prompt “good genes” sexual selection-selection for mate preferences based on mate qualities that discriminate individuals with regard to their pathogen resistance (e.g., Andersson 1986; Grafen 1990; Heywood 1989; Iwasa, Pomiankowski, and Nee 1991; Pomiankowski 1987).
    [Show full text]
  • Best Practice Guidelines for Studies of Parasite Community Ecology Cambridge.Org/Jhl
    Journal of Helminthology Best practice guidelines for studies of parasite community ecology cambridge.org/jhl R. Poulin Review Article Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand Cite this article: Poulin R (2019). Best practice Abstract guidelines for studies of parasite community ecology. Journal of Helminthology 93,8–11. In recent decades, parasite community ecology has produced hundreds of studies on an ever- https://doi.org/10.1017/S0022149X18000767 growing number of host species, and developed into an active sub-discipline of parasitology. However, this growth has been characterized by a lack of standards in the practices used by Received: 20 June 2018 researchers, with many common approaches being flawed, unjustified or misleading. Here, Accepted: 30 July 2018 in the hope of promoting advances in the study of parasite community ecology, I identify First published online: 24 August 2018 some of the most common errors or weaknesses in past studies, and propose ten simple Key words: rules for best practice in the field. They cover issues including, among others, taxonomic reso- community structure; experiments; lution, proper and justifiable analytical methods, higher-level replication, controlling for sam- hypotheses; replication; sampling effort; pling effort or species richness, accounting for spatial distances, using experimental taxonomic resolution approaches, and placing raw data in the public domain. While knowledge of parasite commu- Author for correspondence: nities has expanded in breadth, with more and more host species being studied, true progress R. Poulin, E-mail: [email protected] has been very limited with respect to our understanding of fundamental general processes shaping these communities.
    [Show full text]
  • Biological Control of Marine Pests Author(S): Kevin D
    Biological Control of Marine Pests Author(s): Kevin D. Lafferty and Armand M. Kuris Source: Ecology, Vol. 77, No. 7 (Oct., 1996), pp. 1989-2000 Published by: Ecological Society of America Stable URL: http://www.jstor.org/stable/2265695 Accessed: 10-06-2015 23:59 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology. http://www.jstor.org This content downloaded from 128.111.90.61 on Wed, 10 Jun 2015 23:59:30 UTC All use subject to JSTOR Terms and Conditions Ecology, 77(7), 1996, pp. 1989-2000 ? 1996 by the Ecological Society of America BIOLOGICAL CONTROL OF MARINE PESTS1 KEVIN D. LAFFERTY AND ARMAND M. KURIS Department of Biological Sciences and Marine Science Institute, University of California, Santa Barbara, California 93106 USA Abstract. Biological control, as used in terrestrial systems, may hold promise for use against exotic marine species. We first review some marine pests, displaying their diversity, the damage they cause, and possible controls. We then contrast approaches for marine and terrestrial pest control, providing guidelines for adapting terrestrial controls to the marine environment.
    [Show full text]
  • SC/BIOL 4360 3.00 Parasitology Winter 2021 Course Description
    Department of Biology Course Outline SC/BIOL 4360 3.00 Parasitology Winter 2021 Course Description Please note that this is a course that depends on remote teaching and learning. There will be no in-person interactions or activities on campus. This course will be delivered in a SYNCHRONOUS remote format using the recurring Zoom meeting link https://yorku.zoom.us/j/94401465350 Biology of animal parasites; developmental, structural and functional adaptations to the parasitic environments; immune and other responses of hosts; parasitic diseases. Three lecture hours per week. One term. Three credits. Prerequisites SC/BIOL 2030 4.00 Course Instructor and Contact Information Course Director - Dr. Spencer Mukai Office – 002 Farquharson (Keele Campus), 344 York Hall (Glendon Campus) Email – [email protected] Office hours – during lectures Monday 7:00-10:00 PM via Zoom Schedule Mondays 7:00-10:00 PM. Lectures will be recorded live on Zoom, then posted onto eClass https://passportyork.yorku.ca/ppylogin/ppylogin Please review the technology requirements and FAQs for Moodle eClass. https://lthelp.yorku.ca/95440- student-faq Pre-recorded lectures may also be posted on the course website and asynchronous meetings may be scheduled, if necessary. For all Zoom lectures and meetings, use the recurring Zoom meeting invite link https://yorku.zoom.us/j/94401465350 Evaluation Tests, Assignments and Grading: Mid-Term Exam (Feb. 22, 2021)…..…………………...........................................................................20% Parasite ID Test 1 (Feb. 8, 2021)-
    [Show full text]
  • On the Evolution of the Biological Framework for Insight
    philosophies Article On the Evolution of the Biological Framework for Insight Claudio Neidhöfer Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 52127 Bonn, Germany; [email protected] Abstract: The details of abiogenesis, to date, remain a matter of debate and constitute a key mystery in science and philosophy. The prevailing scientific hypothesis implies an evolutionary process of increasing complexity on Earth starting from (self-) replicating polymers. Defining the cut-off point where life begins is another moot point beyond the scope of this article. We will instead walk through the known evolutionary steps that led from these first exceptional polymers to the vast network of living biomatter that spans our world today, focusing in particular on perception, from simple biological feedback mechanisms to the complexity that allows for abstract thought. We will then project from the well-known to the unknown to gain a glimpse into what the universe aims to accomplish with living matter, just to find that if the universe had ever planned to be comprehended, evolution still has a long way to go. Keywords: evolutionary biology; astrobiology; philosophy of biology; epistemology 1. Introduction Citation: Neidhöfer, C. On the Our aim in this work is to approach the lead question of what the universe aims Evolution of the Biological to accomplish with living matter from an evolutionary biology perspective and, hence, Framework for Insight. Philosophies focus on the capacity of the human mind to handle the issue of the role of life in the 2021, 6, 43. https://doi.org/10.3390/ universe. After addressing the question of the reducibility of biological phenomena, we philosophies6020043 will introduce some of the most important milestones in evolutionary history.
    [Show full text]
  • (Macro-) Evolutionary Ecology of Parasite Diversity: from Determinants of Parasite Species Richness to Host Diversification Serge Morand *
    International Journal for Parasitology: Parasites and Wildlife 4 (2015) 80–87 Contents lists available at ScienceDirect International Journal for Parasitology: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw (macro-) Evolutionary ecology of parasite diversity: From determinants of parasite species richness to host diversification Serge Morand * CNRS ISEM – CIRAD AGIRs, Centre d’Infectiologie Christophe Mérieux du Laos, Vientiane, Lao Democratic People’s Republic ARTICLE INFO ABSTRACT Article history: The present review summarized the factors or determinants that may explain parasite diversity among Received 30 October 2014 host species and the consequences of this parasite diversity on the evolution of host-life history traits. Revised 3 January 2015 As host–parasite interactions are asymmetrical exploited–exploiter relationships, ecological and epide- Accepted 6 January 2015 miological theories produce hypotheses to find the potential determinants of parasite species richness, while life-history theory helps for testing potential consequences on parasite diversity on the evolution Keywords: of hosts. This review referred only to studies that have specifically controlled or took into account phy- Parasite diversity logenetic information illustrated with parasites of mammals. Several points needing more investigation Species richness Mammals were identified with a special emphasis to develop the metabolic theory of epidemiology. Latitudinal gradient © 2015 The Author. Published by Elsevier Ltd on behalf of Australian
    [Show full text]
  • The Effect of Diet and Parasite Load on Female Phonotaxis in the Texas Field Cricket, Gryllus Integer
    1 The Effect of Diet and Parasite Load on Female Phonotaxis in the Texas Field Cricket, Gryllus integer by Donald Allen MacDougall A Thesis submitted to the Department of Biological Sciences in partial fulfillment of the requirements for the degree of Master of Science January 1996 Brock University St. Catharines, Ontario © Donald A. MacDougall, 1996 2 ABSTRACT Female crickets respond selectively to variations in species-specific male calling songs. This selectivity has been shown to be age-dependent; older females are less choosy. However, female quality should also affect female selectivity. The effect of female quality on mate choice was examined in Gryllus integer by comparing the phonotactic responses of females on different diets and with different parasite loads to various synthetic models of conspecific calling song. Test females were virgin, 11-14 days old, and had been maintained on one of five diets varying in protein and fat content. Phonotaxis was quantified using a non-compensating Kugel treadmill which generates vector scores incorporating the speed and direction of movement of each female. Test females were presented with four calling song models which differed in pulse rate, but were still within the natural range of the species for the experimental temperature. After testing, females were dissected and the number of gregarine parasites within the digestive tract counted. There were no significant effects of either diet or parasitism on female motivation to mate although the combined effects of these variables seem to have an effect with no apparent trend. Control females did not discriminate among song types, but there was a trend of female preferences for lower pulse rates which are closest to the mean pulse rate for the species.
    [Show full text]