Agilent Vnmrj 4.2 Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Agilent Vnmrj 4.2 Spectroscopy Agilent VnmrJ 4.2 Spectroscopy User Guide Agilent Technologies Notices © Agilent Technologies, Inc. 2014 Warranty (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any No part of this manual may be reproduced The material contained in this docu- technical data. in any form or by any means (including ment is provided “as is,” and is sub- electronic storage and retrieval or transla- ject to being changed, without notice, tion into a foreign language) without prior Safety Notices agreement and written consent from in future editions. Further, to the max- Agilent Technologies, Inc. as governed by imum extent permitted by applicable United States and international copyright law, Agilent disclaims all warranties, CAUTION laws. either express or implied, with regard to this manual and any information A CAUTION notice denotes a haz- Manual Part Number contained herein, including but not ard. It calls attention to an operat- limited to the implied warranties of ing procedure, practice, or the like G7446-90573 merchantability and fitness for a par- that, if not correctly performed or ticular purpose. Agilent shall not be adhered to, could result in damage Edition liable for errors or for incidental or to the product or loss of important Revision B, June 2015 consequential damages in connection data. Do not proceed beyond a with the furnishing, use, or perfor- CAUTION notice until the indicated mance of this document or of any Revision log conditions are fully understood and information contained herein. Should met. Agilent and the user have a separate Revision Changes written agreement with warranty Rev A, May 2014 Initial revision for terms covering the material in this VnmrJ 4.2 document that conflict with these WARNING terms, the warranty terms in the sep- Rev B, June 2015 Minor corrections A WARNING notice denotes a arate agreement shall control. based on Spisights hazard. It calls attention to an feedback: fixed operating procedure, practice, or capitalization in Technology Licenses table on pg 96; cor- the like that, if not correctly per- The hardware and/or software described in rected to 48.5mM formed or adhered to, could result this document are furnished under a on pg 464. in personal injury or death. Do not license and may be used or copied only in accordance with the terms of such license. proceed beyond a WARNING notice until the indicated condi- This guide is valid for 4.2 revision of the tions are fully understood and met. Agilent VnmrJ software, until superseded. Restricted Rights Legend Printed in USA If software is for use in the performance of a U.S. Government prime contract or sub- Agilent Technologies, Inc. contract, Software is delivered and 5301 Stevens Creek Boulevard licensed as “Commercial computer soft- Santa Clara, CA 95051 USA ware” as defined in DFAR 252.227-7014 (June 1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies’ standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Gov- ernment will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Govern- ment users will receive no greater than Limited Rights as defined in FAR 52.227-14 Contents 1 Running Liquids NMR Experiments NMR Experiment Tasks 18 Prepare for an experiment 18 Select an experiment 18 Set up an experiment 18 Acquire a spectrum 20 Process the data 20 Display the data 20 Print or plot the data 22 Saving NMR Data (Optional) 23 Stopping an Experiment 24 2 Preparing for an Experiment Starting VnmrJ 26 Preparing the Sample 27 Selecting a solvent 27 Setting the sample height 27 Sample position using the depth gauge 28 Sample tubes 29 Sample changes and probe tuning 29 Ejecting and Inserting the Sample 30 Ejecting a sample 30 Inserting a sample 30 Loading a Probe File 32 Tuning Probes on Systems with ProTune 33 Configuring for operation with automated sample handlers 33 Running ProTune on systems without automated sample handlers 33 Remote tuning from the ProTune window 34 Tuning Probes on Standard Systems 37 Selecting correct quarter-wavelength 37 Tuning using Mtune 37 Tuning using TUNE INTERFACE remote 39 3 Experiment Setup Selecting an Experiment 44 Protocols vertical tab 44 Main menu selections 44 Agilent VnmrJ 4 Spectroscopy User Guide 3 Spinning the Sample 46 Liquids spinner 46 MAS spinner 47 Setting the Sample Temperature 51 Handling Spin and Temperature Error 54 Working with the Lock and Shim Pages 55 Mouse control of buttons and sliders 55 Lock buttons and controls 55 Shim buttons and controls 56 Working with Proshim 57 Current method 58 Method editor 59 Manage shim method files 62 FID-shim parameters 63 Shim Menu Editor 64 Proshim in Automation 66 Using Proshim with Study Clone 66 Scheduling Shim Maintenance 67 Optimizing Lock 69 Finding Z0 and establishing lock 69 Lock power, gain, and phase 72 Lock control methods 72 Adjusting Field Homogeneity 75 Loading shim values 75 Loading a shim file 75 Saving a shim file 75 Shim gradients 75 Shimming on the Lock Signal Manually 77 Routine shimming 77 Setting low-order (routine) shims 79 Removing spinning sidebands (non-routine) 79 Setting the high-order axial shims (non-routine) 81 Setting high-order radial shims (non-routine) 81 Shimming PFG Systems 83 Performa I and Performa II 83 Performa XYZ 83 Calibrating the Probe 84 4 Agilent VnmrJ 4 Spectroscopy User Guide 4 Gradient Shimming Introduction to Gradient Shimming 86 Deuterium Gradient Shimming 87 Homospoil Gradient Shimming 88 Homospoil gradient type 88 Homospoil gradient shimming for 1H or 2H 89 Configuring Gradients and Hardware Control 90 Mapping Shims and Gradient Shimming 91 Recommended samples for gradient shimming 91 Manually calibrating the 90 degree pulse for 1H and 2H 91 Mapping the Shims 93 Starting gradient shimming 95 Quitting gradient shimming 95 Gradient shim commands and parameters 95 How making a shimmap works 96 How automated shimming works 97 Shimmap Display, Loading, and Sharing 98 Displaying the shimmap 98 Loading a shimmap 98 Sharing a shimmap 99 Shimmap files and parameter sets 100 Gradient Shimming for the General User 101 Deuterium Gradient Shimming Procedure for Lineshape 102 Setting up 102 Making the ShimMap 102 Starting Z gradient shimming 103 Optimizing non-spinning shims 103 Evaluating homogeneity 103 Calibrating gzwin 104 Automatic calibration of gzwin 104 Manual calibration of gzwin 105 Varying the Number of Shims 106 Changing the number of shims used for gradient shimming 106 Selecting optimization of Z1 through Z4 shims first 106 Variable Temperature Gradient Compensation 107 Spinning During Gradient Shimming 108 Suggestions for Improving Results 110 Gradient Shimming Using Selective Excitation 112 Agilent VnmrJ 4 Spectroscopy User Guide 5 Gradient Shimming Pulse Sequence and Processing 115 Gradient Shimming References 117 5 Study Queue and Studies Introduction to Studies 120 Study Clusters 121 To create a study cluster 122 To edit the last viewed cluster 124 To show the cluster library 124 To define cluster attributes 124 Operations Using a Robot Sample Changer 127 Study Queue controls-Review mode 127 Study Queue controls-Submit mode 130 Using the Study Queue-full automation 131 Day Queue, Night Queue, and Priority Queue 132 Editing experiments in a pending study 132 Extending an existing study 133 Deleting a sample from the queue 133 Operations Without a Robot Sample Changer 134 Study Queue Controls-Review mode 134 Study Queue Controls-Submit mode 135 Using the Study Queue-full automation 135 Creating a Study Queue from data acquired manually 136 Editing experiments in an active study 137 Extending a completed study 137 Data Acquisition Using a Spreadsheet 138 Study Mimic 140 Using Study Mimic 140 Study Mimic-multiple submissions 141 6 Data Acquisition Acquiring a Spectrum 144 Acquisition Settings 145 Acquisition and post acquisition actions 145 Nucleus-specific frequency settings 147 Transmitter and decoupler positioning 147 Spectral window 147 Pulse sequence settings (standard two-pulse) 148 Pulse Sequences 150 Display the pulse sequence 150 6 Agilent VnmrJ 4 Spectroscopy User Guide Standard two-pulse parameters 151 The status concept 152 Observe transmitter and decoupling settings 153 Decoupler modes 154 Parameter Arrays 155 Array definition 155 Stopping and Resuming Acquisition 158 Automatic Processing 159 Acquisition Status Window 161 7 Processing Data Introduction to Data Processing 164 Weighting Function 165 Interactive Weighting 167 Fourier Transformation 169 Phasing 170 Phase parameters 170 Autophase algorithm 171 Spectrum display 172 Advanced Data Processing 173 FID manipulation 173 Data processing methods 174 Linear prediction 174 Solvent subtraction filtering 176 Downsample 177 Interleave FIDs 178 8 Displaying FIDs and Spectra Displaying a FID or 1D Spectrum 180 FID display 180 1D spectrum display 180 Display Tools 182 Interactive display tools 182 Display parameters 183 Controlling cursors and vertical scale 185 Display limits 185 Display parameters files 185 Save Current Process / Display Parameters 187 Spectrum Annotations 188 Agilent VnmrJ 4 Spectroscopy User Guide 7 To create an annotation 188 Select and modify annotations 189 To show or hide annotations 191 To delete an annotation 191 To copy and paste annotations 192 To save or load annotations 192 To print an annotated
Recommended publications
  • Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry
    Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry Dedication To Steve Örebro Studies in Chemistry 19 NICOLE RIDDELL Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry © Nicole Riddell, 2017 Title: Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry Publisher: Örebro University 2017 www.publications.oru.se Print: Örebro University, Repro 04/2017 ISSN 1651-4270 ISBN 978-91-7529-184-0 Abstract Nicole Riddell (2017): Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry. Örebro Studies in Chemistry 19. Although gas and liquid chromatography have emerged as dominant separation techniques in environmental analytical chemistry, these methods do not allow for the concurrent analysis of chemically diverse groups of persistent organic pollutants (POPs). There are also a small number of compounds which are not easily amenable to either of these traditional separation techniques. The main objective of this thesis was to address these issues by demonstrating the applicability of packed col- umn supercritical fluid chromatography (pSFC) coupled to mass spec- trometry (MS) in various aspects of environmental chemistry. First, pSFC/MS analytical methods were developed for legacy POPs (PCDDs, PCDFs, and PCBs) as well as the emerging environmental con- taminant Dechlorane Plus (DP), and issues relating to the ionization of target analytes when pSFC was coupled to MS were explored. Novel APPI and APCI reagents (fluorobenzene and triethylamine) were opti- mized and real samples (water and soil) were analyzed to demonstrate environmental applicability. The possibility of chiral and preparative scale pSFC separations was then demonstrated through the isolation and characterization of ther- mally labile hexabromocyclododecane (HBCDD) stereoisomers. The analytical pSFC separation of the α-, β-, and γ-HBCDD enantiomers as well as the δ and ε meso forms was shown to be superior to results ob- tained using a published LC method.
    [Show full text]
  • Deuteriodesilylation: a Mild and Selective Method for the Site- Specific Incorporation of Deuterium Into Drug Candidates and Pharmaceutical Structures
    DEUTERIODESILYLATION: A MILD AND SELECTIVE METHOD FOR THE SITE- SPECIFIC INCORPORATION OF DEUTERIUM INTO DRUG CANDIDATES AND PHARMACEUTICAL STRUCTURES Kimberly N. Voronin A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Chemistry and Biochemistry University of North Carolina Wilmington 2012 Approved by Advisory Committee Chris V. Galliford Pamela J. Seaton John A. Tyrell Chair Accepted by Dean, Graduate School TABLE OF CONTENTS ABSTRACT ................................................................................................................................... vi ACKNOWLEDGEMENTS .......................................................................................................... vii DEDICATION ............................................................................................................................... ix LIST OF TABLES .......................................................................................................................... x LIST OF FIGURES ...................................................................................................................... xi LIST OF ABBREVIATIONS ...................................................................................................... xiii LIST OF SCHEMES .....................................................................................................................xv CHAPTER 1: INTRODUCTION ....................................................................................................1
    [Show full text]
  • Interferometric Observations of Warm Deuterated Methanol in the Inner Regions of Low- Mass Protostars
    Interferometric observations of warm deuterated methanol in the inner regions of low- mass protostars Taquet, V; Bianchi, E.; Codella, C.; Persson, M., V; Ceccarelli, C.; Cabrit, S.; Jorgensen, J. K.; Kahane, C.; Lopez-Sepulcre, A.; Neri, R. Published in: Astronomy & Astrophysics DOI: 10.1051/0004-6361/201936044 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC Citation for published version (APA): Taquet, V., Bianchi, E., Codella, C., Persson, M. V., Ceccarelli, C., Cabrit, S., Jorgensen, J. K., Kahane, C., Lopez-Sepulcre, A., & Neri, R. (2019). Interferometric observations of warm deuterated methanol in the inner regions of low-mass protostars. Astronomy & Astrophysics, 632, [A19]. https://doi.org/10.1051/0004- 6361/201936044 Download date: 02. Oct. 2021 A&A 632, A19 (2019) https://doi.org/10.1051/0004-6361/201936044 Astronomy & © ESO 2019 Astrophysics Interferometric observations of warm deuterated methanol in the inner regions of low-mass protostars? V. Taquet1, E. Bianchi2,1, C. Codella1,2, M. V. Persson3, C. Ceccarelli2, S. Cabrit4, J. K. Jørgensen5, C. Kahane2, A. López-Sepulcre2,6, and R. Neri6 1 INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy e-mail: [email protected] 2 IPAG, Université Grenoble Alpes, CNRS, 38000 Grenoble, France 3 Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden 4 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Université Paris 06, 75014 Paris, France 5 Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K., Denmark 6 Institut de Radioastronomie Millimétrique, 38406 Saint-Martin d’Hères, France Received 7 June 2019 / Accepted 19 September 2019 ABSTRACT Methanol is a key species in astrochemistry because it is the most abundant organic molecule in the interstellar medium and is thought to be the mother molecule of many complex organic species.
    [Show full text]
  • Methanol—Inhibitor Or Promoter of the Formation of Gas Hydrates from Deuterated Ice?
    BOBEV AND TAIT: METHANOL—INHIBITOR OR PROMOTER? 1209 American Mineralogist, Volume 89, pages 1208–1214, 2004 Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice? SVILEN BOBEV* AND KIMBERLY T. TAIT Manuel Lujan Jr. Neutron Scattering Center, LANSCE 12 MS H805, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A. ABSTRACT Kinetic studies are reported of the effect of methanol on the rate of formation of CO2- and CH4-hy- drates by means of in situ time-of-flight neutron powder diffraction. The experiments were carried out at temperatures ranging from 200 to 250 K and pressures up to 7 MPa. The samples were prepared from mixtures of ground, deuterated ice and deuterated methanol (up to 20 vol%), which were transformed in situ into CO2- or CH4-hydrates by pressurizing the systems with the corresponding gas. The observed rates of formation of hydrates are orders of magnitude higher than the rate of formation from pure deuterated ice under the same pressure and temperature conditions. Glycols and alcohols, methanol in particular, are long known as thermodynamic inhibitors of hydrate formation. Our study indicates that methanol can also act as a kinetic promoter for the formation of gas hydrates. Preliminary data suggest that the kinetics also depend strongly on concentration and the isotopic composition. INTRODUCTION particular, time-dependent neutron diffraction at a variety of tem- The crystal structures, thermodynamic models, and engineer- peratures and pressures has been effectively used to research the ing applications of CO2- and CH4-hydrates have been extensively kinetics of gas hydrate formation and dissociation (Henning et al.
    [Show full text]
  • Hydrogen Isotope Exchanges Between Water and Methanol in Interstellar Ices a Faure, M Faure, P Theulé, E Quirico, B Schmitt
    Hydrogen isotope exchanges between water and methanol in interstellar ices A Faure, M Faure, P Theulé, E Quirico, B Schmitt To cite this version: A Faure, M Faure, P Theulé, E Quirico, B Schmitt. Hydrogen isotope exchanges between water and methanol in interstellar ices. Astronomy and Astrophysics - A&A, EDP Sciences, 2015, 584, pp.A98. 10.1051/0004-6361/201526499. hal-01452286 HAL Id: hal-01452286 https://hal.archives-ouvertes.fr/hal-01452286 Submitted on 1 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 584, A98 (2015) Astronomy DOI: 10.1051/0004-6361/201526499 & c ESO 2015 Astrophysics Hydrogen isotope exchanges between water and methanol in interstellar ices A. Faure1,2,M.Faure1,2, P. Theulé3, E. Quirico1,2, and B. Schmitt1,2 1 Univ. Grenoble Alpes, IPAG, 38000 Grenoble, France e-mail: [email protected] 2 CNRS, IPAG, 38000 Grenoble, France 3 Aix-Marseille Université, PIIM UMR-CNRS 7345, 13397 Marseille, France Received 8 May 2015 / Accepted 22 September 2015 ABSTRACT The deuterium fractionation of gas-phase molecules in hot cores is believed to reflect the composition of interstellar ices.
    [Show full text]
  • H/D Exchange Processes in Flavonoids: Kinetics and Mechanistic Investigations
    molecules Article H/D Exchange Processes in Flavonoids: Kinetics and Mechanistic Investigations Federico Bonaldo 1, Fulvio Mattivi 2 , Daniele Catorci 1,†, Panagiotis Arapitsas 3 and Graziano Guella 1,* 1 Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, 38123 Trento, Italy; [email protected] (F.B.); [email protected] (D.C.) 2 Department of Cellular, Computational and Integrative Biology-CIBIO and C3A, University of Trento, 38123 Povo Trento, Italy; [email protected] 3 Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38098 San Michele all’Adige, Italy; [email protected] * Correspondence: [email protected] † D. Catorci passed away on 27 June 2020 while this manuscript was in the latest steps of preparation. Abstract: Several classes of flavonoids, such as anthocyanins, flavonols, flavanols, and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues. Even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D exchange processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.
    [Show full text]
  • Natural Products with Anticancer Activity from Moroccan Plant Thymelaea Lythroides and Its Endophyte Chaetomium Aureum
    Natural Products with anticancer activity from Moroccan plant Thymelaea lythroides and its endophyte Chaetomium aureum Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) und Doktor der Biowissenschaften und der Medizin (Dr.) vorgelegt der Bergischen Universität Wuppertal Fachbereich C – Mathematik und Naturwissenschaften und Mohammed V-Souissi Universität Rabat Fakultät – Medizin und Pharmazie von Fatima Zahra Kabbaj Wuppertal 2013 Aus der Arbeitsgruppe der Organischen Chemie der Bergischen Universität Wuppertal Diese Dissertation kann wie folgt zitiert werden: urn:nbn:de:hbz:468-20140404-113126-9 [http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140404-113126-9] Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fachbereich C der Bergischen Universität Wuppertal und Medizinisch-Pharmazeutischen Fakultät der Mohammed V-Souissi Universität Rabat Referent: Prof. Dr. Hans-Josef Altenbach Koreferent: Prof. Dr. Moulay El Abbes Faouzi Tag der mündlichen Prüfung: 25.11.2013 Erklärung Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation mit dem Titel „Natural Products with anticancer activity from Moroccan plant Thymelaea lythroides and its endophyte Chaetomium aureum“ selbst angefertigt habe. Außer den angegebenen Quellen und Hilfsmitteln wurden keine weiteren verwendet. Diese Dissertation wurde weder in gleicher noch in abgewandelter Form in einem anderen Prüfungsverfahren vorgelegt. Weiterhin erkläre ich, dass ich früher weder akademische Grade erworben habe, noch dies versucht habe. Wuppertal, den 21.10.2013 Fatima Zahra Kabbaj I dedicated this work to my husband and my parents Acknowledgement Acknowledgement First and foremost thanks to the Almighty God “ALLAH” who has granted me all these graces to fulfill this work and blessed me by His power, mercy and patience during my life.
    [Show full text]
  • Towards the Topical Treatment of Psoriasis and Other Skin Diseases
    1 Nanostructured supramolecular hydrogels: 2 towards the topical treatment of Psoriasis and 3 other skin diseases 4 David Limón,a,b* Kirian Talló Domínguez,a María Luisa Garduño,c Berenice Andrade,c Ana C. 5 Calpena b,d and Lluïsa Pérez-Garcíaa,b,e 6 aDepartament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan 7 XXIII 27-31, 08028 Barcelona, Spain. 8 bInstitut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain. 9 cCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 10 1001, Cuernavaca, Morelos, México. 11 dDepartament de Farmàcia, Tecnologia Farmacèutica i Fisicoquímica, Universitat de Barcelona, Av. Joan 12 XXI, 27-31, 08028 Barcelona, Spain. 13 ePresent address: School of Pharmacy, The University of Nottingham, University Park, Nottingham 14 N672RD, United Kingdom. 15 ABSTRACT 16 Supramolecular hydrogels were synthesized using a bis-imidazolium based 17 amphiphile, and incorporating chemically diverse drugs, such as the cytostatics 18 gemcitabine hydrochloride and methotrexate sodium salt, the immunosuppressive 19 drug tacrolimus, as well as the corticoid drugs betamethasone 17-valerate and 20 triamcinolone acetonide, and their potential as drug delivery agents in the dermal 21 treatment of Psoriasis was evaluated. The rheological behavior of gels was studied, 22 showing in all cases suitable viscoelastic properties for topical drug delivery. Scanning 23 electron microscopy (SEM) shows that the drugs included have a great influence on 24 the gel morphology at the microscopic level, as the incorporation of gemcitabine 25 hydrochloride leads to slightly thicker fibers, the incorporation of tacrolimus induces 26 flocculation and spherical precipitates, and the incorporation of methotrexate forms 27 curled fibers.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,874,890 Kato Et Al
    United States Patent (19) 11 Patent Number: 4,874,890 Kato et al. 45 Date of Patent: Oct. 17, 1989 54 PROCESS FOR THE PRODUCTION OF 56 References Cited DEUTERATED METHYL ACRYLATE OR PUBLICATIONS DEUTERATED METHYL METHACRYLATE Atkinson, Joseph G. et al. Chemical Abstracts (1972) 75 Inventors: Masaaki Kato; Tetsuya Uno; Masao #156,509e. Kobayashi; Naoto Osuga, all of Lockley, William J.S. Synth. Appl. Isot, Labeled Compa. Otake, Japan Proc. Int, Symp. (1982) Publ. 1983. 73) Assignee: Mitsubishi Rayon Co., Ltd., Tokyo, Lockley, William J. S. Chemical Abstracts vol. 98 Japan (1983) #215,266a. 21 Appl. No.: 154,485 Primary Examiner-Paul J. Killos 22 Filed: Feb. 8, 1988 Attorney, Agent, or Firm-Armstrong, Nikaido, Marmelstein, Kubovcik & Murray Related U.S. Application Data 57 ABSTRACT 63 Continuation of Ser. No. 807,710, Dec. 11, 1985, aban doned. There is provided the improved process for the produc tion of deutrated methyl acrylate or methacrylate by (30) Foreign Application Priority Data the direct substitution of deuterium for hydrogens in Dec. 21, 1984 JP Japan ................................ 59.270319 methyl acrylate or methacrylate in the presence of a platinum Group metal catalyst. 51 Int, Cl. ...... ... CO7C 69/52 52 U.S. Cl. .................................................... 560/205 58 Field of Search ......................................... 560/205 10 Claims, No Drawings 4,874,890 1. 2 at from room temperature to 300 C., but a temperature PROCESS FOR THE PRODUCTION OF from 50 to 150 C. is preferable from the standpoint o' DEUTERATED METHYL ACRYLATE OR reaction rate as well as the inhibition of side reaction: DEUTERATED METHYL METHACRYLATE and polymerization.
    [Show full text]
  • Hydrogen Isotope Exchanges Between Water and Methanol In
    Astronomy & Astrophysics manuscript no. 26499 c ESO 2018 October 16, 2018 Hydrogen isotope exchanges between water and methanol in interstellar ices A. Faure1,2, M. Faure1,2, P. Theul´e3, E. Quirico1,2, and B. Schmitt1,2 1 Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France 2 CNRS, IPAG, F-38000 Grenoble, France France e-mail: [email protected] 3 Aix-Marseille Universit´e, PIIM UMR-CNRS 7345, F-13397 Marseille, France Received / Accepted ABSTRACT The deuterium fractionation of gas-phase molecules in hot cores is believed to reflect the composition of interstellar ices. The deuter- ation of methanol is a major puzzle, however, because the isotopologue ratio [CH2DOH]/[CH3OD], which is predicted to be equal to 3 by standard grain chemistry models, is much larger ( 20) in low-mass hot corinos and significantly lower ( 1) in high-mass hot cores. This dichotomy in methanol deuteration between∼ low-mass and massive protostars is currently not understood.∼ In this study, we report a simplified rate equation model of the deuterium chemistry occurring in the icy mantles of interstellar grains. We apply this model to the chemistry of hot corinos and hot cores, with IRAS 16293-2422 and the Orion KL Compact Ridge as prototypes, respectively. The chemistry is based on a statistical initial deuteration at low temperature followed by a warm-up phase during which thermal hydrogen/deuterium (H/D) exchanges occur between water and methanol. The exchange kinetics is incorporated using lab- oratory data. The [CH2DOH]/[CH3OD] ratio is found to scale inversely with the D/H ratio of water, owing to the H/D exchange equilibrium between the hydroxyl (-OH) functional groups of methanol and water.
    [Show full text]
  • Part 2. Mechanistic Aspects of the Reduction of S-Alkyl-Thionocarbonates in the Presence of Triethylborane and Air
    Part 2. Mechanistic aspects of the reduction of S-alkyl-thionocarbonates in the presence of triethylborane and air Florent Allais1,2, Jean Boivin*1 and Van Tai Nguyen*1,3 Full Research Paper Open Access Address: Beilstein Journal of Organic Chemistry 2007, 3, No. 46. 1Institut de Chimie des Substances Naturelles, C.N.R.S., Avenue de doi:10.1186/1860-5397-3-46 la Terrasse, 91198 Gif-sur-Yvette, France, 2Institut National de la Recherche Agronomique, Centre de Versailles, Route de St-Cyr, Received: 26 September 2007 78026 Versailles, France and 3National Institute of Medicine Accepted: 12 December 2007 Materials, 3B, Quang Trung, Hanoi, Vietnam Published: 12 December 2007 Email: © 2007 Allais et al; licensee Beilstein-Institut Florent Allais - [email protected]; Jean Boivin* - License and terms: see end of document. [email protected]; Van Tai Nguyen* - [email protected] * Corresponding author Abstract Experiments conducted with deuterated compounds demonstrated that during the reduction of S-alkylxanthates with triethylborane, the hydrogen atom transferred has several competing origins. Hydrogen abstraction from water (or an alcohol) is the most favour- able route. Background In the first part of this series,[1] we showed that trialkylboranes very briefly that when Bu3SnH was omitted, the reduction still and especially commercial solutions of Et3B are efficient redu- occurred. The O-cyclododecyl S-methylxanthate derived from cing agents that permit the conversion, at room temperature, of cyclododecanol afforded cyclododecane in a remarkable 62% S-alkylxanthates, iodides and O-alkylxanthates into the corres- yield. No hypothesis about the origin of the hydrogen atom that ponding alkanes with good to excellent yields.
    [Show full text]
  • Supporting Non-Target Identification by Adding Hydrogen Deuterium Exchange MS/MS Capabilities to Metfrag
    Research Collection Journal Article Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag Author(s): Ruttkies, Christoph; Schymanski, Emma L.; Strehmel, Nadine; Hollender, Juliane; Neumann, Steffen; Williams, Antony J.; Krauss, Martin Publication Date: 2019-07 Permanent Link: https://doi.org/10.3929/ethz-b-000354203 Originally published in: Analytical and Bioanalytical Chemistry 411(19), http://doi.org/10.1007/s00216-019-01885-0 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Analytical and Bioanalytical Chemistry (2019) 411:4683–4700 https://doi.org/10.1007/s00216-019-01885-0 PAPER IN FOREFRONT Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag Christoph Ruttkies1 & Emma L. Schymanski2,3 & Nadine Strehmel1 & Juliane Hollender3,4 & Steffen Neumann1,5 & Antony J. Williams6 & Martin Krauss7 Received: 25 January 2019 /Revised: 8 April 2019 /Accepted: 30 April 2019 /Published online: 17 June 2019 # The Author(s) 2019 Abstract Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is increasingly popular for the non-targeted exploration of complex samples, where tandem mass spectrometry (MS/MS) is used to characterize the structure of unknown compounds. However, mass spectra do not always contain sufficient information to unequivocally identify the correct structure. This study investigated how much additional information can be gained using hydrogen deuterium exchange (HDX) experiments. The exchange of Beasily exchangeable^ hydrogen atoms (connected to heteroatoms), with predominantly [M+D]+ ions in positive mode and [M-D]− in negative mode was observed.
    [Show full text]