Deuteriodesilylation: a Mild and Selective Method for the Site- Specific Incorporation of Deuterium Into Drug Candidates and Pharmaceutical Structures

Total Page:16

File Type:pdf, Size:1020Kb

Deuteriodesilylation: a Mild and Selective Method for the Site- Specific Incorporation of Deuterium Into Drug Candidates and Pharmaceutical Structures DEUTERIODESILYLATION: A MILD AND SELECTIVE METHOD FOR THE SITE- SPECIFIC INCORPORATION OF DEUTERIUM INTO DRUG CANDIDATES AND PHARMACEUTICAL STRUCTURES Kimberly N. Voronin A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Chemistry and Biochemistry University of North Carolina Wilmington 2012 Approved by Advisory Committee Chris V. Galliford Pamela J. Seaton John A. Tyrell Chair Accepted by Dean, Graduate School TABLE OF CONTENTS ABSTRACT ................................................................................................................................... vi ACKNOWLEDGEMENTS .......................................................................................................... vii DEDICATION ............................................................................................................................... ix LIST OF TABLES .......................................................................................................................... x LIST OF FIGURES ...................................................................................................................... xi LIST OF ABBREVIATIONS ...................................................................................................... xiii LIST OF SCHEMES .....................................................................................................................xv CHAPTER 1: INTRODUCTION ....................................................................................................1 Background ......................................................................................................................................1 History of Deuterium ...........................................................................................................2 Kinetic Isotope Effects (KIEs ..............................................................................................4 Primary Kinetic Isotope Effect ............................................................................................6 Secondary Kinetic Isotope Effect ........................................................................................7 Zero Kinetic Isotope Effect ..................................................................................................8 Solvent Effects .....................................................................................................................9 Stable Isotope/Radiolabeling ...........................................................................................................9 Motivation For Use of Deuterium in Pharmaceutical Structures ...................................................11 Methods for Incorporation of Deuterium .......................................................................................14 Addition to Alkynes or Alkenes ........................................................................................15 Reduction of Carbonyl Compounds...................................................................................16 Reduction of Carbon-Halogen Bonds ................................................................................19 ii Protic Exchange Reactions ................................................................................................19 H/D Exchange with D2O Compounds ...............................................................................20 Acid-Catalyzed Exchange Methods ...................................................................................21 Base-Catalyzed Exchange Methods ...................................................................................25 Homogeneous Catalysis of H/D Exchange ....................................................................................27 Iridium Catalyzed-Exchange .............................................................................................28 Platinum Catalyzed-Exchange ...........................................................................................32 Rhodium Catalyzed-Exchange...........................................................................................32 Ruthenium Catalyzed-Exchange ........................................................................................34 Heterogeneous Catalysis of H/D Exchange ...................................................................................35 Palladium Catalyzed-Exchange .........................................................................................37 Platinum Catalyzed-Exchange ...........................................................................................38 Nickel Catalyzed-Exchange ...............................................................................................40 Protiodesilylation for Hydrogen Incorporation and the Proposed Research .........................................................................................................................40 Proposed Research .............................................................................................................40 Survey of Literature Precedent for Protiodesilylation .......................................................42 Organosilanes .................................................................................................................................45 Methods for the Preparation of Organosilicon Compounds ..........................................................45 Synthesis of Alkylsilanes ...................................................................................................47 Synthesis of Alkenylsilanes ...............................................................................................48 Synthesis of Alkynylsilanes ...............................................................................................49 Synthesis of Allylsilanes ....................................................................................................50 Overview of Organosilane Chemistry ...........................................................................................51 iii Silicon -Effect ..................................................................................................................53 Stabilization of -Silyl Anions ..........................................................................................55 Silicon Groups as Latent Anions .......................................................................................56 Reactions of Organosilanes ............................................................................................................57 Peterson Olefination Reaction ...........................................................................................57 Tamao-Fleming Oxidation .................................................................................................58 Hosomi-Sakurai Reaction ..................................................................................................59 Hiyama Coupling Reaction ................................................................................................60 Brook Rearrangement ........................................................................................................61 Epoxidation-Hydrolysis of Vinylsilanes ............................................................................62 Chemistry of Hypervalent Silicates ...............................................................................................63 Nucleophilic Substitution...................................................................................................63 Activation by Lewis Base: Hydride Donor ........................................................................66 Activation Driven by Strain Release Acidity.....................................................................68 Hypervalent Silicates as Lewis Acid Catalysts ..................................................................69 Stereoselective Reactions...............................................................................................................69 Lewis-Base-Catalyzed Allylation Reaction .......................................................................69 Hypervalent Silicates for Hydride Transfer .......................................................................71 Denmark’s Bisphosphoramide Catalyst .............................................................................72 CHAPTER 2: RESULTS AND DISCUSSION .............................................................................75 Selection of a Model Substrate ......................................................................................................75 Survey of Reaction Conditions Using a Model Substrates ............................................................70 Choice of Fluoride Source and Reaction Conditions .....................................................................80 iv Comparison of Protio-and Deuteriodesilylation Kinetics ..............................................................81 Scope of Reaction ..........................................................................................................................83 3 Attempted Deuteration of C(sp )-SiR3 Substrates .........................................................................86 Tritiodesilylation ............................................................................................................................89 CHAPTER 3: CONCLUSION
Recommended publications
  • Effects of Heavy Water (D2O) on Human Pancreatic Tumor Cells
    ANTICANCER RESEARCH 25: 3407-3412 (2005) Effects of Heavy Water (D2O) on Human Pancreatic Tumor Cells JOHANNES HARTMANN1, YVONNE BADER1, ZSUZSANNA HORVATH1, PHILIPP SAIKO1, MICHAEL GRUSCH1, CHRISTOPH ILLMER1, SIBYLLE MADLENER1, MONIKA FRITZER-SZEKERES1, NICOLE HELLER2, RUDOLF-GIESBERT ALKEN2 and THOMAS SZEKERES1 1Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, General Hospital of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; 2BDD Berolina Drug Development GmbH, Fontanestrasse 84-89, D-15366 Neuenhagen, Germany Abstract. Background: Pancreatic cancer constitutes an carcinomas be removed by surgery. Individuals suffering entity which is difficult to treat and, therefore, mostly fatal. from inoperable tumors receive palliative therapy, including Since heavy water (deuterium oxide, D2O) was shown to be chemotherapy and radiation therapy. However, the active in various cancer cell lines in vitro and in vivo, we now treatment options are very limited and most patients die investigated its effects in human pancreatic tumor cells. within months after diagnosis. Materials and Methods: The cytotoxic effects of D2O were Incubation of tumor cells with various concentrations of examined in three pancreatic cancer cell lines (AsPC-1, D2O leads to inhibition of cell proliferation and might, BxPC-3 and PANC-1). Induction of apoptosis was therefore, help in the chemotherapeutic treatment of human determined by Hoechst/propidium iodide double staining and tumors (1). D2O, known as heavy water, contains a neutron cell cycle distribution was investigated by FACS analysis. and a proton in its hydrogen atoms and shows a variety of Results: Employing a clonogenic assay, D2O yielded IC50 different biological activities from normal (light) water.
    [Show full text]
  • Deuterium As a Research Tool in the Physical and Biological Sciences
    DEUTERIUM AS A RESEARCH TOOL IN THE PHYSICAL AND BIOLOGICAL SCIENCES HERRICK L. JOHNSTON Ohio State University The discovery (1) of deuterium and the production of "heavy water," its chief compound, in a nearly pure state (2), are among the more important scientific achievements of recent years. In less than two years from the production of heavy water in nearly pure condition over three hundred papers reporting investigations on or with deuterium have appeared in scientific journals. While most of these investiga- tions have been of a physical or chemical nature significant results have been reported in investigations of biological character. It is probable that the principal role of deuterium, in future research in all of these fields, will be more that of a research tool than as an object of investigation. Deuterium is not a new chemical element, as the name might imply, but is a special variety of hydrogen atom. It differs from the ordinary (or light) hydrogen, chiefly, in mass. The atomic weight of the ordinary hydrogen is one while that of deuterium, or heavy hydrogen, is two. It resembles the ordinary hydrogen atom in possessing just one unit of positive charge on its nucleus (equal to the number of electrons in the neutral atom) and it is this latter property which determines the chemical character of an atom, and hence its position in the family of elements. The existence of atoms which differ in mass although alike in nuclear charge is common among the elements, and atomic species which are related in this manner are called isotopes.
    [Show full text]
  • HEAVY WATER and NONPROLIFERATION Topical Report
    HEAVY WATER AND NONPROLIFERATION Topical Report by MARVIN M. MILLER MIT Energy Laboratory Report No. MIT-EL 80-009 May 1980 COO-4571-6 MIT-EL 80-009 HEAVY WATER AND NONPROLIFERATION Topical Report Marvin M. Miller Energy Laboratory and Department of Nuclear Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139 May 1980 Prepared For THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT NO. EN-77-S-02-4571.A000 NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful- ness of any information, apparatus, product or process disclosed or represents that its use would not infringe privately owned rights. A B S T R A C T The following report is a study of various aspects of the relationship between heavy water and the development of the civilian and military uses of atomic energy. It begins with a historical sketch which traces the heavy water storyfrom its discovery by Harold Urey in 1932 through its coming of age from scientific curiosity to strategic nuclear material at the eve of World War II and finally into the post-war period, where the military and civilian strands have some- times seemed inextricably entangled. The report next assesses the nonproliferation implications of the use of heavy water- moderated power reactors; several different reactor types are discussed, but the focus in on the natural uranium, on- power fueled, pressure tube reactor developed in Canada, the CANDU.
    [Show full text]
  • Tritium Immobilization and Packaging Using Metal Hydrides
    AECL-71S1 ATOMIC ENERGY flPnSy L'ENERGIE ATOMIQUE OF CANADA LIMITED V^^JP DU CANADA LIMITEE TRITIUM IMMOBILIZATION AND PACKAGING USING METAL HYDRIDES Immobilisation et emballage du tritium au moyen d'hydrures de meta! W.J. HOLTSLANDER and J.M. YARASKAVITCH Chalk River Nuclear Laboratories Laboratoires nucl6aires de Chalk River Chalk River, Ontario April 1981 avril ATOMIC ENERGY OF CANADA LIMITED Tritium Immobilization and Packaging Using Metal Hydrides by W.J. Holtslander and J.M. Yaraskavitch Chemical Engineering Branch Chalk River Nuclear Laboratories Chalk River, Ontario KOJ 1J0 1981 April AECL-7151 L'ENERGIE ATOMIQUE DU CANADA, LIMITEE Immo ;ilisation et emballage du tritium au moyen d'hydrures de mëtâT par W.J. Holtslander et J.M. Yaraskavitch Résumé Le tritium provenant des réacteurs CANDU â eau lourde devra être emballé et stocké de façon sûre. Il sera récupéré sous la forme élémentaire T2. Les tritiures de métal sont des composants efficaces pour immobiliser le tritium comme solide non réactif stable et ils peuvent en contenir beaucoup. La technologie nécessaire pour préparer les hydrures des métaux appropriés, comme le titane et le zirconium,a été développée et les propriétés des matériaux préparés ont été évaluées. La conception des emballages devant contenir les tritiures de métal, lors du transport et durant le stockage à long terme, est terminée et les premiers essais ont commencé. Département de génie chimique Laboratoires nucléaires de Chalk River Chalk River, Ontario KOJ 1J0 Avril 1981 AECL-7151 ATOMIC ENERGY OF CANADA LIMITED Tritium Immobilization and Packaging Using Metal Hydrides by W.J. Holtslander and J.M.
    [Show full text]
  • RADIOLYTIC GENERATION of GASES in REACTORS by V
    S 2-8 BAR.C-1438 OO ti*ici tjmn RADIOLYTIC GENERATION OF GASES IN REACTORS by V. Ramshcsh und K. S. Vcnkateswurlu Water Chemistry Division 1988 B.A.R.C. - 1438 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION CO •3- U RADIOLYTIC GENERATION OF GASES IN REACTORS by V. Ramshesh and K.S. Venkateswarlu Water Chemistry Division BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1988 B.A.R.C. - 1438 IN1S Subject Category : B1400; E3100; E3400 Descriptors WATER RADIOLYSIS G VALUE OXYGEN HYDROGEN HYDROGEN PEROXIDE GASES PHV/R TYPE REACTORS BWR TYPE REACTORS GADOLINIUM NITRATES BORIC ACID ABSTRACT Water or heavy water is used in different circuits in a reactor.Their most common use is as a moderator and/or as a coolant.Light water is used at other places such as in end shield,calandria vault etc,.In the process they are exposed to intense ionizing radiation and undergo radiolytic degradation.The molecular products of radiolysis are hydrogen,hydrogen peroxide and oxygen.As is commonly known if hydrogen is formed beyond a certain level,in the presence of oxygen it may lead to combustion or even explosion.Thus one should comprehend the basic principles of radiolysis and see whether the concentration of these gases under various conditions can be worked out.This report attempts to analyse in depth the radiolytic generation of gases in reactor systems. RADIOLYTIC GENERATION OF GASES IN REACTORS BY V.Ramshesh and K.S.Venkateswarlu \ 1.PRODUCTS OF RADIOLYSIS \ When water* is exposed to radiation,the first step is the production of excited water molecules which then
    [Show full text]
  • Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry
    Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry Dedication To Steve Örebro Studies in Chemistry 19 NICOLE RIDDELL Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry © Nicole Riddell, 2017 Title: Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry Publisher: Örebro University 2017 www.publications.oru.se Print: Örebro University, Repro 04/2017 ISSN 1651-4270 ISBN 978-91-7529-184-0 Abstract Nicole Riddell (2017): Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry. Örebro Studies in Chemistry 19. Although gas and liquid chromatography have emerged as dominant separation techniques in environmental analytical chemistry, these methods do not allow for the concurrent analysis of chemically diverse groups of persistent organic pollutants (POPs). There are also a small number of compounds which are not easily amenable to either of these traditional separation techniques. The main objective of this thesis was to address these issues by demonstrating the applicability of packed col- umn supercritical fluid chromatography (pSFC) coupled to mass spec- trometry (MS) in various aspects of environmental chemistry. First, pSFC/MS analytical methods were developed for legacy POPs (PCDDs, PCDFs, and PCBs) as well as the emerging environmental con- taminant Dechlorane Plus (DP), and issues relating to the ionization of target analytes when pSFC was coupled to MS were explored. Novel APPI and APCI reagents (fluorobenzene and triethylamine) were opti- mized and real samples (water and soil) were analyzed to demonstrate environmental applicability. The possibility of chiral and preparative scale pSFC separations was then demonstrated through the isolation and characterization of ther- mally labile hexabromocyclododecane (HBCDD) stereoisomers. The analytical pSFC separation of the α-, β-, and γ-HBCDD enantiomers as well as the δ and ε meso forms was shown to be superior to results ob- tained using a published LC method.
    [Show full text]
  • A New Generation of Chemical Sensors
    A New Generation of Chemical Sensors Dr Simon Humphrey Sam Dunning A NEW GENERATION OF CHEMICAL SENSORS Dr Simon Humphrey and Sam Dunning at the University of Texas at Austin have created a new lanthanide-based chemical sensor that can identify trace levels of water in many different solvents, and can even distinguish between normal water and ‘heavy water’. The team’s new material could potentially be applied to medical imaging and for cleaning up chemical spills. Lanthanides – the Ideal Due to their light-emitting – or This means that lanthanide-based Photoemitters ‘photoluminescent’ – properties, chemical sensors can be tuned to detect molecules containing lanthanide a specific impurity. From your schooldays, you may (Ln) ions (charged atoms) have been remember using universal indicator or increasingly explored as chemical Exciting Lanthanides litmus paper to measure pH. While sensors. The term ‘lanthanide’ refers these simple tests are well known and to the group of elements with atomic For an element to exhibit widely available, more sophisticated numbers 57 to 71, from lanthanum (La) photoluminescence, it must first chemical sensors are needed to to lutetium (Lu). When grouped together become ‘excited’ by absorbing light help tackle issues such as cleaning with the chemically similar elements energy. However, lanthanide ions are up chemical spills, remediating yttrium and scandium, you may have difficult to excite by directly absorbing old industrial sites, and detecting heard them described as ‘rare earth light. In a molecule, excitation of radioactive contamination in water elements’, and they have applications lanthanide ions is commonly achieved supplies. Although many techniques are in electronics, high-strength magnets by surrounding them with light- available for these applications, very and catalysis.
    [Show full text]
  • Interferometric Observations of Warm Deuterated Methanol in the Inner Regions of Low- Mass Protostars
    Interferometric observations of warm deuterated methanol in the inner regions of low- mass protostars Taquet, V; Bianchi, E.; Codella, C.; Persson, M., V; Ceccarelli, C.; Cabrit, S.; Jorgensen, J. K.; Kahane, C.; Lopez-Sepulcre, A.; Neri, R. Published in: Astronomy & Astrophysics DOI: 10.1051/0004-6361/201936044 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC Citation for published version (APA): Taquet, V., Bianchi, E., Codella, C., Persson, M. V., Ceccarelli, C., Cabrit, S., Jorgensen, J. K., Kahane, C., Lopez-Sepulcre, A., & Neri, R. (2019). Interferometric observations of warm deuterated methanol in the inner regions of low-mass protostars. Astronomy & Astrophysics, 632, [A19]. https://doi.org/10.1051/0004- 6361/201936044 Download date: 02. Oct. 2021 A&A 632, A19 (2019) https://doi.org/10.1051/0004-6361/201936044 Astronomy & © ESO 2019 Astrophysics Interferometric observations of warm deuterated methanol in the inner regions of low-mass protostars? V. Taquet1, E. Bianchi2,1, C. Codella1,2, M. V. Persson3, C. Ceccarelli2, S. Cabrit4, J. K. Jørgensen5, C. Kahane2, A. López-Sepulcre2,6, and R. Neri6 1 INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy e-mail: [email protected] 2 IPAG, Université Grenoble Alpes, CNRS, 38000 Grenoble, France 3 Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden 4 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Université Paris 06, 75014 Paris, France 5 Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K., Denmark 6 Institut de Radioastronomie Millimétrique, 38406 Saint-Martin d’Hères, France Received 7 June 2019 / Accepted 19 September 2019 ABSTRACT Methanol is a key species in astrochemistry because it is the most abundant organic molecule in the interstellar medium and is thought to be the mother molecule of many complex organic species.
    [Show full text]
  • Methanol—Inhibitor Or Promoter of the Formation of Gas Hydrates from Deuterated Ice?
    BOBEV AND TAIT: METHANOL—INHIBITOR OR PROMOTER? 1209 American Mineralogist, Volume 89, pages 1208–1214, 2004 Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice? SVILEN BOBEV* AND KIMBERLY T. TAIT Manuel Lujan Jr. Neutron Scattering Center, LANSCE 12 MS H805, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A. ABSTRACT Kinetic studies are reported of the effect of methanol on the rate of formation of CO2- and CH4-hy- drates by means of in situ time-of-flight neutron powder diffraction. The experiments were carried out at temperatures ranging from 200 to 250 K and pressures up to 7 MPa. The samples were prepared from mixtures of ground, deuterated ice and deuterated methanol (up to 20 vol%), which were transformed in situ into CO2- or CH4-hydrates by pressurizing the systems with the corresponding gas. The observed rates of formation of hydrates are orders of magnitude higher than the rate of formation from pure deuterated ice under the same pressure and temperature conditions. Glycols and alcohols, methanol in particular, are long known as thermodynamic inhibitors of hydrate formation. Our study indicates that methanol can also act as a kinetic promoter for the formation of gas hydrates. Preliminary data suggest that the kinetics also depend strongly on concentration and the isotopic composition. INTRODUCTION particular, time-dependent neutron diffraction at a variety of tem- The crystal structures, thermodynamic models, and engineer- peratures and pressures has been effectively used to research the ing applications of CO2- and CH4-hydrates have been extensively kinetics of gas hydrate formation and dissociation (Henning et al.
    [Show full text]
  • Heavy-Water Production Using Amine-Hydrogen Exchange
    HEAVY-WATER PRODUCTION USING AMINE-HYDROGEN EXCHANGE Development of the amine-hydrogen process for heavy-water production involves a large research and development program at CRNL supplemented by contracts with industry and universities. Four major areas of work are: — process design and optimization — process chemistry — deuterium exchange in gas-liquid contactors — materials for construction This article, which is the third in a series to appear in this publication, describes the development of equipment for efficient exchange of deuterium between hydrogen gas and amine liquid. The process flowsheet and the chemistry of aminomethane solu- tions of potassium methylamide catalyst were described previously^ >2). Efficient countercurrent, multistage contacting of liquid amine and hydrogen gas in hot and cold towers are required in this process. The unusually large separation factors possible with amine-hydrogen exchange are an important advantage. A major development program is aimed at the full exploitation of this advantage by achieving rapid exchange in the cold tower. Increasing the difference between the hot and cold tower temperatures decreases the required gas flow rate and number of theoretical plates. As the cold tower temperature is lowered plate efficiency falls, tower fabrication is more expensive and refrigeration costs rise; the range of interest is -100 to 0°F. The upper limit on hot column temperature is set by the vapor pressure of the aminomethane and chemical stability of the catalyst solution. Temperatures up to 160°F are attractive. The exchange reaction HD + CH3NH2 „ » H2 + CH3NHD occurs in the liquid phase a^d consists/of two steps: physical absorption and chemical ^reaction. Mass transfer is controlled by the diffusion of hydrogen in a thin liquid reaction zone near the gas-liquid interface.
    [Show full text]
  • Hydrogen Isotope Exchanges Between Water and Methanol in Interstellar Ices a Faure, M Faure, P Theulé, E Quirico, B Schmitt
    Hydrogen isotope exchanges between water and methanol in interstellar ices A Faure, M Faure, P Theulé, E Quirico, B Schmitt To cite this version: A Faure, M Faure, P Theulé, E Quirico, B Schmitt. Hydrogen isotope exchanges between water and methanol in interstellar ices. Astronomy and Astrophysics - A&A, EDP Sciences, 2015, 584, pp.A98. 10.1051/0004-6361/201526499. hal-01452286 HAL Id: hal-01452286 https://hal.archives-ouvertes.fr/hal-01452286 Submitted on 1 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 584, A98 (2015) Astronomy DOI: 10.1051/0004-6361/201526499 & c ESO 2015 Astrophysics Hydrogen isotope exchanges between water and methanol in interstellar ices A. Faure1,2,M.Faure1,2, P. Theulé3, E. Quirico1,2, and B. Schmitt1,2 1 Univ. Grenoble Alpes, IPAG, 38000 Grenoble, France e-mail: [email protected] 2 CNRS, IPAG, 38000 Grenoble, France 3 Aix-Marseille Université, PIIM UMR-CNRS 7345, 13397 Marseille, France Received 8 May 2015 / Accepted 22 September 2015 ABSTRACT The deuterium fractionation of gas-phase molecules in hot cores is believed to reflect the composition of interstellar ices.
    [Show full text]
  • Australian Atomic Energy Commission Research Establishment Lucas Heights
    AAEC/TM562 es u UJ AUSTRALIAN ATOMIC ENERGY COMMISSION RESEARCH ESTABLISHMENT LUCAS HEIGHTS HEAVY WATER PRODUCTION - A REVIEW OF PROCESSES by D.M. LEVINS September 1970 ISBN 0 642 99376 9 AUSTRALIAN ATOMIC ENERGY COMMISSION RESEARCH ESTABLISHMENT LUCAS HEIGHTS HEAVY WATER PRODUCTION - A REVIEW OF PROCESSES D. M. LEVINS ABSTRACT Methods of heavy water production are examined in detail. Processes based on chemical exchange have the greatest potential for further development but distillation, electrolytic and chromatographic methods are also discussed. i In the immediate future most of the world output of heavy water will be produced by hydrogen sulphide/water exchange (the GS process) but there is limited scope for further reduction in GS production costs. Recent advances in process development make the ammonia/hydrogen route an attractive alternative since the enrichment obtainable in each stage is greater while the energy consumption is less. A variation of the ammonia/hydrogen scheme involving the use of amines as additives to, or substitutes for ammonia also appears promising. The greatest obstacle to the development of either the ammonia/hydrogen or amine/hydrogen schemes on a large scale is the limitation on the supply of hydrogen. Ammonia synthesis gas is currently the most plentiful supply available continued... CONTENTS ABSTRACT (continued) Page 1. INTRODUCTION 1 but 1500 tonnes/day of ammonia capacity is needed for each 100 tonnes of heavy 2. SOURCES OF DEUTERIUM 1 water produced annually. Unlimited production could be achieved using an equilibration stage in which hydrogen depleted in deuterium is exchanged with 3. WORLD PRODUCTION AND DEMAND FOR HEAVY WATER 2 water at high temperature.
    [Show full text]