Measuring Methods Available and Examples of Their Applications 1H NMR (Proton Nuclear Magnetic Resonance) the Most Basic Experim

Total Page:16

File Type:pdf, Size:1020Kb

Measuring Methods Available and Examples of Their Applications 1H NMR (Proton Nuclear Magnetic Resonance) the Most Basic Experim Measuring methods available and examples of their applications 1H NMR (Proton nuclear magnetic resonance) The most basic experiment is a simple one-dimensional proton NMR spectrum. 1H NMR is a suitable method for purity control, analysis of mixtures and confirmation of molecular structure. It is widely used in the pharmaceutical, medical, and food industries for quality control. The experiment is highly sensitive and measurement time is short. Simple NMR spectra are recorded in solution, and solvent protons must not be allowed to interfere. Deuterated (symbolized as D) solvents for the specific use in NMR are preferred. The most common solvents used include deuterated water, D2O, deuterated acetone, (CD3)2CO, deuterated methanol, CD3OD, deuterated dimethyl sulfoxide, (CD3)2SO, and deuterated chloroform, CDCl3. Approximate minimal concentrations of samples are 0.1 mM for 1H (corresponding 0.015 mg, based on molecular weight 300 and sample volume 0.5 ml). Deuterated solvents permit the use of deuterium frequency-field lock (deuterium lock) to eliminate the effect of the natural drift of the NMR's magnetic field . Proton NMR spectra of most organic compounds are characterized by chemical shifts in the range +15 to -4 ppm and by spin-spin coupling between protons. The integration curve for each proton reflects the abundance of the individual protons. Fig. 1. 1H NMR spectrum of Strychnine in DMSO-d6 with assignment One example of the many applications shows detection of methanol in an alcoholic beverage below. Maximum allowable content of methanol in alcoholic beverages is specified by the Regulation (EC) No. 110/2008; for example, 12 g of methanol per 1 l of ethanol for most fruit distillates. Fig. 2. 1H NMR spectrum of fruit distillate, time of analysis approx. 5 min. .
Recommended publications
  • Chloroform 18.08.2020.Pdf
    Chloroform Chloroform, or trichloromethane, is an organic compound with formula CHCl3. It is a colorless, sweet-smelling, dense liquid that is produced on a large scale as a precursor to PTFE. It is also a precursor to various refrigerants. It is one of the four chloromethanes and a trihalomethane. It is a powerful anesthetic, euphoriant, anxiolytic and sedative when inhaled or ingested. Formula: CHCl₃ IUPAC ID: Trichloromethane Molar mass: 119.38 g/mol Boiling point: 61.2 °C Density: 1.49 g/cm³ Melting point: -63.5 °C The molecule adopts a tetrahedral molecular geometry with C3v symmetry. Chloroform volatilizes readily from soil and surface water and undergoes degradation in air to produce phosgene, dichloromethane, formyl chloride, carbon monoxide, carbon dioxide, and hydrogen chloride. Its half-life in air ranges from 55 to 620 days. Biodegradation in water and soil is slow. Chloroform does not significantly bioaccumulate in aquatic organisms. Production:- In industry production, chloroform is produced by heating a mixture of chlorine and either chloromethane (CH3Cl) or methane (CH4). At 400–500 °C, a free radical halogenation occurs, converting these precursors to progressively more chlorinated compounds: CH4 + Cl2 → CH3Cl + HCl CH3Cl + Cl2 → CH2Cl2 + HCl CH2Cl2 + Cl2 → CHCl3 + HCl Chloroform undergoes further chlorination to yield carbon tetrachloride (CCl4): CHCl3 + Cl2 → CCl4 + HCl The output of this process is a mixture of the four chloromethanes (chloromethane, dichloromethane, chloroform, and carbon tetrachloride), which can then be separated by distillation. Chloroform may also be produced on a small scale via the haloform reaction between acetone and sodium hypochlorite: 3 NaClO + (CH3)2CO → CHCl3 + 2 NaOH + CH3COONa Deuterochloroform[ Deuterated chloroform is an isotopologue of chloroform with a single deuterium atom.
    [Show full text]
  • Report on Characterisation of New Psychoactive Substances (NPS)
    Report on characterisation of New Psychoactive Substances (NPS) Identification and characterisation of new drugs including physicochemical properties F. Reniero, J. Lobo Vicente, H. Chassaigne, M. Holland, S. Tirendi, K. Kolar , and C. Guillou 2014 European Commission Joint Research Centre Institute for Health & Consumers Protection Contact information Fabiano Reniero Address: Joint Research Centre, Via Enrico Fermi 2749, TP 281, 21027 Ispra (VA), Italy E-mail: [email protected] Tel.: +39 0332 78 9116 https://ec.europa.eu/jrc https://ec.europa.eu/jrc/en/institutes/ihcp / Legal Notice This publication is a Science and Policy Report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. All images © European Union 2014 JRC92322 © European Union, 2014 Reproduction is authorised provided the source is acknowledged. Abstract Implementation of the REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on new psychoactive substances within the context of legislative controls on the illicit drugs market requires that enforcement laboratories be provided with fit- for-purpose bio-analytical methods. The aim is to responding to new challenges in the illicit drugs market, where a rapid increase in number and availability of New Psychoactive Substances (NPS) including the combination of licit substances, such as alcohol and prescribed controlled medication, and illicit substances, are faced.
    [Show full text]
  • Arxiv:0801.0028V1 [Physics.Atom-Ph] 29 Dec 2007 § ‡ † (People’S China Metrology, Of) of Lic Institute Canada National Council, Zhang, Research Z
    CODATA Recommended Values of the Fundamental Physical Constants: 2006∗ Peter J. Mohr†, Barry N. Taylor‡, and David B. Newell§, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420, USA (Dated: March 29, 2012) This paper gives the 2006 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. Further, it describes in detail the adjustment of the values of the constants, including the selection of the final set of input data based on the results of least-squares analyses. The 2006 adjustment takes into account the data considered in the 2002 adjustment as well as the data that became available between 31 December 2002, the closing date of that adjustment, and 31 December 2006, the closing date of the new adjustment. The new data have led to a significant reduction in the uncertainties of many recommended values. The 2006 set replaces the previously recommended 2002 CODATA set and may also be found on the World Wide Web at physics.nist.gov/constants. Contents 3. Cyclotron resonance measurement of the electron relative atomic mass Ar(e) 8 Glossary 2 4. Atomic transition frequencies 8 1. Introduction 4 1. Hydrogen and deuterium transition frequencies, the 1. Background 4 Rydberg constant R∞, and the proton and deuteron charge radii R , R 8 2. Time variation of the constants 5 p d 1. Theory relevant to the Rydberg constant 9 3. Outline of paper 5 2. Experiments on hydrogen and deuterium 16 3.
    [Show full text]
  • Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry
    Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry Dedication To Steve Örebro Studies in Chemistry 19 NICOLE RIDDELL Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry © Nicole Riddell, 2017 Title: Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry Publisher: Örebro University 2017 www.publications.oru.se Print: Örebro University, Repro 04/2017 ISSN 1651-4270 ISBN 978-91-7529-184-0 Abstract Nicole Riddell (2017): Packed Column Supercritical Fluid Chromatography: Applications in Environmental Chemistry. Örebro Studies in Chemistry 19. Although gas and liquid chromatography have emerged as dominant separation techniques in environmental analytical chemistry, these methods do not allow for the concurrent analysis of chemically diverse groups of persistent organic pollutants (POPs). There are also a small number of compounds which are not easily amenable to either of these traditional separation techniques. The main objective of this thesis was to address these issues by demonstrating the applicability of packed col- umn supercritical fluid chromatography (pSFC) coupled to mass spec- trometry (MS) in various aspects of environmental chemistry. First, pSFC/MS analytical methods were developed for legacy POPs (PCDDs, PCDFs, and PCBs) as well as the emerging environmental con- taminant Dechlorane Plus (DP), and issues relating to the ionization of target analytes when pSFC was coupled to MS were explored. Novel APPI and APCI reagents (fluorobenzene and triethylamine) were opti- mized and real samples (water and soil) were analyzed to demonstrate environmental applicability. The possibility of chiral and preparative scale pSFC separations was then demonstrated through the isolation and characterization of ther- mally labile hexabromocyclododecane (HBCDD) stereoisomers. The analytical pSFC separation of the α-, β-, and γ-HBCDD enantiomers as well as the δ and ε meso forms was shown to be superior to results ob- tained using a published LC method.
    [Show full text]
  • NMR Chemical Shifts of Common Laboratory Solvents As Trace Impurities
    7512 J. Org. Chem. 1997, 62, 7512-7515 NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E. Gottlieb,* Vadim Kotlyar, and Abraham Nudelman* Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel Received June 27, 1997 In the course of the routine use of NMR as an aid for organic chemistry, a day-to-day problem is the identifica- tion of signals deriving from common contaminants (water, solvents, stabilizers, oils) in less-than-analyti- cally-pure samples. This data may be available in the literature, but the time involved in searching for it may be considerable. Another issue is the concentration dependence of chemical shifts (especially 1H); results obtained two or three decades ago usually refer to much Figure 1. Chemical shift of HDO as a function of tempera- more concentrated samples, and run at lower magnetic ture. fields, than today’s practice. 1 13 We therefore decided to collect H and C chemical dependent (vide infra). Also, any potential hydrogen- shifts of what are, in our experience, the most popular bond acceptor will tend to shift the water signal down- “extra peaks” in a variety of commonly used NMR field; this is particularly true for nonpolar solvents. In solvents, in the hope that this will be of assistance to contrast, in e.g. DMSO the water is already strongly the practicing chemist. hydrogen-bonded to the solvent, and solutes have only a negligible effect on its chemical shift. This is also true Experimental Section for D2O; the chemical shift of the residual HDO is very NMR spectra were taken in a Bruker DPX-300 instrument temperature-dependent (vide infra) but, maybe counter- (300.1 and 75.5 MHz for 1H and 13C, respectively).
    [Show full text]
  • Deuteriodesilylation: a Mild and Selective Method for the Site- Specific Incorporation of Deuterium Into Drug Candidates and Pharmaceutical Structures
    DEUTERIODESILYLATION: A MILD AND SELECTIVE METHOD FOR THE SITE- SPECIFIC INCORPORATION OF DEUTERIUM INTO DRUG CANDIDATES AND PHARMACEUTICAL STRUCTURES Kimberly N. Voronin A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Chemistry and Biochemistry University of North Carolina Wilmington 2012 Approved by Advisory Committee Chris V. Galliford Pamela J. Seaton John A. Tyrell Chair Accepted by Dean, Graduate School TABLE OF CONTENTS ABSTRACT ................................................................................................................................... vi ACKNOWLEDGEMENTS .......................................................................................................... vii DEDICATION ............................................................................................................................... ix LIST OF TABLES .......................................................................................................................... x LIST OF FIGURES ...................................................................................................................... xi LIST OF ABBREVIATIONS ...................................................................................................... xiii LIST OF SCHEMES .....................................................................................................................xv CHAPTER 1: INTRODUCTION ....................................................................................................1
    [Show full text]
  • 8.1 - FT-NMR Sample Preparation Guide
    8.1 - FT-NMR Sample Preparation Guide Overview: 1 A good H NMR sample contains about 10 mg of compound. The solution should contain no solids or paramagnetic impurities. Your deuterated NMR solvent should be free of water, and your NMR spectrum should contain no solvent peaks. Reference: Zubrick CH 35 and Mohrig CH 21 are relatively useful, but you should follow the specifics in this handout. Also, keep in mind, we won't be running continuous wave spectrometers, so you should disregard any discussion of them. NMR Solvents: Typical deuterated solvents include chloroform (CDCl3), water (D2O), benzene (C6D6), acetone (CD3COCD3), acetonitrile (CD3CN), and tetrahydrofuran (C4D8O). Chloroform is by far the most popular and will be used exclusively in 5.301. The TA will prepare the bottle of CDCl3 that you will use for the course. In the future, when you purchase bottles of CDCl3, you will have to prepare them for use. There are typically three things that must be done before your deuterated chloroform is ready for the NMR. First, a few drops of a standard (tetramethylsilane (TMS)) are usually added. Second, any residual water in the solvent is removed by the addition of activated 4 Ångstrom molecular sieves. Third, the acidic nature of the CDCl3 (and the molecular sieves) is sometimes neutralized by the addition of anhydrous, granular K2CO3 (a weak base). The chloroform that we will use in 5.301 has been treated with molecular sieves and TMS has been added, but, since we won't use any acid sensitive compounds, K2CO3 has not been added.
    [Show full text]
  • Interferometric Observations of Warm Deuterated Methanol in the Inner Regions of Low- Mass Protostars
    Interferometric observations of warm deuterated methanol in the inner regions of low- mass protostars Taquet, V; Bianchi, E.; Codella, C.; Persson, M., V; Ceccarelli, C.; Cabrit, S.; Jorgensen, J. K.; Kahane, C.; Lopez-Sepulcre, A.; Neri, R. Published in: Astronomy & Astrophysics DOI: 10.1051/0004-6361/201936044 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC Citation for published version (APA): Taquet, V., Bianchi, E., Codella, C., Persson, M. V., Ceccarelli, C., Cabrit, S., Jorgensen, J. K., Kahane, C., Lopez-Sepulcre, A., & Neri, R. (2019). Interferometric observations of warm deuterated methanol in the inner regions of low-mass protostars. Astronomy & Astrophysics, 632, [A19]. https://doi.org/10.1051/0004- 6361/201936044 Download date: 02. Oct. 2021 A&A 632, A19 (2019) https://doi.org/10.1051/0004-6361/201936044 Astronomy & © ESO 2019 Astrophysics Interferometric observations of warm deuterated methanol in the inner regions of low-mass protostars? V. Taquet1, E. Bianchi2,1, C. Codella1,2, M. V. Persson3, C. Ceccarelli2, S. Cabrit4, J. K. Jørgensen5, C. Kahane2, A. López-Sepulcre2,6, and R. Neri6 1 INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy e-mail: [email protected] 2 IPAG, Université Grenoble Alpes, CNRS, 38000 Grenoble, France 3 Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden 4 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Université Paris 06, 75014 Paris, France 5 Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K., Denmark 6 Institut de Radioastronomie Millimétrique, 38406 Saint-Martin d’Hères, France Received 7 June 2019 / Accepted 19 September 2019 ABSTRACT Methanol is a key species in astrochemistry because it is the most abundant organic molecule in the interstellar medium and is thought to be the mother molecule of many complex organic species.
    [Show full text]
  • Methanol—Inhibitor Or Promoter of the Formation of Gas Hydrates from Deuterated Ice?
    BOBEV AND TAIT: METHANOL—INHIBITOR OR PROMOTER? 1209 American Mineralogist, Volume 89, pages 1208–1214, 2004 Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice? SVILEN BOBEV* AND KIMBERLY T. TAIT Manuel Lujan Jr. Neutron Scattering Center, LANSCE 12 MS H805, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A. ABSTRACT Kinetic studies are reported of the effect of methanol on the rate of formation of CO2- and CH4-hy- drates by means of in situ time-of-flight neutron powder diffraction. The experiments were carried out at temperatures ranging from 200 to 250 K and pressures up to 7 MPa. The samples were prepared from mixtures of ground, deuterated ice and deuterated methanol (up to 20 vol%), which were transformed in situ into CO2- or CH4-hydrates by pressurizing the systems with the corresponding gas. The observed rates of formation of hydrates are orders of magnitude higher than the rate of formation from pure deuterated ice under the same pressure and temperature conditions. Glycols and alcohols, methanol in particular, are long known as thermodynamic inhibitors of hydrate formation. Our study indicates that methanol can also act as a kinetic promoter for the formation of gas hydrates. Preliminary data suggest that the kinetics also depend strongly on concentration and the isotopic composition. INTRODUCTION particular, time-dependent neutron diffraction at a variety of tem- The crystal structures, thermodynamic models, and engineer- peratures and pressures has been effectively used to research the ing applications of CO2- and CH4-hydrates have been extensively kinetics of gas hydrate formation and dissociation (Henning et al.
    [Show full text]
  • H−C Interaction in the Presence of “Stronger” Hydrogen Bond Acceptors: Crystallographic, Computational, and IR Studies Cody Ross Pitts, Maxime A
    Note pubs.acs.org/joc Intermolecular Aliphatic C−F···H−C Interaction in the Presence of “Stronger” Hydrogen Bond Acceptors: Crystallographic, Computational, and IR Studies Cody Ross Pitts, Maxime A. Siegler, and Thomas Lectka* Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States *S Supporting Information ABSTRACT: An unprecedented intermolecular aliphatic C−F···H−C inter- action was observed in the X-ray crystal structure of a fluorinated triterpenoid. Despite the notion of fluorine being a poor acceptor, computational and IR studies revealed this interaction to be a weak to moderate hydrogen bond with aC−H stretch vibration frequency blue-shifted by 14 cm−1 and d(F−H) = 2.13 Å. In addition, the aliphatic C−F bond is the preferred acceptor in the presence of multiple, traditionally stronger oxygen-based hydrogen bond acceptors. he definition of “hydrogen bond” in X−H···Y interactions has evolved from the traditional (X and Y being strictly T − electronegative elements, for example, O and N)1 3 to the incorporation of such “nonclassical” interactions as C− − − H···π,4 6 C−H···Y,7 9 and O−H···π.10,11 Today, it is widely accepted that there is a large continuum of hydrogen bonds whereby seemingly weaker or atypical interactions are encompassed, as well. Many of these nonclassical (weak) interactions are known to exert notable impacts on biological systems, catalysis, and crystal formation.12 One of the more Figure 1. C−F···H−C interaction observed in the presence of controversial nonclassical interactions has been the C−F···H− traditionally stronger oxygen-based hydrogen bond acceptors.
    [Show full text]
  • Effect of Deuterated Solvents on the Excited State Photophysical Properties of Curcumin
    Journal of Photoscience (2004), Vol. 11(3), pp. 95-99 Effect of Deuterated Solvents on the Excited State Photophysical Properties of Curcumin A. Barika, N. K. Goelb, K. I. Priyadarsinia and Hari Mohana* aRadiation Chemistry & Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India. bRadiation Technology Development Section, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India. Optical absorption and emission studies have been carried out to understand the effect of deuterium on the solvent dependent photophysical properties of curcumin in deuterated solvents such as CDCl3, (CD3)2SO, (CD3)2CO, CD3OD and CD3CN. Optical absorption spectral studies showed that there is no significant shift in absorption maxima compared to the non-deuterated solvent. The fluorescence maxima shows significant shift with polarity of solvent but not much affected by the deuteration. The fluorescence quantum yield of curcumin increased marginally in almost all the deuterated solvents, indicating reduction in the non-radiative pathways. The fluorescence decay was biexponential in all the solvents and the average fluorescence lifetime was not much affected with deuteration, but showed decrease with increasing solvent polarity. Based on these studies, it is concluded that intermolecular hydrogen transfer is only partially responsible for the excited state deactivation of curcumin. key words: Curcumin; Deuterated solvents; Photophysical properties INTRODUCTION Curcumin, bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene- 3,5-dione (structure given in scheme 1), is a yellow pigment found in the rhizomes of Curcuma longa, popularly known as turmeric. The antibacterial activity of curcumin is greatly enhanced by light [1-3]. The photoproducts of curcumin are not toxic, therefore the toxicity is due to the excited state of curcumin [4].
    [Show full text]
  • Hydrogen Isotope Exchanges Between Water and Methanol in Interstellar Ices a Faure, M Faure, P Theulé, E Quirico, B Schmitt
    Hydrogen isotope exchanges between water and methanol in interstellar ices A Faure, M Faure, P Theulé, E Quirico, B Schmitt To cite this version: A Faure, M Faure, P Theulé, E Quirico, B Schmitt. Hydrogen isotope exchanges between water and methanol in interstellar ices. Astronomy and Astrophysics - A&A, EDP Sciences, 2015, 584, pp.A98. 10.1051/0004-6361/201526499. hal-01452286 HAL Id: hal-01452286 https://hal.archives-ouvertes.fr/hal-01452286 Submitted on 1 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 584, A98 (2015) Astronomy DOI: 10.1051/0004-6361/201526499 & c ESO 2015 Astrophysics Hydrogen isotope exchanges between water and methanol in interstellar ices A. Faure1,2,M.Faure1,2, P. Theulé3, E. Quirico1,2, and B. Schmitt1,2 1 Univ. Grenoble Alpes, IPAG, 38000 Grenoble, France e-mail: [email protected] 2 CNRS, IPAG, 38000 Grenoble, France 3 Aix-Marseille Université, PIIM UMR-CNRS 7345, 13397 Marseille, France Received 8 May 2015 / Accepted 22 September 2015 ABSTRACT The deuterium fractionation of gas-phase molecules in hot cores is believed to reflect the composition of interstellar ices.
    [Show full text]