NMR Spectroscopy Introduction NMR Spectroscopy Is an Analytical Method for Determining the Structure of Organic Compounds

Total Page:16

File Type:pdf, Size:1020Kb

NMR Spectroscopy Introduction NMR Spectroscopy Is an Analytical Method for Determining the Structure of Organic Compounds NMR Spectroscopy Introduction NMR Spectroscopy is an analytical method for determining the structure of organic compounds. Specifically, NMR spectroscopy provides information about the carbon skeleton of an organic molecule. Only elements with an odd number of protons or neutrons in its nucleus can be analyzed by NMR spectroscopy. The most useful type of NMR analyses are proton (1H) and carbon-13 (13C) NMR spectroscopy (Carbon-13 is an isotope of the more naturally abundant carbon 12). We will only study proton NMR spectroscopy. In proton NMR spectroscopy, only H atoms give rise to peaks in the spectrum. Sample Preparation Samples (both solids and liquids) for one-dimensional NMR spectroscopic analysis are usually dissolved in a solvent. Only organic solvents which do not contain H atoms can be used in NMR spectroscopy, otherwise peaks from the solvent will appear in the spectrum. Frequently, deuterated organic solvents are used, which means all of the H atoms of those solvents are replaced by deuterium, the 2H isotope of H, which is not detectable in NMR spectroscopy. Some common solvents that are used for NMR spectroscopic analysis are listed in Table 6.3. Compounds must be completely soluble in the solvent for NMR analysis. Solvent Molecular Formula Carbon tetrachloride CCl4 Deuterated chloroform CDCl3 Deuterated acetone CD6O Deuterated dimethylsulfoxide (DMSO) CD6SO Deuterated methanol CD3OD Table 6.3: Common Solvents Used for NMR Analysis Appearance of the Proton NMR Spectrum Shown below in Figure 6.1 is a typical, one-dimensional proton NMR spectrum. (The term “spectrum” is the singular form of the word; “spectra” is the plural form of the word.) Two-dimensional spectra or NMR spectra of other atoms (i.e., 13C ) look different. For proton NMR, “peaks” originate from the baseline of the spectrum. Only the H atoms of an organic molecule give rise to peaks in a proton NMR spectrum. Peaks appear at different positions along the baseline (horizontal axis, frequency) depending on what type of H atom is responsible for giving rise to that peak. The term “resonance” is also used to describe a peak in an NMR spectrum. The Language of NMR Spectroscopy The proton NMR spectrum of ethyl acetate is given in Figure 6.1. There are three distinct peaks or resonances in the spectrum. Two of the peaks are split or have multiplicities greater than 1. The peak at 0 ppm corresponds to TMS, the internal standard and is not counted as a peak. The triplet at 1.1-1.35 ppm corresponds to the Hb hydrogens of the CH2- group of ethyl acetate. The singlet has a chemical shift of 2.0 ppm, and corresponds to the Ha hydrogens of the methyl group of ethyl acetate. Finally, the quartet at 4.0-4.4 ppm corresponds to the Hc hydrogens of the other methyl group of ethyl acetate. O Hb Hb Ha C Hc COC Hc Ha Ha Hc Ethyl Acetate Figure 6.1: Typical one-dimensional proton NMR spectrum Tetramethylsilane (TMS) or other “internal standards” are used to calibrate the x-axis of the spectrum to set the scale for the spectrum. TMS is used most frequently and always gives rise to a peak at zero. The units of x-axis of the spectrum are parts per million (ppm) or hertz (Hz). The ppm units are more commonly used and run from 1-10ppm or 1-12ppm in a typical proton spectrum. The specific ppm unit where a peak appears in the spectrum is referred to as the chemical shift of the proton(s) that give rise to that peak. The far left side of the spectrum is referred to as downfield and the far right side of the spectrum is referred to as upfield. The vertical axis is a measure of peak intensity. The area under the peak (or peak height and width) represents the relative number of H atoms that correspond to that peak. Chemical Shift (δ) The chemical shift of a proton is the position of the peak in the NMR spectrum that corresponds to that proton. The chemical shift is the ppm unit at which the peak appears, “shifted from” the zero point defined by the TMS internal standard. The chemical shift itself is reported in ppm units. The chemical shift of a proton is dependent on what kind of atom the proton is bonded to and on the kinds of other atoms that are near to the proton. Protons can be categorized into seven chemical shift ranges. The Table 6.4 given below defines these ranges. Protons bonded to the same atom usually appear together as a single peak. Protons in the same chemical shift range may have different specific chemical shifts due to differences in environment of protons in the same range. Range Kind of Proton 0-1.5 ppm H atoms bonded to sp3 carbons where the sp3 carbons are only bonded to other sp3 carbons and hydrogen (alkanes) 1.5 - 2.5 ppm H atoms bonded to sp3 carbons where the sp3 carbon is bonded to at least one sp2 C and no heteroatoms (allylic, benzylic, α-H) 2.5 - 4.5 ppm H atoms bonded to an sp3 C that is also bonded to at least one heteroatom 4.5 - 6.5 ppm H atoms bonded to sp2 carbons of alkenes (not aromatic sp2 carbons) 6.5 - 8.5 ppm H atoms bonded to sp2 carbons of an aromatic ring 10 - 12 ppm H atom bonded to an sp2 carbon atom of the carbonyl group of an aldehyde or H atom bonded to the sp3 oxygen of a carboxylic acid. Anywhere H atom directly bonded to a heteroatom other than the oxygen atom of a carboxylic acid. Show up as a broad singlet Table 6.4: Proton NMR Spectroscopy Chemical Shift Ranges of Various Proton Types Multiplicity (Splitting) Peaks in a NMR spectrum do not always show up as a single peak. Peaks may appear in five ways, shown in Figure 6.2. singlet doublet triplet quartet multiplet 1:1 1:3:1 1:2:2:1 variable Figure 6.2: Examples of Different Types of Peak Multiplicities in Proton NMR Spectroscopy Peaks are split into parts due to other non-equivalent H atoms that are three bonds or less away from the proton. which corresponds to the peak being split. A peak will be split into n+1 parts, where n = the # of H three bonds away. H of the same exact type are referred to as “equivalent” H (typically H bonded to the same carbon atom) and will not split each other. Peaks are referred to as singlet (one peak), doublet (two peaks), triplet (three peaks), quartet (four peaks) or multiplet (five or more peaks). An example analysis of proton multiplicities in provided below. The ratios of the peak heights or areas for these different multiplicities are very characteristic. The two peaks of a doublet appear in a 1:1 ration, the three peaks of a triplet appear as a 1:3:1 ratio, the four peaks of a qurtet appear as a 1:2:2:1 ratio. The ratio of peaks that make up a multiplet vary. Hydrogen atoms in a molecule that are not near (near defined as 3 bonds or less) any other hydrogen atoms will appear as singlets in the proton NMR spectrum (n=0, m=0 + 1= 1, singlet). Hydrogen atoms directly bonded to heteroatoms (OH, NH etc) usually appear as singlets as well, however the shape of the peak for these H atoms is usually low and broad as opposed to tall and sharp (with the exception of carboxylic acid OH hydrogens. These are usually sharp). Sometimes, protons bonded to heteroatoms do not appear in the spectrum at all. The proton NMR spectrum at the left has two singlets. The low, broad “singlet corresponds to an OH hydrogen of an alcohol. Doublets appear when one H atom is 3 bonds or less away (n =1; m =1+1=2, doublet). A doublet is present in the NMR spectrum of isopropyl alcohol. The doublet corresponds to the six, equivalent H atoms of the two methyl groups labeled as Ha protons in the structure. The Ha protons are split into two parts by the one Hb proton that is 3 bonds or less aways from the Ha protons. Hc does not appear and the Hb proton appears as a multiplet (split into seven parts parts) due to the six Ha hydrogens that are 3 bonds or less away from the Hb proton. Ha Ha Ha C Hb Ha C C OHc Ha Ha isopropyl alcohol Integration The relative area under each peak corresponds to the relative number of protons that correspond to that peak. Integration measures the relative areas under peaks in the same spectrum. The integration of peaks is typically provided in two ways, using integration lines or by numerical ratios. The two methods of integration are illustrated in the proton NMR spectrum of isopropyl alcohol. For the line method, the rise of the line must be measured with a ruler. The ratio of the length of the rises for each peak corresponds to the ration of different types of protons. Integration is not always provided in an NMR spectrum. .
Recommended publications
  • Arxiv:0801.0028V1 [Physics.Atom-Ph] 29 Dec 2007 § ‡ † (People’S China Metrology, Of) of Lic Institute Canada National Council, Zhang, Research Z
    CODATA Recommended Values of the Fundamental Physical Constants: 2006∗ Peter J. Mohr†, Barry N. Taylor‡, and David B. Newell§, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420, USA (Dated: March 29, 2012) This paper gives the 2006 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. Further, it describes in detail the adjustment of the values of the constants, including the selection of the final set of input data based on the results of least-squares analyses. The 2006 adjustment takes into account the data considered in the 2002 adjustment as well as the data that became available between 31 December 2002, the closing date of that adjustment, and 31 December 2006, the closing date of the new adjustment. The new data have led to a significant reduction in the uncertainties of many recommended values. The 2006 set replaces the previously recommended 2002 CODATA set and may also be found on the World Wide Web at physics.nist.gov/constants. Contents 3. Cyclotron resonance measurement of the electron relative atomic mass Ar(e) 8 Glossary 2 4. Atomic transition frequencies 8 1. Introduction 4 1. Hydrogen and deuterium transition frequencies, the 1. Background 4 Rydberg constant R∞, and the proton and deuteron charge radii R , R 8 2. Time variation of the constants 5 p d 1. Theory relevant to the Rydberg constant 9 3. Outline of paper 5 2. Experiments on hydrogen and deuterium 16 3.
    [Show full text]
  • NMR Chemical Shifts of Common Laboratory Solvents As Trace Impurities
    7512 J. Org. Chem. 1997, 62, 7512-7515 NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E. Gottlieb,* Vadim Kotlyar, and Abraham Nudelman* Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel Received June 27, 1997 In the course of the routine use of NMR as an aid for organic chemistry, a day-to-day problem is the identifica- tion of signals deriving from common contaminants (water, solvents, stabilizers, oils) in less-than-analyti- cally-pure samples. This data may be available in the literature, but the time involved in searching for it may be considerable. Another issue is the concentration dependence of chemical shifts (especially 1H); results obtained two or three decades ago usually refer to much Figure 1. Chemical shift of HDO as a function of tempera- more concentrated samples, and run at lower magnetic ture. fields, than today’s practice. 1 13 We therefore decided to collect H and C chemical dependent (vide infra). Also, any potential hydrogen- shifts of what are, in our experience, the most popular bond acceptor will tend to shift the water signal down- “extra peaks” in a variety of commonly used NMR field; this is particularly true for nonpolar solvents. In solvents, in the hope that this will be of assistance to contrast, in e.g. DMSO the water is already strongly the practicing chemist. hydrogen-bonded to the solvent, and solutes have only a negligible effect on its chemical shift. This is also true Experimental Section for D2O; the chemical shift of the residual HDO is very NMR spectra were taken in a Bruker DPX-300 instrument temperature-dependent (vide infra) but, maybe counter- (300.1 and 75.5 MHz for 1H and 13C, respectively).
    [Show full text]
  • Proton Nuclear Magnetic Resonance ( H NMR)
    Proton Nuclear Magnetic Resonance (1H NMR) Proton nuclear magnetic resonance (proton NMR, hydrogen-1 NMR, or 1H NMR) is the application of nuclear magnetic resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the structure of its molecules. In samples where natural hydrogen (H) is used, practically all the hydrogen consists of the isotope 1H. A full 1H atom is called protium. Solvents used in NMR., Deuterated solvents especially for use in NMR are preferred, e.g. deuterated water, D2O, deuterated acetone, (CD3)2CO, deuterated methanol, CD3OD, deuterated dimethyl sulfoxide, (CD3)2SO, and deuterated chloroform, CDCl3. However, a solvent without hydrogen, such as carbon tetrachloride, CCl4 or carbon disulfide, CS2, may also be used. Proton NMR spectra of most organic compounds are characterized by chemical shifts in the range +14 to -4 ppm and by spin-spin coupling between protons. The integration curve for each proton reflects the abundance of the individual protons. Simple molecules have simple spectra. The spectrum of ethyl chloride consists of a triplet at 1.5 ppm and a quartet at 3.5 ppm in a 3:2 ratio. The spectrum of benzene consists of a single peak at 7.2 ppm due to the diamagnetic ring current. Multiplicity Multiplicity or coupling is useful because it reveals how many hydrogens are on the next carbon in the structure. That information helps to put an entire structure together piece 1 by piece. In ethanol, CH3CH2OH, the methyl group is attached to a methylene group. The H spectrum of ethanol shows this relationship through the shape of the peaks.
    [Show full text]
  • GC-MS) Techniques and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) Assessment of Volatiles Produced from Nitric Oxide Producing Smart Dressings
    The detection of trace volatiles from complex matrices using gas chromatography mass spectrometry (GC-MS) techniques and selected ion flow tube mass spectrometry (SIFT-MS) assessment of volatiles produced from nitric oxide producing smart dressings Oliver John Gould A thesis submitted in partial fulfilment of the requirements of the University of the West of England, Bristol for the degree of Doctor of Philosophy Faculty of Health and Applied Sciences, University of the West of England, Bristol 2019 Copyright declaration This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment. i Acknowledgements I would like to thank my supervisors Professor Norman Ratcliffe, and Associate Professor Ben de Lacy Costello for all their help, guidance, and support over the course of this work, and for their co-authorship on the published versions of chapters 2 and 3. I would also like to thank Dr Hugh Munro and Edixomed Ltd for financial support and scientific guidance with chapter 4. I would like to thank my co-authors on the publication of chapter 2 Tom Wieczorek, Professor Raj Persad. Also thank you to my co-authors on the publication of chapter 3, Amy Smart, Dr Angus Macmaster, and Dr Karen Ransley; and express my appreciation to Givaudan for funding the work undertaken in chapter 3. Thank you also to my colleagues and fellow post graduate research students at the University of the West of England for always being on hand for discussion and generation of ideas. A special mention to Dr Peter Jones who has been mentoring me on mass spectrometry for a number of years.
    [Show full text]
  • Thesis Hsf 2020 Watson Daniel John.Pdf
    Screening of actinobacteria for novel antimalarial compounds Town Daniel John Watson (WTSDAN003) Cape Submitted to the University of Cape Town In fulfilment of the requirementof for the degree: PhD Clinical Pharmacology Faculty of Health Sciences UNIVERSITY OF CAPE TOWN UniversityFebruary 2020 Supervisor: A/Prof Lubbe Wiesner Co-supervisor: Dr Paul Meyers The copyright of this thesis vests in theTown author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only.Cape Published by the Universityof of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University DECLARATION It is herewith declared that the work represented in this dissertation/thesis is the independent work of the undersigned (except where acknowledgements indicate otherwise) and has not been submitted at any other University for a degree. In addition, copyright of this thesis is hereby ceded in favour of the University of Cape Town. t5/z/2-02v Date Acknowledgements This thesis is dedicated to my friends and family who gave me the opportunities and support that allowed me to fulfil my dream. Firstly, I would like to thank the NRF and UCT for funding me through my MSc and PhD. Without it, none of this would have been possible. To my supervisor Prof Lubbe Wiesner, thank you for providing me with the opportunity to pursue my interests and passions. Your faith in me and this project kept me going even when I was not sure I could.
    [Show full text]
  • SECONDARY METABOLITES COMPOSITION and GEOGRAPHICAL DISTRIBUTION of MARINE SPONGES of the GENUS Dysidea
    COMPONENT 2C – PROJECT 2C4 Bioprospection & Active Marine Substances Training of Pacifi c students June 2009 MASTER THESIS SECONDARY METABOLITES COMPOSITION AND GEOGRAPHICAL DISTRIBUTION OF MARINE SPONGES OF THE GENUS Dysidea Author: Mayuri Chandra Photo: ©IRD – Eric FOLCHER Photo: ©IRD The CRISP Coordinating Unit was integrated into the Secretariat of the Pacifi c Community in April 2008 to insure maximum coordination and synergy in work relating to coral reef management in the region. The CRISP Programme is implemented as part of the policy developped by the Secretariat of the Pacifi c Regional Environment Programme to contribute to the conservation and sustainable development of coral reefs in the Pacifi c. he Initiative for the Protection and Management of Coral Reefs in the Pacifi c (CRISP), T sponsored by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project from 2002 onwards, aims to develop a vision for the future of these unique eco-systems and the communities that depend on them and to introduce strategies and projects to conserve their biodiversity, while developing the economic and environmental services that they provide both locally and globally. Also, it is designed as a factor for integration between developed countries (Australia, New Zealand, Japan, USA), French overseas territories and Pacifi c Island developing countries. The CRISP Programme comprises three major components, which are: Component 1A: Integrated Coastal Management and watershed management - 1A1: Marine biodiversity
    [Show full text]
  • Development of Novel Therapeutic and Diagnostic Approaches Utilizing Tools from the Physical Sciences
    DEVELOPMENT OF NOVEL THERAPEUTIC AND DIAGNOSTIC APPROACHES UTILIZING TOOLS FROM THE PHYSICAL SCIENCES by ARUNI PEIRIS MALALASEKERA B.Sc. (Hons), University of Colombo, Sri Lanka 2009 AN ABSTRACT OF A DISSERTATION Submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Department of Chemistry College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2016 Abstract Numerous Proteases are implicated in cancer initiation, survival, and progression. Therefore, it is important to diagnose the levels of protease expression by tumors and surrounding tissues, which are reflected in blood and tissue samples. Nanoplatforms for Cathepsin(CTS) B and L, matrix metalloproteinases(MMP) 1, 2, 3, 7, 9, 13 and urokinase plasminogen activator(uPA) detection have been synthesized. Nanoplatforms feature a central dopamine-coated core/shell Fe/Fe3O4 nanoparticle. Cyanine 5.5 is permanently tethered to the dopamine ligands via amide bonds. Tetrakis(4-carboxy-phenyl)porphyrin (TCPP) is co-tethered to Fe/Fe3O4/dopamine by means of protease consensus sequences. In the presence of a relevant protease sequence, it is cleaved, releasing TCPP from the nanoplatform. In contrast, Cy 5.5 will remain permanently tethered to the nanoparticle. Therefore, an extensive increase of emission intensity of the fluorescence signal from TCPP is observed. This permits the detection of the activity of proteases at femtomolar levels in biospecimens by fluorescence spectroscopy. 46 breast cancer and 20 healthy human blood serum samples were analyzed. Based on the expression pattern of analyzed enzymes, human breast cancer can be detected at stage I. By monitoring CTS B and L stage 0 detection may be achieved.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses NMR Crystallography of Disordered Cocrystals KERR, HANNAH,ELIN How to cite: KERR, HANNAH,ELIN (2017) NMR Crystallography of Disordered Cocrystals, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/12037/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk NMR CRYSTALLOGRAPHY OF DISORDERED COCRYSTALS By Hannah Elin Kerr A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Chemistry 2016 -Abstract- -i- Abstract Crystallographic disorder is common in the solid state but it is rarely investigated explicitly despite having a fundamental impact on the solid-state structure of a material. In this work, nuclear magnetic resonance (NMR) crystallography methods are utilised to achieve a detailed understanding of the structure and dynamics of solid organic systems containing disorder. Several new cocrystal systems are studied, each containing a topical drug molecule (caffeine, naproxen or furosemide) and each serving to demonstrate how NMR crystallography can be applied to a variety of structural questions.
    [Show full text]
  • Molecular Diffusive Dynamics in Complex Liquids
    This document is downloaded from Outstanding Academic Papers by Students (OAPS), Run Run Shaw Library, City University of Hong Kong. Title Molecular diffusive dynamics in complex liquids Author(s) Tsang, Yuk Wai (曾郁惠) Tsang, Y. W. (2018). Molecular diffusive dynamics in complex liquids Citation (Outstanding Academic Papers by Students (OAPS), City University of Hong Kong). Issue Date 2018 URL http://dspace.cityu.edu.hk/handle/2031/9126 This work is protected by copyright. Reproduction or distribution of Rights the work in any format is prohibited without written permission of the copyright owner. Access is unrestricted. CITY UNIVERSITY OF HONG KONG DEPARTMENT OF PHYSICS AND MATERIALS SCIENCE BACHELOR OF SCIENCE (HONS) IN APPLIED PHYSICS 2017-2018 DISSERTATION Molecular diffusive dynamics in complex liquids by TSANG Yuk Wai April 2018 ____________________________________________________________________________________________________________________________________________________ This document is downloaded from Outstanding Academic Papers by Students (OAPS), Run Run Shaw Library, City University of Hong Kong. Molecular diffusive dynamics in complex liquids by TSANG Yuk Wai Submitted in partial fulfilment of the requirements for the degree of BACHELOR OF SCIENCE (HONS) IN APPLIED PHYSICS from City University of Hong Kong April 2018 Project Supervisor : Dr. Mavila C Suresh ii ____________________________________________________________________________________________________________________________________________________ This document
    [Show full text]
  • Metabolite Profiling of the Microalgal Diatom Chaetoceros Calcitrans And
    marine drugs Article Metabolite Profiling of the Microalgal Diatom Chaetoceros Calcitrans and Correlation with Antioxidant and Nitric Oxide Inhibitory Activities via 1H NMR-Based Metabolomics Awanis Azizan 1, Muhammad Safwan Ahamad Bustamam 1, M. Maulidiani 1, Khozirah Shaari 1,2, Intan Safinar Ismail 1,2, Norio Nagao 3 and Faridah Abas 1,4,* ID 1 Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; [email protected] (A.A.); [email protected] (M.S.A.B.); [email protected] (M.M.); [email protected] (K.S.); safi[email protected] (I.S.I.) 2 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; [email protected] 4 Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-8946-8343 Received: 13 April 2018; Accepted: 3 May 2018; Published: 7 May 2018 Abstract: Microalgae are promising candidate resources from marine ecology for health-improving effects. Metabolite profiling of the microalgal diatom, Chaetoceros calcitrans was conducted by using robust metabolomics tools, namely 1H nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate data analysis (MVDA). The unsupervised data analysis, using principal component analysis (PCA), resolved the five types of extracts made by solvents ranging from polar to non-polar into five different clusters. Collectively, with various extraction solvents, 11 amino acids, cholesterol, 6 fatty acids, 2 sugars, 1 osmolyte, 6 carotenoids and 2 chlorophyll pigments were identified.
    [Show full text]
  • Synthesis and Optimization of Novel Amides Using the Ugi Reaction For
    Synthesis and optimization of novel amides using the Ugi reaction for anti-malarial screening A Thesis Submitted to the Faculty Of Drexel University by Khalid Baig S Mirza in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2010 © Copyright 2010 Khalid Baig S Mirza. All Rights Reserved ii Dedications This thesis is dedicated to my parents Naser Baig Salmani and Mrs. Sirajunnisa, my sister Ayesha Fatima and my brother Hafeez Baig. Their love, support and encouragement have made this possible. iii Acknowledgements First, I would like to thank Almighty God for helping me complete a task I had initiated. I would like to thank my research advisor, Dr. Jean-Claude Bradley, for his guidance and supervision. I would also like to thank my committee members, Prof. Frank Ji, Prof (Chair), Prof. Sally Solomon, Prof. Peter Wade, Prof. Louis Scerbo, Prof. Jun Xi and Prof. Susan Jansen-Varnum (Temple University) for providing their valuable input, reviewing my thesis and participating in the final defense. I would like to thank late Prof. Robert Hutchins who served as the Chair for my candidacy proposal committee. He had being an incredible mentor and teacher to me. I would like to thank Prof. Anthony Wambsgans for his support as a teacher and a friend. I would also like to thank Prof. Daniel King for serving on my proposal committee. I want to thank Prof. Lynn Penn for helping me every time I needed. I really appreciated your pragmatism and advice. I also want to thank Ed Doherty, Virginia Nesmith, Tina Lewinsky and Ed Thorn for providing the administrative support.
    [Show full text]
  • Supporting Information Synthesis of Mono-Functionalized S-Diazocines
    Supporting Information for Synthesis of mono-functionalized S-diazocines via intramolecular Baeyer–Mills reactions Miriam Schehr1, Daniel Hugenbusch1, Tobias Moje1, Christian Näther2 and Rainer Herges*1 Address: 1Otto Diels-Institute for Organic Chemistry, Christian-Albrechts-University, Otto- Hahn-Platz 4, 24118 Kiel, Germany and 2Institute for Inorganic Chemistry, Christian- Albrechts-University, Max-Eyth-Str. 2, 24118 Kiel, Germany Email: Rainer Herges* - [email protected] * Corresponding author Analytical equipment, experimental procedures, spectral data and crystallographic data Table of contents I. Analytical equipment∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙S2–S3 II. Syntheses∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙S4–S27 III. Isolated byproduct reductive azo coupling∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙S28–S29 IV. UV–vis switching experiments∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙S30 V. Crystallographic data compound 3 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙S31–S33 I. Analytical equipment NMR spectroscopy NMR spectra were measured in deuterated solvents (Deutero). To reference the NMR spectra the following solvent signals were used [1]: solvent degree of deuteration 1H signal 13C signal acetone-d6 99.8 % 2.05 (quintet) 29.84 (septet) chloroform-d1 99.8 % 7.26 (s) 77.16 (triplet) DMSO-d6 99.8 % 2.50 (s) 39.52 (septet) NMR measurements
    [Show full text]