GC-MS) Techniques and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) Assessment of Volatiles Produced from Nitric Oxide Producing Smart Dressings

Total Page:16

File Type:pdf, Size:1020Kb

GC-MS) Techniques and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) Assessment of Volatiles Produced from Nitric Oxide Producing Smart Dressings The detection of trace volatiles from complex matrices using gas chromatography mass spectrometry (GC-MS) techniques and selected ion flow tube mass spectrometry (SIFT-MS) assessment of volatiles produced from nitric oxide producing smart dressings Oliver John Gould A thesis submitted in partial fulfilment of the requirements of the University of the West of England, Bristol for the degree of Doctor of Philosophy Faculty of Health and Applied Sciences, University of the West of England, Bristol 2019 Copyright declaration This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment. i Acknowledgements I would like to thank my supervisors Professor Norman Ratcliffe, and Associate Professor Ben de Lacy Costello for all their help, guidance, and support over the course of this work, and for their co-authorship on the published versions of chapters 2 and 3. I would also like to thank Dr Hugh Munro and Edixomed Ltd for financial support and scientific guidance with chapter 4. I would like to thank my co-authors on the publication of chapter 2 Tom Wieczorek, Professor Raj Persad. Also thank you to my co-authors on the publication of chapter 3, Amy Smart, Dr Angus Macmaster, and Dr Karen Ransley; and express my appreciation to Givaudan for funding the work undertaken in chapter 3. Thank you also to my colleagues and fellow post graduate research students at the University of the West of England for always being on hand for discussion and generation of ideas. A special mention to Dr Peter Jones who has been mentoring me on mass spectrometry for a number of years. On a personal note I would like to give a very special thank you to my mother Maya Gould who has been a constant source of direction and strength over the years. I would also like to give special thanks to Caroline for her continuing love, support, and patience. ii Abstract Volatile compounds (VCs) hold the potential to diagnose and monitor disease states in a cost effective, rapid, and most importantly non-invasive manner. Gas chromatography mass spectrometry (GC-MS) has been in use since the 1960s and remains the gold standard for qualitative VC analysis. Within this thesis three novel methods and/or utilisations of mass spectrometry are described. Chapter 2 describes and benchmarks a metal oxide sensor (MOS) coupled to a standard GC-MS instrument. Testing this system to the headspace of 12 stool samples the sensor detected a mean 1.6 more peaks per sample then the MS. This superior sensitivity exhibited by the MOS sensor should allow for greater discriminatory abilities to differentiate samples into clinically relevant groups. It has become increasingly important to qualitatively and quantitatively assess the VCs for use in monitoring health. Chapter 3 describes a novel method for the quantification of VCs from the headspace of stool samples analysed using GC-MS is presented. Using 13C labelled carbon compounds as internal standards a method has been designed which quantifies the compounds within in the stool; 15 compounds were quantified. The EDX110 dressing has been developed by Edixomed Ltd; uses hydrogel technology to generate nitric oxide (NO) to enhance wound healing. A series of experiments first allowed for the development of a robust and reproducible method of real-time quantification. The effect of pH was assessed using citric acid buffered with sodium citrate, pH values 3, 3.6, 4.2, 4.8, 5.4, and 6.2 were all analysed. NO production showed an inverse correlation; pH 3 producing 81 µg of NO and pH 6.2 only producing 7 µg. Except for pH 3 nitrous acid (HONO) and nitrogen dioxide (NO2) remained relatively consistent across the pH values with a median 3 and 0.9 µg respectively. iii Table of Contents Aims and objectives ................................................................................................. 1 Chapter 1: A review of mass spectrometry (MS) for detection of volatile compounds (VCs) for biomedical applications. .................................................... 3 1.1.0 Introduction ..................................................................................................... 4 1.1.1 Introduction to mass spectrometry (MS) .................................................................................................. 5 1.2.0 Non-real-time mass spectrometry techniques.............................................. 7 1.2.1 Sample pre-concentrating methods ......................................................................................................... 7 1.2.2 Gas chromatography (GC) ....................................................................................................................... 11 1.2.3 Gas chromatography mass spectrometry (GC-MS). ............................................................................... 11 1.2.4 Gas chromatography tandem mass spectrometry (GC-MS-MS) ............................................................. 13 1.2.5 Gas chromatography time of flight mass spectrometry (GC-TOF-MS) ................................................... 14 1.2.6 Two-dimensional gas chromatography time of flight mass spectrometry (GC-GC-TOF-MS) ................. 16 1.2.7 Gas Chromatography-Sensor systems and sensor arrays for biomedical applications .......................... 17 1.2.8 Summary and comparison of non-real time techniques ........................................................................ 18 1.3.0 Real time mass spectrometry techniques ................................................... 19 1.3.1 Selected ion flow tube mass spectrometry (SIFT-MS) ............................................................................ 19 1.3.2 Proton transfer reaction mass spectrometry (PTR-MS) .......................................................................... 22 1.3.3 Proton transfer reaction time of flight mass spectrometry (PTR-TOF-MS) ............................................ 23 1.3.4 Field asymmetric Ion mobility mass spectrometry (FAIMS) ................................................................... 24 1.3.5 Summary and comparisons of real-time techniques .............................................................................. 26 1.4.0 Overview ........................................................................................................ 27 Chapter 2: Assessment of a combined gas chromatography mass spectrometer sensor (GC-MSS) system for detecting biologically relevant volatile compounds (VCs). .................................................................................... 29 2.1.0 Introduction ................................................................................................... 31 2.2.0 Methods ......................................................................................................... 32 2.2.1 Sensor preparation and sensor chamber ................................................................................................ 32 2.2.2 GC-MS and sensor setup ......................................................................................................................... 33 2.2.3 Standard solutions .................................................................................................................................. 33 2.2.4 Stool samples .......................................................................................................................................... 37 iv 2.2.5 Bacterial culture headspace analysis ...................................................................................................... 37 2.2.6 Analysis ................................................................................................................................................... 37 2.3.0 Results and discussion ................................................................................ 38 2.3.1 Results of the analysis of standard solutions .......................................................................................... 38 2.3.2 Stool Samples .......................................................................................................................................... 45 2.3.3 Bacterial headspace analysis .................................................................................................................. 56 2.4.0 Conclusions ................................................................................................... 67 Chapter 3: Gas Chromatography Mass Spectrometry (GC-MS) Quantification of Metabolites in Stool Using 13C Labelled Compounds ......................................... 69 3.1.0 Introduction ................................................................................................... 71 3.2.0. Materials and methods ................................................................................ 73 3.2.1 Instrumentation and separation methodology ...................................................................................... 73 3.2.2 Loading the thermal desorption (TD) tubes ............................................................................................ 73 3.2.3 Standard Solutions .................................................................................................................................. 74 3.2.4 Calibration Curves ................................................................................................................................... 75 3.2.5 Sample Preparation ...............................................................................................................................
Recommended publications
  • Bioelectronic Nose Based on Single-Stranded DNA And
    nanomaterials Article Bioelectronic Nose Based on Single-Stranded DNA and Single-Walled Carbon Nanotube to Identify a Major Plant Volatile Organic Compound (p-Ethylphenol) Released by Phytophthora Cactorum Infected Strawberries Hui Wang 1,2,* , Yue Wang 1, Xiaopeng Hou 2 and Benhai Xiong 1,* 1 State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] 2 Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; [email protected] * Correspondence: [email protected] or [email protected] (H.W.); [email protected] (B.X.); Tel.: +86-010-62811680 (B.X.) Received: 5 February 2020; Accepted: 3 March 2020; Published: 7 March 2020 Abstract: The metabolic activity in plants or fruits is associated with volatile organic compounds (VOCs), which can help identify the different diseases. P-ethylphenol has been demonstrated as one of the most important VOCs released by the Phytophthora cactorum (P. cactorum) infected strawberries. In this study, a bioelectronic nose based on a gas biosensor array and signal processing model was developed for the noninvasive diagnostics of the P.cactorum infected strawberries, which could overcome the limitations of the traditional spectral analysis methods. The gas biosensor array was fabricated using the single-wall carbon nanotubes (SWNTs) immobilized on the surface of field-effect transistor, and then non-covalently functionalized with different single-strand DNAs (ssDNA) through π–π interaction. The characteristics of ssDNA-SWNTs were investigated using scanning electron microscope, atomic force microscopy, Raman, UV spectroscopy, and electrical measurements, indicating that ssDNA-SWNTs revealed excellent stability and repeatability.
    [Show full text]
  • Arxiv:0801.0028V1 [Physics.Atom-Ph] 29 Dec 2007 § ‡ † (People’S China Metrology, Of) of Lic Institute Canada National Council, Zhang, Research Z
    CODATA Recommended Values of the Fundamental Physical Constants: 2006∗ Peter J. Mohr†, Barry N. Taylor‡, and David B. Newell§, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420, USA (Dated: March 29, 2012) This paper gives the 2006 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. Further, it describes in detail the adjustment of the values of the constants, including the selection of the final set of input data based on the results of least-squares analyses. The 2006 adjustment takes into account the data considered in the 2002 adjustment as well as the data that became available between 31 December 2002, the closing date of that adjustment, and 31 December 2006, the closing date of the new adjustment. The new data have led to a significant reduction in the uncertainties of many recommended values. The 2006 set replaces the previously recommended 2002 CODATA set and may also be found on the World Wide Web at physics.nist.gov/constants. Contents 3. Cyclotron resonance measurement of the electron relative atomic mass Ar(e) 8 Glossary 2 4. Atomic transition frequencies 8 1. Introduction 4 1. Hydrogen and deuterium transition frequencies, the 1. Background 4 Rydberg constant R∞, and the proton and deuteron charge radii R , R 8 2. Time variation of the constants 5 p d 1. Theory relevant to the Rydberg constant 9 3. Outline of paper 5 2. Experiments on hydrogen and deuterium 16 3.
    [Show full text]
  • NMR Chemical Shifts of Common Laboratory Solvents As Trace Impurities
    7512 J. Org. Chem. 1997, 62, 7512-7515 NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E. Gottlieb,* Vadim Kotlyar, and Abraham Nudelman* Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel Received June 27, 1997 In the course of the routine use of NMR as an aid for organic chemistry, a day-to-day problem is the identifica- tion of signals deriving from common contaminants (water, solvents, stabilizers, oils) in less-than-analyti- cally-pure samples. This data may be available in the literature, but the time involved in searching for it may be considerable. Another issue is the concentration dependence of chemical shifts (especially 1H); results obtained two or three decades ago usually refer to much Figure 1. Chemical shift of HDO as a function of tempera- more concentrated samples, and run at lower magnetic ture. fields, than today’s practice. 1 13 We therefore decided to collect H and C chemical dependent (vide infra). Also, any potential hydrogen- shifts of what are, in our experience, the most popular bond acceptor will tend to shift the water signal down- “extra peaks” in a variety of commonly used NMR field; this is particularly true for nonpolar solvents. In solvents, in the hope that this will be of assistance to contrast, in e.g. DMSO the water is already strongly the practicing chemist. hydrogen-bonded to the solvent, and solutes have only a negligible effect on its chemical shift. This is also true Experimental Section for D2O; the chemical shift of the residual HDO is very NMR spectra were taken in a Bruker DPX-300 instrument temperature-dependent (vide infra) but, maybe counter- (300.1 and 75.5 MHz for 1H and 13C, respectively).
    [Show full text]
  • Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography MASTER DISSERTATION
    DM Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography MASTER DISSERTATION Nome Autor do Liliana da Silva Rodrigues MASTER IN APPLIED BIOCHEMISTRY Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography Liliana da Silva Rodrigues July | 2016 Nome do Projecto/Relatório/Dissertação de Mestrado e/ou Tese de Doutoramento | Nome do Projecto/Relatório/Dissertação de Mestrado e/ou Tese DIMENSÕES: 45 X 29,7 cm NOTA* PAPEL: COUCHÊ MATE 350 GRAMAS Caso a lombada tenha um tamanho inferior a 2 cm de largura, o logótipo institucional da UMa terá de rodar 90º , para que não perca a sua legibilidade|identidade. IMPRESSÃO: 4 CORES (CMYK) ACABAMENTO: LAMINAÇÃO MATE Caso a lombada tenha menos de 1,5 cm até 0,7 cm de largura o laoyut da mesma passa a ser aquele que consta no lado direito da folha. Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography MASTER DISSERTATION Liliana da Silva Rodrigues MASTER IN APPLIED BIOCHEMISTRY ORIENTADORA Helena Caldeira Araújo CO-ORIENTADOR José de Sousa Câmara Quantification of oxidative stress biomarkers: Development of a Method by Ultra Performance Liquid Chromatography Dissertation submitted at the University of Madeira in order to obtain the degree of Master in Applied Biochemistry Liliana da Silva Rodrigues Work developed under the orientation of: Supervisor Prof. Doctor Helena Cardeira Araújo Co-supervisor Prof. Doctor José de Sousa Câmara Funchal, Portugal July 2016 To my Family “Sem eles nada disto seria possível” ***** Quantification of Oxidative Stress Biomarkers: Development of a Method by Ultra Performance Liquid Chromatography July 2016 Acknowledgment I would like to address an acknowledgement to all the people who collaborated in the accomplishment of this work.
    [Show full text]
  • Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters from Volatile Organic Acids
    ARTICLE Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters From Volatile Organic Acids Donovan S. Layton,1,2 Cong T. Trinh1,2,3 1 Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 2 BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee 3 Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee; telephone: þ865-974-8121; fax: 865-974-7076; e-mail: [email protected] Biotechnol. Bioeng. 2016;113: 1764–1776. ABSTRACT: Volatile organic acids are byproducts of fermentative ß 2016 Wiley Periodicals, Inc. metabolism, for example, anaerobic digestion of lignocellulosic KEYWORDS: modular chassis cell; carboxylate; ester; acyl acetate; biomass or organic wastes, and are often times undesired inhibiting acyl acylate; ester fermentative pathway cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol Introduction acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic Harnessing renewable or waste feedstocks (e.g., switchgrass, corn acids to acyl CoAs and alcohols to form a combinatorial library of stover, agricultural residue, or municipal solid waste)
    [Show full text]
  • Bacteriostatic and Bactericidal Effects of Free Nitrous Acid on Model Microbes in Wastewater Treatment
    Bacteriostatic and bactericidal effects of free nitrous acid on model microbes in wastewater treatment Shuhong Gao Master of Science Harbin Institute of Technology, Harbin, China A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 School of Chemical Engineering Advanced Water Management Centre Abstract There is great potential to use free nitrous acid (FNA), the protonated form of nitrite (HNO2), as an antimicrobial agent due to its bacteriostatic and bactericidal effects on a range of microorganisms. However, the antimicrobial mechanism of FNA is largely unknown. The overall objective of this thesis is to elucidate the responses of two model bacteria, namely Psuedomonas aeruginosa PAO1 and Desulfovibrio vulgaris Hildenborough, in wastewater treatment in terms of microbial susceptibility, tolerance and resistance to FNA exposure. The effects of FNA on the opportunistic pathogen P. aeruginosa PAO1, a well-studied denitrifier capable of nitrate/nitrite reduction through anaerobic respiration, were determined. It was revealed that the antimicrobial effect of FNA is concentration-determined and population-specific. By applying different levels of FNA, it was seen that 0.1 to 0.2 mg N/L FNA exerted a temporary inhibitory effect on P. aeruginosa PAO1 growth, while complete respiratory growth inhibition was not detected until an FNA concentration of 1.0 mg N/L was applied. The FNA concentration of 5.0 mg N/L caused complete cell killing and likely cell lysis. Differential killing by FNA in the P. aeruginosa PAO1 subpopulations was detected, suggesting intra-strain heterogeneity. A delayed recovery from FNA treatment suggested that FNA caused cell damage which required repair prior to P.
    [Show full text]
  • Download Author Version (PDF)
    Analytical Methods Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/methods Page 1 of 23 Analytical Methods 1 2 3 1 Analysis of volatile compounds in Capsicum spp. by headspace solid-phase 4 5 6 2 microextraction and GC×GC-TOFMS 7 8 3 Stanislau Bogusz Junior a, d *, Paulo Henrique Março b, Patrícia Valderrama b, Flaviana 9 10 c c c 11 4 Cardoso Damasceno , Maria Silvana Aranda , Cláudia Alcaraz Zini , Arlete Marchi 12 d e 13 5 Tavares Melo , Helena Teixeira Godoy 14 15 6 16 17 18 7 a Federal University of the Jequitinhonha and Mucuri (UFVJM), Institute of Science and 19 20 8 Technology, Diamantina, MG, Brazil.
    [Show full text]
  • Antioxidant Properties of Catechins Comparison with Other Antioxidants
    Food Chemistry 241 (2018) 480–492 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Antioxidant properties of catechins: Comparison with other antioxidants MARK ⁎ Michalina Grzesika, Katarzyna Naparłoa, Grzegorz Bartoszb, Izabela Sadowska-Bartosza, a Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, ul. Zelwerowicza 4, 35-601 Rzeszów, Poland b Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland ARTICLE INFO ABSTRACT Keywords: Antioxidant properties of five catechins and five other flavonoids were compared with several other natural and Catechins synthetic compounds and related to glutathione and ascorbate as key endogenous antioxidants in several in vitro % Flavonoids tests and assays involving erythrocytes. Catechins showed the highest ABTS -scavenging capacity, the highest FRAP stoichiometry of Fe3+ reduction in the FRAP assay and belonged to the most efficient compounds in protection Hemolysis against SIN-1 induced oxidation of dihydrorhodamine 123, AAPH-induced fluorescein bleaching and hypo- chlorite-induced fluorescein bleaching. Glutathione and ascorbate were less effective. (+)-catechin and (−)-epicatechin were the most effective compounds in protection against AAPH-induced erythrocyte hemolysis while (−)-epicatechin gallate, (−)-epigallocatechin gallate and (−)-epigallocatechin protected at lowest con- centrations against hypochlorite-induced
    [Show full text]
  • Biocatalytic Synthesis of Flavor Ester “Pentyl Valerate” Using Candida Rugosa Lipase Immobilized in Microemulsion Based Organogels: Effect of Parameters and Reusability
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 353845, 14 pages http://dx.doi.org/10.1155/2014/353845 Research Article Biocatalytic Synthesis of Flavor Ester ‘‘Pentyl Valerate’’ Using Candida rugosa Lipase Immobilized in Microemulsion Based Organogels: Effect of Parameters and Reusability Tripti Raghavendra,1 Nilam Panchal,1 Jyoti Divecha,2 Amita Shah,1 and Datta Madamwar1 1 BRD School of Biosciences, Sardar Patel Maidan, Sardar Patel University, Satellite Campus, Vadtal Road, P.O. Box 39, Vallabh Vidyanagar, Gujarat 388120, India 2 Department of Statistics, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India Correspondence should be addressed to Datta Madamwar; datta [email protected] Received 28 February 2014; Revised 5 May 2014; Accepted 19 May 2014; Published 1 July 2014 Academic Editor: Yunjun Yan Copyright © 2014 Tripti Raghavendra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pentyl valerate was synthesized biocatalytically using Candida rugosa lipase (CRL) immobilized in microemulsion based organogels ∘ (MBGs). The optimum conditions were found to be pH 7.0, temperature of 37 C, ratio of concentration of water to surfactant (Wo) of 60, and the surfactant sodium bis-2-(ethylhexyl)sulfosuccinate (AOT) for MBG preparation. Although kinetic studies revealed that the enzyme in free form had high affinity towards substrates ( = 23.2 mM for pentanol and 76.92 mM for valeric acid) whereas, after immobilization, the values increased considerably (74.07 mM for pentanol and 83.3 mM for valeric acid) resulting in a slower reaction rate, the maximum conversion was much higher in case of immobilized enzyme (∼99%) as compared to free enzyme (∼19%).
    [Show full text]
  • Articles Is an Important Step for the For- Mation and Transformation of Atmospheric Particles
    Atmos. Chem. Phys., 15, 5585–5598, 2015 www.atmos-chem-phys.net/15/5585/2015/ doi:10.5194/acp-15-5585-2015 © Author(s) 2015. CC Attribution 3.0 License. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations M. J. Tang1, M. Shiraiwa2, U. Pöschl2, R. A. Cox1, and M. Kalberer1 1Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK 2Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany Correspondence to: M. J. Tang ([email protected]) and M. Kalberer ([email protected]) Received: 26 January 2015 – Published in Atmos. Chem. Phys. Discuss.: 25 February 2015 Revised: 24 April 2015 – Accepted: 3 May 2015 – Published: 21 May 2015 Abstract. Diffusion of organic vapours to the surface of 1 Introduction aerosol or cloud particles is an important step for the for- mation and transformation of atmospheric particles. So far, Organic aerosols are ubiquitous in the atmosphere and can however, a database of gas phase diffusion coefficients for or- account for a dominant fraction of submicron aerosol par- ganic compounds of atmospheric interest has not been avail- ticles (Jimenez et al., 2009). Organic aerosols affect climate able. In this work we have compiled and evaluated gas phase by scattering and adsorbing solar and terrestrial radiation and diffusivities (pressure-independent diffusion coefficients) of serving as cloud condensation nuclei and ice nuclei (Kanaki- organic compounds reported by previous experimental stud- dou et al., 2005; Hallquist et al., 2009).
    [Show full text]
  • Microbial Synthesis of a Branched-Chain Ester Platform from Organic Waste Carboxylates
    Metabolic Engineering Communications 3 (2016) 245–251 Contents lists available at ScienceDirect Metabolic Engineering Communications journal homepage: www.elsevier.com/locate/mec Microbial synthesis of a branched-chain ester platform from organic waste carboxylates Donovan S. Layton a,c, Cong T. Trinh a,b,c,n a Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, The United States of America b Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, The United States of America c Bioenergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, The United States of America article info abstract Article history: Processing of lignocellulosic biomass or organic wastes produces a plethora of chemicals such as short, Received 6 June 2016 linear carboxylic acids, known as carboxylates, derived from anaerobic digestion. While these carbox- Received in revised form ylates have low values and are inhibitory to microbes during fermentation, they can be biologically 15 July 2016 upgraded to high-value products. In this study, we expanded our general framework for biological up- Accepted 5 August 2016 grading of carboxylates to branched-chain esters by using three highly active alcohol acyltransferases Available online 6 August 2016 (AATs) for alcohol and acyl CoA condensation and modulating the alcohol moiety from ethanol to iso- Keywords: butanol in the modular chassis cell. With this framework, we demonstrated the production of an ester Carboxylate platform library comprised of 16 out of all 18 potential esters, including acetate, propionate, butanoate, pen- Ester platform tanoate, and hexanoate esters, from the 5 linear, saturated C -C carboxylic acids.
    [Show full text]
  • Dependent Modeling Approach Derived from Semi-Empirical Quantum Mechanical Calculations
    3D-QSAR/QSPR Based Surface- Dependent Modeling Approach Derived From Semi-Empirical Quantum Mechanical Calculations 3D-QSAR/QSPR-basierter, oberflächenabhängiger Modellierungsansatz, abgeleitet von semi-empirischen quantenmechanischen Rechnungen Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Marcel Youmbi Foka aus Kamerun Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät/ vom Fachbereich Chemie und Pharmazie der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 05.12.2018 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter/in: Prof. Dr. Tim Clark Prof. Dr. Birgit Strodel Dedication In memory of my late Mother Lucienne Metiegam, who the Lord has taken unto himself on May 3, 2009. My mother, light of my life, God rest her soul, had a special respect for my studies. She had always encouraged me to move forward. I sincerely regret the fact that today she cannot witness the culmination of this work. Maman, que la Terre de nos Ancêtres te soit légère! This is a special reward for Mr. Joseph Tchokoanssi Ngouanbe, who always supported me financially and morally. That he find here the expression of my deep gratitude. i ii Acknowledgements I would like to pay tribute to all those who have made any contribution, whether scientific or not, to help carry out this work. All my thanks go especially to Prof. Dr. Tim Clark, who gave me the opportunity and means to work in his research team. I am grateful to have had him not only supervise my work but also for his patience and for giving me the opportunity to explore this fascinating topic.
    [Show full text]