GIS and Remote Sensing for Environment Statistics
Total Page:16
File Type:pdf, Size:1020Kb
The use of GIS and remote sensing for environment statistics Jacques-André NDIONE1, Mamadou FAYE2 1- Centre de Suivi Ecologique (CSE), BP 15532, Fann Residence, Dakar, SENEGAL [email protected] 2- Agence Nationale de la Statistique et de la Démographie (ANSD), (ANSD), Dakar, Sénégal, [email protected], [email protected] Outline • Introduction • Concepts – Environment statistics – Remote sensing – GIS • Examples of using RS and GIS • Conclusion Climate change should be added… Ongoing dialogue between data demand and data supply… Environment statistics “Environment statistics are statistics that describe the state and trends of the environment, covering the media of the natural environment (air/climate, water, land/soil), the biota within the media, and human settlements.” UNSD. 1997. Glossary of Environment Statistics, Studies in Methods, Series F, No. 67 Environment statistics (2) Scope of Environment Stats Perception of major users and producers (UNECA) Socioeconomic and Specific to Ezigbalike environmental particular policies conditions Dozie : Courtesy Environment statistics (3) FDES The challenge of producing environment statistics (UNECA) Ezigbalike Dozie : Courtesy Remote sensing: definition • Remote sensing is the collection of information about an object without being in direct physical contact with the object. • Remote Sensing is a technology for sampling electromagnetic radiation to acquire and interpret non-immediate geospatial data from which to extract information about features, objects, and classes on the Earth's land surface, oceans, and atmosphere. (UNECA) - Dr. Nicholas Short Ezigbalike Dozie : 9 Courtesy Elements involved in Remote sensing 1. Energy Source or Illumination (A) 2. Radiation and the Atmosphere (B) 3. Interaction with the Object (C) 4. Recording of Energy by the Sensor (D) 5. Transmission, Reception and Processing (E) 6. Interpretation and Analysis (F) 7. Application (G) Courtesy: Dozie Ezigbalike (UNECA) Satellites can detect a wide range of reflected or emitted frequencies of electromagnetic radiation. Sources de données Niveau de collecte • Imagerie satellitaire - Météosat, MODIS - NOAA - LANDSAT - SPOT - Corona - QuickBird… • Prises de vue aériennes - Photographie aérienne - Vols systématiques de reconnaissance - Vidéographie aéroportée • Etudes de terrain - Inventaires - Mesures GPS - Enquêtes Remotely sensed imagery products. Sensor Panchro Visible NIR Coverage Cost matic /product1 Landsat-7 ETM+ 15m 30m 30m 1999-2003 free IRS RESOURCESAT-1 LISS-III sensor 23.5m 23.5m 23.5m 2003- $2500 present LISS-IV sensor 5.8m 5.8m 5.8m 2003- $2500 present IRS 1C/1D 5m -- -- 1998- $2500 present IKONOS 1m 1m 4m 1999- approx. $377 present OrbView-3 1m 4m 4m 2003- approx. $1800 present Quickbird .67m .67m 2.44m 2001- $600 present Airborne DMSV 0.3m 0.3m 2m 1999- $20-25k present Sensor Resolution Coverage Cost Dickinson : RADARSAT 8m (Fine Beam) 1995- $3750 present Courtesy 1 Based on 2004 prices from various online vendors. Benefits from remote sensing data • Very useful where areas are inaccessible or where the cost of collecting spatial data over extensive areas is prohibitive Disadvantages • Provide good “pictures” for convincing the public of the value of participating in environmental assessment • Needs ground verification • Provide data over large areas that have standard format • Doesn’t offer details • Are available on a repetitive basis •andNot has the been best used tool tofor provide small data for areas over a long time basis areas • May be used to monitor the progress• Needs of environmental expert system projects to extract data • Faster extraction of GIS-ready data Application of Remote sensing • Urbanization & Transportation – Updating road maps – Asphalt conditions – Wetland delineation • Agriculture – Crop health analysis – Precision agriculture – Compliance mapping – Yield estimation 15 Courtesy: Bodruddoza Mia Application of Remote sensing (2) • Natural Resource Management – Habitat analysis – Environmental assessment – Pest/disease outbreaks – Impervious surface mapping – Lake monitoring – Hydrology – Landuse-Landcover monitoring – Mineral province – Geomorphology – Geology • National Security - Targeting - Disaster mapping and monitoring - Damage assessment - Weapons monitoring - Homeland security - Navigation - Policy 16 Courtesy: Bodruddoza Mia Applications sur le suivi des feux de brousse 300000 400000 500000 600000 700000 800000 900000 %[ Cas de feux du 1er au 10 Nov. 2008 Podor N $ Guede Village (Incluant les feux précoces) Dagana Gae Fanaye $ Ronkh $ %[ $Z $ $Z Dodele $ $ Aere Lao Ndiayene Pendao Gamadji Sarre $ Cas-Cas $Z % 1 8 0 Cas de feux 0 0 Ross-Bethio Madina Ndiatbe 0 0 Mbane $ Chef-lieu de région 0 0 $Z %[ 0 0 $Z 0 8 Mboumba %[ Chef-lieu de département 1 $ Salde $Z $Z Chef-lieu d'arrondissement SAINT-LOUIS $ Galoya $ Chef-lieu de communauté rurale $ Syere I (Boki Nedo) Pete $ Agnam Civol Route principale %[ $ Orefonde $Z $ RaoMpal GareKeur Momar Sarr Dabia Chemin de fer $Z $ $Z $ Gandon Sakal Tessekere Forage $ Lim arrondissement $ Labgar Bokidiawe $Z $ Nguer Malal Nabadji Mbal Leona $ $ $ $ Niomre Lo Mboula MATAM $ Pete Ouarack $ %[ $ $ Yang Yang %[ LOUGA $ Gande Ogo $ $Z Dodji Lougre Thioly Thiepe $ Coky Kamb $ $Z Kanel $ $ $Z $ $Z $ $Z $ %[ Thiamene 1 7 0 Linguère $ 0 0 Kébémer Gueoul $ Sinthiou Bamambe 0 0 Ndiagne $ Ouarkhokh %[ 0 0 $ %[ $ $ $Z 0 0 Diokoul $ Ranérou Ouro Sidy 0 7 Loro Orkadiere $ $ Barkedji 1 $Z $Z $ Touba Merina Thiamene Passe %[ $Z $ $ $Z Kab Gaye $ % Ndande Sam Yabal $Z Thiargny I %% $ $ $ %% % % %% % Houdalaye Aoure Mbayene %%% % $ $ $ Sagatta Djolof %%%%%%%%% $ Koul $Z $ $ % %%%%%% %%% BokiladjiMoudery $ Mbadiane Dealy % % % % Taiba Ndiaye $Z $Z % %%%%%% $ $Z $ $ $Z $ Velingara $ Niakhene % $ $Z % Woppa %% $ Missirah % %% $Z %[ Thiel Ouolof I % % Bakel Tivaouane $Z Ndindy $Z $ %%% % % $ $ % % Ndiott %[ Mont Rolland $ $ % Boulone Seno % % $ $ $Z %%%%%%%% %Fete Bowal %% $ $ $ %%% %%%% %% Gawane $ Gassane % % %% % $ $ $ %%%% % %%%%%%%%%% $ THIES $Z $Z Ndame Taif % %%%%% % %% %% %% $ $ $ $ %% %% %%% %%% %%% % % %[ $Z %[ $Z $ %[ $Z %%% %%% %%% %% %%%% Ballou %[ $ Bambey % %%%%% % Sendou Gabou $ $ $ $ $Z $ $ %% %% %% % $ %[ $ $ $ %% % %% %% % % $Z %[ $Z Madina %%% %% % % %% % % Douby Doro %%%%% [% Ndiass $ % %% % % % % $ $ Notto $ %[ Patar % %%% %% %% %%%%% DAKAR $ $ $ $Z Colobane % % Niarouwel Djoloff % %% %%% % $ %% % % %% % $Z Fissel $ % % %%%%% % %% $ % % 1 $ Mbar %% % %% %% %%% %% 6 0 $ % Sindia $ $Z $ $ $ % %% % 0 0 Gossas $ % %%%% % %% %% % % % Kidira 0 0 $ Darou Miname II %%% %% % %% % 0 0 % $ $Z $Z %[ Gniby Mbegue Goume % % % % % % $Z 0 0 $ %% % % Bele $ $ $ %% % % % %%% %% % %% % 0 6 $Z %% Sinthiou Fissa $ %[ $Z %% %% % % % % %% % 1 % % % $% % $ Mboss Ndioum Ngaint%h%% %% % % $ $ %%%% $ %% % %% % % % %% $ Ndiebel $ % %%% %% %% % % Gathiary Sessene $ $ Ndiago % % % % % Leva Diavandel $ %[ $ Gainte Pathe% %% %% %% % % % % $ $ Boulel % % %% % % % %% % $ %% %% % % % %%% % $ Dya % $ % % % %% % % Ngueniene $ Dianke Souf Lour Escale % % %% % %% %%% % FATICK $ $ Mbadakhoune % % % % G%oud%iry % %% %%% %% % $ $ %% %%% %% $Z Kouthiaba Ouolof % % % $Z % Fimela $Z Birkelane $ % %% % %% %% %% % % % % % % Kenieb%a $Z %[ $ $Z $ Kaffrine % %% %% %% % %[ Djilor %%% % %%% % %% $Z $ %[ % %%% %% % %% % %% %% %% $ $Z Maka Yop % %%% %%% % Bala % % %% % %% % %% Palmarin Facao $Z % % % % % % % % % %%%%% %% % $ $ $Z % Koumpe%ntoum %% % % $Z D%ougu%e % Djirnda $Z Ndiognick % % % % % Koulor %% % % $ % % %%% $ Koumbal Maleme Hodar %%%% $ % % % $ % % $ $Z % % % %% %% % BassoulDiossong $ $ $ % %% %% % % % $ $ Mabo %%% $ % %% $ Thiare $ Kathiotte % % % % Kothiary % % %% Niodior $ % Koussanar % %%%% % %% %% %%%%%%%%% %% % % $ Ida Mouride % % $ %% %%% % % %% % % Ndiedieng Nganda $ Malem Niani% % %%% % Medin%a $Foulbe% $Z $ $Z % Bani Isr%ael $ $ % %% $ % %% %% %% % Toubacouta Paoskoto $Z %% $ TAMBACOUNDA % %%Ndiarendi %% $ Kayemor $ % % % %% % $Z $ Kahene %% %% % %%% % $ $Z $ % %[ % % %% % $ $Z %[ $ %%Ndog%a Babacar %% %% % %%% % % %% % $ % % % %% Ngayene % %% % % Sad%atou% Keur Samba Gueye $ $ Kahao Fally %% Goumbayel Wack Ngouna % % $ 1 $ $ Prokhane $ % % %% % % % 5 0 % % %% %% % % 0 0 $ Neteboulou % % 0 0 Colibantang % % % % %% $ %% % % 0 0 % %% Missira % %%% % %%% 0 0 % $ % 0 5 % % %% % 1 % % % % % % %%% % % $ % % % %% %% % %%% % % % % % % Gal%o% % Dialacoto % $ % $ Medina Yoro Foula % % $Z Sinthiang Koundara %% % % $ % Nemataba %%% $ % % Ndorna % % $ Medina Gounass %[ Vélingara $ $ %%% Kandia $ Diouloulou Djibidione Fafacourou $ % Missirah Sirimana Bounkiling $ Bonconto $Z $ $ % Sindian $Z Diaroume $Z Djinaki Suel Bona $ Kounkane Linkering Kafountine $ $ $Z $ $ Sare Bidji $ %% $ KOLDA $Z % $ DaboMampatim Saraya %[ $ Mlomp $ KartiackBignona SakarDiannah Malary $Z $Z $ $ $ Ba$gadadji Tomboronkoto $ %[ DjibabouyaSansamba Diende $ $ $Z Paroumba $ $ $ $ $ $Z $Z $ Ouassadou % Karantaba $ $ $Z % 1 4 0 $ Ouonck $ Salikegne Coumbacara 0 0 $Z $ %[ $ $ $ 0 0 $ Sédhiou Tanaff Niangha 0 0 Niamone $ Salemata 0 0 Tendouck $ $Z $ % % 0 4 $ $ Kédougou Adeane $ % 1 %[ Bandafassi %[ Loudia Ouolof $ $Z $ $Z Madina Baffe Enampor Niaguis Bambali $Z $ $ Dakateli Dimboly $Z %% $ $%[ $ $ 30 0 30 60 Kilometers %% $ $Z Nyassia BoutoupaDjibanar $ Kabrousse $Z % $Z $ Sources: Images MODIS, UMD, CSE 300000 400000 500000 600000 700000 800000 900000 Le traitement des données journalières de l’imagerie MODIS a permis de faire des synthèses mensuelles et annuelles des statistiques concernant les feux de brousse. Ces synthèses sont utilisées pour une meilleure compréhension des évolutions