Asian Pear: a Potential Alternative Fruit Crop for Growers in the Mid-Atlantic Region Christopher S

Total Page:16

File Type:pdf, Size:1020Kb

Asian Pear: a Potential Alternative Fruit Crop for Growers in the Mid-Atlantic Region Christopher S HORTSCIENCE 51(11):1325–1328. 2016. doi: 10.21273/HORTSCI10526-16 Asian Pear: A Potential Alternative Fruit Crop for Growers in the Mid-Atlantic Region Christopher S. Walsh1, Julia M. Harshman, Anna E. Wallis, and Amy Barton Williams Department of Plant Science and Landscape Architecture, 2102 Plant Sciences Building, University of Maryland, College Park, MD 20742 Michael J. Newell Wye Research and Education Center, Maryland Agricultural Experiment Station, 124 Wye Narrows Drive, Queenstown, MD 21658 George R. (G.R.) Welsh Western Maryland Research and Education Center, Maryland Agricultural Experiment Station, 18330 Keedysville Road, Keedysville, MD 21756 Additional index words. fire blight, ‘Magness’ pear, pear psylla, rootstocks, precocity, fruit quality Abstract. Production of european pears (Pyrus communis L.) in the eastern United States is limited by a number of physiological and pathological problems. In an attempt to expand sustainable pear production in that region, a series of long-term field trials of asian pear [Pyrus pyrifolia (Burm. F) Nak. (syn. Pyrus serotina L.)] were established at two sites in Maryland. To compare precocity, productivity, and survival, nine asian pear cultivars and three European cultivars were planted in a replicated trial in 2010 at the Wye Research and Education Center (Wye REC). The asian pears were precocious and productive and many trees flowered and fruited in the second leaf. After the fourth leaf, survival of ‘Isi’iwasi’, ‘Shinsui’, ‘Kosui’, and ‘Olympic’ was good, while many ‘Hosui’ and ‘Ya Li’ (asian pear) trees as well as ‘Bartlett’ and ‘Golden Russett’ (european pear) trees had died at that point, following bloom infections of fire blight (Erwinia amylovora). At Keedysville (WMREC), 18 asian pear cultivars in two established plantings were evaluated for their field tolerance to fire blight following a severe hailstorm. The cultivars Shin Li, Daisu Li, Shinsui, and Olympic fared as well as Magness, a fire blight–tolerant european pear cultivar that served as a benchmark in that evaluation. Conversely, ‘Hosui’, ‘Choju’, ‘Kosui’, ‘Seigyoku’, ‘Ya Li’, and ‘Ts’e Li’ were severely damaged. Three consumer tastings were conducted using fruit from the Wye REC trial. ‘Yoinashi’, ‘Atago’, ‘Shinko’, and ‘Olympic’ were well received by consumers. After tasting asian pears, most people, even those less familiar with the crop, reported they would consider purchasing the fruit and requested the names of local producers. Based on our long-term research results, there appears to be a good opportunity for locally produced asian pear fruit. With the correct cultivar selection for fire blight management, local growers should be able to produce this alternative crop sustainably and market their fruit profitably. Production of european pears (P. commu- ‘Bartlett’ (syn. ‘Williams Bon Chretien’) for ‘Magness’ (Miller and Walsh, 1984). Not nis) in the eastern United States is limited by has been the primary pear cultivar grown in long after we began that initial study, we a number of pathological and physiological North America for more than a century. realized that asian pear might be a viable problems, particularly fire blight, a disease O’Rourke (2012) reported that 47% of alternative crop for local fruit growers, as caused by E. amylovora (Burr.) Winslow U.S. commercial production was accounted most cultivars were precocious and pro- et al. This bacterium appears to be indigenous for by a single cultivar, Bartlett, with an duced a marketable crop in their third leaf. to North American Rosaceous plants and was additional three cultivars, Beurre Anjou This was comparable to ‘Gala’ and ‘Fuji’ first reported in the 19th century. Although it (39.3%), Beurre Bosc (11.3%), and Doyenne apple trees on size-controlling rootstocks attacks a variety of fruit crops, european du Comice (1%) accounting for the majority (data not shown). pears are particularly susceptible to tree of the remaining production. Although ‘Bar- Reimer ranked species material for fire damage and death from the disease (Van der tlett’ is well liked for its buttery fruit texture, blight almost 100 years ago (Reimer, 1915). Zwet and Kiel, 1979). flavor, canning value, and tree productivity, it He listed Pyrus ussuriensis as the most is susceptible to fire blight. Hedrick (1921) blight-resistant species, followed by Pyrus stated ‘‘the trees blight badly, and are not calleryana, Pyrus betualaefolia, P. pyrifolia, Received for publication 22 Dec. 2015. Accepted much above average in resistance to blight, the and P. communis, which was the least toler- for publication 21 July 2016. blackplagueofpear.’’ ant. Although some asian pear cultivars were This paper was part of the colloquium ‘‘Alternative To improve pear tree survival, breeding for tested in Maryland in the 1970s (Oitto et al., Specialty Crop: Opportunities and Challenges,’’ fire blight resistance has been a major goal of 1970; van der Zwet and Oitto, 1972), most of presented at the 2015 ASHS Conference, New many North American pear breeding programs. their work focused on older Chinese culti- Orleans, LA, on 4 Aug. 2015, and sponsored by Unfortunately, the sources of resistance used vars, with little testing of japanese and korean the Working Group of Asian Horticulture, Tropical Horticulture Working Group, and Pomology Working frequently resulted in blight-resistant trees such juicy pears (Nashi types). Since pear species Group. as ‘Magness’, which were difficult to crop. This and cultivars have been reported to vary greatly This work was supported by formula funding pro- lack of precocity and productivity of fire in susceptibility to fire blight, it was of interest to vided Maryland Agriculture Experiment Station, blight–tolerant european pears, coupled with know how these cultivars might perform in field competitive funding from MAES’ Competitive the limited cold-hardiness of size-controlling locations prone to severe fire blight outbreaks. Grants Program and the Harry R. Hughes Center for Quince rootstocks have been major reasons Vavilov (1951) noted that there were Agro-Ecology, Inc. why pear production has remained very low three distinct centers of origin for edible We thank the many agricultural technicians and in the eastern United States. Pyrus in Asia; a Near Eastern Center (P. students for their assistance in managing the trees used in this study and Kathleen W. Hunt for her help In an effort to improve pollination suc- communis), Central Asian Center (Pyrus organizing the taste testing at Clarksville and for cess, precocity, and productivity in ‘Mag- korshinsyki and Pyrus boissieriana), and the preparing and editing the final manuscript. ness’ pear plantings, we began testing asian Chinese Center (P. pyrifolia and P. ussur- 1Corresponding author. E-mail: [email protected]. pear trees for their effectiveness as pollinizers iensis). Since the continental climate of the HORTSCIENCE VOL. 51(11) NOVEMBER 2016 1325 Chinese Center more closely resembles that Trial 1: Field studies of precocity, A hailstorm in July 1994 triggered a se- of the Mid-Atlantic Region and Reimer productivity, and tree survival at WyeREC. vere fire-blight epidemic in both of these ranked that material more tolerant to fire To study tree precocity and productivity, nine plantings. Following the hail-induced fire blight, we also hypothesized that some asian pear cultivars (Atago, Hosui, Isi’iwase, blight epidemic, trees were evaluated on their pears from that region might be better Kosui, Olympic, Shinko, Shinsui, Ya Li, and growth and survival in early June 1996 using adapted to our local conditions than P. Yoinashi) and three european pear cultivars a simplified version of the USDA fire blight 5 communis. (Bartlett, Golden Russett, and Potomac) was to 1 rating system (Van der Zwet and Kiel, During the past 30 years, we have planted established at Wye REC. Design was a ran- 1979). and evaluated trees and fruit in five major domized complete block consisting of five field trials. Some of our research has been rows with individual tree replicates blocked 5 = Full canopy, healthy foliage published in nonrefereed journals (Hogmire down the row. Border rows of apple trees were 4 = Full canopy, some chlorotic foliage and Walsh, 1991; Walsh et al., 2011). set east and west of the planting. The orchard 3 = Significant canopy damage, more than Further disseminating the results of this was enclosed inside electrified fencing to half of the canopy remaining research would be valuable to producers in prevent deer damage. 2 = Significant canopy damage, less than the eastern United States, and perhaps other Asian pear trees were propagated onto full- half of the canopy remaining areas with similar growing conditions in- sized Pyrus betulaefolia rootstocks. Trees 1 = Dead tree terested in establishing sustainable orchards, were planted at a medium density, using a particularly for direct-market sales. Two of 4 · 6 m spacing and managed individually. Each tree was evaluated separately by our five long-term studies are described in Trees were hand planted in early Apr. 2010 three of the authors: Amy Barton Williams, this paper. into holes drilled with an auger, and then Christopher S. Walsh, and G.R. Welsh. Fol- trained and pruned to a central-leader system. lowing these individual evaluations, a mean MATERIALS AND METHODS No additional support was provided. score was computed for each tree. Mean Trees were fertilized and managed fol- values for each cultivar and planting were Orchard locations and research plantings. lowing local integrated pest management then analyzed statistically. Asian pear orchards were planted at the (IPM) recommendations (Pfeiffer et al., Fruit quality and consumer acceptance. University of Maryland’s WMREC in Kee- 2014). Fruitlets were removed during the In 2013 and 2014 fruit from the 2010 planting dysville and the WyeREC in Queenstown. second leaf to avoid stunting the trees, then at Wye REC were harvested, hand packed Both sites are located 100 km from Wash- hand thinned in early summer in the third and into tray-packed cartons, and held at 4 °C ington, DC.
Recommended publications
  • 1318-1323 (2009) Ebrahimzadeh Et
    Pharmacologyonline 1: 1318-1323 (2009) Ebrahimzadeh et al . ATIOXIDAT ACTIVITY OF AQUEOUS EXTRACT OF PYRUS BOISSIERIAA FRUIT Ebrahimzadeh M.A. 1*, Nabavi S.M. 1, Nabavi S.F. 1, Eslami B.2 1Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, 48189, Sari, Iran. Tel: +98 151 3543081-3; Fax: +98 151 3543084. [email protected] 2 Department of Biology, Islamic Azad University of Ghaemshahr Summary The antioxidant activity of freeze-dried aqueous extract of Pyrus boissieriana fruit was investigated, employing various established in vitro systems, such as the linoleic acid model system, DPPH, H 2O2 and nitric oxide radical scavenging, reducing power, and Fe 2+ chelating activity. The amount of the total phenolic compounds present was determined according to Folin-Ciocalteu method. Aluminum chloride colorimetric method also was used for Flavonoids contents determination. IC 50 for DPPH was 980 ± 21 µg ml -1. The multiple antioxidant activity of P. boissieriana was evident as it showed moderate nitric oxide and H 2O2 scavenging and weak iron chelating activities. IC 50 for nitric oxide scavenging was 746 ± 54 µg ml -1. The peroxidation inhibition of extract exhibited values from 83.3 % (at 24 th hrs) to 61.9% (at 72 nd hrs). The total phenolic content was 37.87 ± 2.51 mg gallic acid equivalent/g of extract powder. The total flavonoid content was 15.07 ± 0.87 mg quercetin equivalent/g of extract powder, respectively. Key words: Antioxidant activity, DPPH, Iron Ion chelating, Pyrus boissieriana Introduction Living tissues that undertake aerobic metabolism as a source of energy are under constant threat of damage by reactive oxygen derivatives.
    [Show full text]
  • Origin, Domestication, and Dispersing of Pear (Pyrus Spp.)
    Hindawi Publishing Corporation Advances in Agriculture Volume 2014, Article ID 541097, 8 pages http://dx.doi.org/10.1155/2014/541097 Review Article Origin, Domestication, and Dispersing of Pear (Pyrus spp.) G. J. Silva, Tatiane Medeiros Souza, Rosa Lía Barbieri, and Antonio Costa de Oliveira Plant Genomics and Breeding Center, Federal University of Pelotas, 96001-970 Pelotas, RS, Brazil Correspondence should be addressed to Antonio Costa de Oliveira; [email protected] Received 11 March 2014; Accepted 29 April 2014; Published 9 June 2014 Academic Editor: Innocenzo Muzzalupo Copyright © 2014 G. J. Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The pear (Pyrus communis L.) is a typical fruit of temperate regions, having its origin and domestication at two different points, China and Asia Minor until the Middle East. It is the fifth most widely produced fruit in the world, being produced mainly in China, Europe, and the United States. Pear belongs to rosaceous family, being a close “cousin” of the apple, but with some particularities that make this fruit special with a delicate flavor. Thus, it deserves a special attention and a meticulous review of all the history involved, and the recent research devoted to it, because of the economic and cultural importance of this fruit in a range of countries and cultures. Therefore, the purpose of this literature review is to approach the history of the origin, domestication, and dispersal of pears, as well as reporting their botany, their current scenario in the world, and their breeding and conservation.
    [Show full text]
  • Hypoglycemic Activity of Pyrus Biossieriana Buhse Leaf Extract and Arbutin: Inhibitory Effects on Alpha Amylase
    Original Article Hypoglycemic activity of Pyrus biossieriana Buhse leaf extract and arbutin: Inhibitory effects on alpha amylase and alpha glucosidase 1 Fatemeh Yousefi (MSc) Soleiman Mahjoub (PhD) 2, 3 *3, 4 Mahdi Pouramir (PhD) Abstract Fatemeh Khadir (MSc) 1 Background: The mechanism of hypoglycemic and hypolipidemic activities of Pyrus biossieriana Buhse leaf extract (PbBLE) and its phytochemical component arbutin, have not been well determined. The present study was performed to understand the hypoglycemic activity mechanisms of pbBLE and arbutin more clearly. Methods: In vitro enzymatic carbohydrate digestion with PbBLE and arbutin was assessed using α-amylase and α-glucosidase powders. The enzyme solutions were premixed with 1- Babol University of Medical PbBLE and arbutin at different concentrations (0.1, 1, 10 and 100 mg/ml). Substrate Sciences, Babol, Iran. solutions and colorimetric reagents were added to the reaction. The release of glucose was 2- Infertility and Reprodactive determined by spectrophotometric method. Acarbose was used as the positive control. Health Research Center, Babol Results: The extract (10, 100 mg/ ml) completely inhibit α- amylase and α- glucosidase University of Medical Sciences, activities. The extract produced higher reduction of α-amylase and α-glucosidase activity Babol, Iran. than arbutin. Inhibition at various concentrations (0.1, 1, 10, 100 mg/ml) were significantly 3- Department of Biochemistry, Babol University of Medical different (p<0.05). Sciences, Babol, Iran. Conclusion: Our results exhibited that both the extract and arbutin were able to suppress 4- Cellular and Mollecular Biology the enzymes strongly. Research Center, Babol University Keywords: Hypoglycemic; Pyrus biossieriana Buhse extract; Arbutin; α-Amylase/ α- of Medical Sciences, Babol, Iran.
    [Show full text]
  • T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ASYA ARMUT (Pyrus Pyrifolia) ÇEŞİTLERİNİN UŞAK
    T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ASYA ARMUT (Pyrus pyrifolia) ÇEŞİTLERİNİN UŞAK KOŞULLARINDA MORFOLOJİK, FENOLOJİK, POMOLOJİK VE BAZI BİYOKİMYASAL ÖZELLİKLERİNİN BELİRLENMESİ İlker EKİCİ Danışman Doç. Dr. Adnan N. YILDIRIM YÜKSEK LİSANS TEZİ BAHÇE BİTKİLERİ ANABİLİM DALI ISPARTA - 2016 © 2016 [İlker EKİCİ] İÇİNDEKİLER Sayfa İÇİNDEKİLER ................................................................................................... i ÖZET................................................................................................................... iii ABSTRACT ........................................................................................................ iv TEŞEKKÜR ........................................................................................................ v ŞEKİLLER DİZİNİ ............................................................................................. vi ÇİZELGELER DİZİNİ ....................................................................................... vii SİMGELER VE KISALTMALAR DİZİNİ ....................................................... viii 1. GİRİŞ .............................................................................................................. 1 2. KAYNAK ÖZETLERİ ................................................................................... 8 3. MATERYAL VE YÖNTEM .......................................................................... 18 3.1. Materyal ..................................................................................................
    [Show full text]
  • Ukrainian Journal of Ecology
    Ukrainian Journal of Ecology Ukrainian Journal of Ecology, 2018, 8(1), 730–735 doi: 10.15421/2018_273 ORIGINAL ARTICLE UDC 582.734; 582.734.3 The wild pear (Pyrus L., Rosaceae) species in the flora of Azerbaijan Republic A.M. Ibrahimov, A.V. Matsyura Institute of Bioresources of Nakhchivan Section of Azerbaijan National Academy of Sciences AZ 7000. Babek st. 10, Nakhchivan, Azerbaijan Corresponfing author E-mail: [email protected] Altai State University Lenin St. 61, Barnaul, 656049, Altai Krai, Russian Federation E-mail: [email protected] Received: 21.01.2018. Accepted: 06.03.2018 The article provides information about wild pears spread in the Republic of Azerbaijan. It has been revealed that currently 21 species of wild pears belonging to the Pyrus L. genus are known in the flora of Azerbaijan. 17 species of them have been spread in the area of Nakhchivan Autonomous Republic. Pyrus zangеzura Malееv., P. vоrоnоvii Rubtz., P. gеоrgica Kuth., P. demetrii Kuth., P. fedorovii Kuth., P. psuеdоsyriaca Gladkоva., P. chosrovica Gladkova., P. mеgrica Gladkоva, P.caucasica var. schuntukеnsis Tuz., P. salicifolia var. angustifolia Kuth., P. salicifolia var. latifolia Alexenko species have been given firstly for the flora of Azerbaijan and Nakhchivan Autonomous Republic. As a result of climate change and anthropogenic factors in recent years in the Autonomous Republic considering the wild pears of Pyrus boissieriana Buhse (CR A2 abc; C1), P. eldarica Grossh. (CR A2 abc; C1), P. grossheimii Fed. (CR A4 cd; C1), P. hyrcana Fed. (CR A2 abc; C1), P. salicifolia Pall. (NT), P.vsevolodii Heidemann (NT) species rareness and endangering they have been included the Red Book of Azerbaijan, P.
    [Show full text]
  • Arbutin Analysis in Leaves, Fruit and Branches of Pyrus Amygdaliformis Vill
    Ibrahim Bulduk.et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 6, ( Part -5) June 2016, pp.15-24 RESEARCH ARTICLE OPEN ACCESS Arbutin Analysis In Leaves, Fruit And Branches Of Pyrus Amygdaliformis Vill. Var. Amygdaliformis Method Optimization Ibrahim Bulduk*, Mehtap Donmez Sahin** *Uşak University, Health Care Education, Research And Application Center, 64200, Uşak, Turkey. **Uşak University, Health Care Education, Research And Application Center, 64200, Uşak, Turkey. ABSTRACT Arbutin is a derivative of hydroquinone that develops naturally. It is produced in numerous plant species belonging to various families, such as Lamiaceae, Ericaceae, Saxifragaceae and Rosaceae. It is a tyrosinase inhibitor and one of its uses is as a cosmetic skin whitening agent. Pyrus amygdaliformis Vill. var. amygdaliformis, also known as the almond-leaved pear, is a species of plant in the Rosaceae family. It is native to southern Europe, the Mediterranean, and west Asia. In this study, Arbutin was analyzed in leaves, fruits and branches of Pyrus amygdaliformis Vill. var. amygdaliformis and analytical method was optimized. A modeling of the ultrasound assisted extraction of arbutin from leaves, fruits and branches of Pyrus amygdaliformis Vill. var. amygdaliformis was achieved using response surface methodology. A three-level-three-factor Box– Behnken design was implemented with the aim of optimizing three extraction variables, including extraction temperature (X1), extraction time (X2), and methanol concentration (X3), for the achievement of high extraction yield of the arbutin. The optimized conditions are extraction temperature of 43.76 ˚C, methanol concentration of 48.50 %, extraction time of 39.44 min.
    [Show full text]
  • Din Arad Facultatea De Ştiinţe Ale Naturii Flora
    UNIVERSITATEA DE VEST ”VASILE GOLDIŞ” DIN ARAD FACULTATEA DE ŞTIINŢE ALE NATURII IOAN DON FLORA LEMNOASĂ SPONTANĂ ŞI CULTIVATĂ DIN ZONA ARADULUI Rezumatul tezei de doctorat Conducător ştiinţific Prof. Univ. Dr. AUREL ARDELEAN -Arad, 2011- CUPRINS INTRODUCERE ............................................................................................................. 3 SCOPUL CERCETĂRILOR ........................................................................................... 3 OBIECTIVELE URMĂRITE .......................................................................................... 3 ZONA LUATĂ ÎN STUDIU............................................................................................ 4 ISTORICUL CERCETĂRILOR DENDO-BOTANICE.................................................. 4 STADIUL ACTUAL AL CUNOŞTINŢELOR ............................................................... 4 CADRUL FIZICO-GEOGRAFIC AL TERITORIULUI STUDIAT .............................. 4 MATERIAL ŞI METODĂ .............................................................................................. 4 REZULTATE ŞI DISCUŢII ............................................................................................ 5 CONCLUZII .................................................................................................................... 20 BIBLIOGRAFIE SELECTIVĂ ....................................................................................... 21 ANEXA – INDEXUL ALFABETIC AL GENURILOR ................................................ 22 2 INTRODUCERE
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
    _____________ Mun. Ent. Zool. Vol. 3, No. 2, June 2008___________ I MUNIS ENTOMOLOGY & ZOOLOGY Ankara / Turkey II _____________ Mun. Ent. Zool. Vol. 3, No. 2, June 2008___________ Scope: Munis Entomology & Zoology publishes a wide variety of papers on all aspects of Entomology and Zoology from all of the world, including mainly studies on systematics, taxonomy, nomenclature, fauna, biogeography, biodiversity, ecology, morphology, behavior, conservation, paleobiology and other aspects are appropriate topics for papers submitted to Munis Entomology & Zoology. Submission of Manuscripts: Works published or under consideration elsewhere (including on the internet) will not be accepted. At first submission, one double spaced hard copy (text and tables) with figures (may not be original) must be sent to the Editors, Dr. Hüseyin Özdikmen for publication in MEZ. All manuscripts should be submitted as Word file or PDF file in an e-mail attachment. If electronic submission is not possible due to limitations of electronic space at the sending or receiving ends, unavailability of e-mail, etc., we will accept “hard” versions, in triplicate, accompanied by an electronic version stored in a floppy disk, a CD-ROM. Review Process: When submitting manuscripts, all authors provides the name, of at least three qualified experts (they also provide their address, subject fields and e-mails). Then, the editors send to experts to review the papers. The review process should normally be completed within 45-60 days. After reviewing papers by reviwers: Rejected papers are discarded. For accepted papers, authors are asked to modify their papers according to suggestions of the reviewers and editors. Final versions of manuscripts and figures are needed in a digital format.
    [Show full text]
  • Tree Types of the World Map
    Abarema abbottii-Abarema acreana-Abarema adenophora-Abarema alexandri-Abarema asplenifolia-Abarema auriculata-Abarema barbouriana-Abarema barnebyana-Abarema brachystachya-Abarema callejasii-Abarema campestris-Abarema centiflora-Abarema cochleata-Abarema cochliocarpos-Abarema commutata-Abarema curvicarpa-Abarema ferruginea-Abarema filamentosa-Abarema floribunda-Abarema gallorum-Abarema ganymedea-Abarema glauca-Abarema idiopoda-Abarema josephi-Abarema jupunba-Abarema killipii-Abarema laeta-Abarema langsdorffii-Abarema lehmannii-Abarema leucophylla-Abarema levelii-Abarema limae-Abarema longipedunculata-Abarema macradenia-Abarema maestrensis-Abarema mataybifolia-Abarema microcalyx-Abarema nipensis-Abarema obovalis-Abarema obovata-Abarema oppositifolia-Abarema oxyphyllidia-Abarema piresii-Abarema racemiflora-Abarema turbinata-Abarema villifera-Abarema villosa-Abarema zolleriana-Abatia mexicana-Abatia parviflora-Abatia rugosa-Abatia spicata-Abelia corymbosa-Abeliophyllum distichum-Abies alba-Abies amabilis-Abies balsamea-Abies beshanzuensis-Abies bracteata-Abies cephalonica-Abies chensiensis-Abies cilicica-Abies concolor-Abies delavayi-Abies densa-Abies durangensis-Abies fabri-Abies fanjingshanensis-Abies fargesii-Abies firma-Abies forrestii-Abies fraseri-Abies grandis-Abies guatemalensis-Abies hickelii-Abies hidalgensis-Abies holophylla-Abies homolepis-Abies jaliscana-Abies kawakamii-Abies koreana-Abies lasiocarpa-Abies magnifica-Abies mariesii-Abies nebrodensis-Abies nephrolepis-Abies nordmanniana-Abies numidica-Abies pindrow-Abies pinsapo-Abies
    [Show full text]
  • Study of Phyto-Nutrients from Apricot and in Vivo Assessment of Their Bioactivity
    STUDY OF PHYTO-NUTRIENTS FROM APRICOT AND IN VIVO ASSESSMENT OF THEIR BIOACTIVITY MUHAMMAD ASGHAR KHAN 13-arid-2141 Department of Biochemistry Faculty of Sciences Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi Pakistan 2019 STUDY OF PHYTO-NUTRIENTS FROM APRICOT AND IN VIVO ASSESSMENT OF THEIR BIOACTIVITY by MUHAMMAD ASGHAR KHAN (13-arid-2141) A thesis submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Biochemistry Department of Biochemistry Faculty of Sciences Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi Pakistan 2019 Dedicate this humble effort to my whole family whose prayers and affections are the source of strength and sign of success for my future & to my teachers especially my supervisor for guidance, support and encouragement CONTENTS Page List of Tables xiii List of Figures xiv List of Abbreviations xvii Acknowledgments xix Abstract 1 1 INTRODUCTION 3 2 REVIEW OF LITERATURE 15 2.1 APRICOT (Prunus armeniaca) 16 2.1.1 Taxonomy 17 2.2 ETHNOBOTANICAL USES 19 2.3 PHYTOCHEMISTRY OF APRICOT 20 2.4 MINERALS AND THEIR THERAPEUTIC 22 ROLE IN MEDICINAL PLANTS 2.5 REACTIVE OXYGEN SPECIES (ROS) 23 2.6 ANTIOXIDANTS 24 2.7 SYNTHETIC ANTIOXIDANTS 26 2.8 NATURAL ANTIOXIDANTS 29 2.9 PHENOLIC COMPOUNDS 30 2.10 FLAVONOIDS 30 2.11 ANTIOXIDANT IN-VITRO BIOLOGICAL ACTIVITY 33 2.12 APRICOT IN VIVO BIOLOGICAL ACTIVITY 36 2.13 ANTI MICROBIAL EFFECT OF MEDICINAL 36 PLANTS 2.14 ANTI-CANCER ACTIVITY OF MEDICINAL 39 PLANTS 2.15 CARBON TETRACHLORIDE INDUCED LIVER 40 DEMAGE Page 3 MATERIALS AND
    [Show full text]
  • Repositiorio | FAUBA | Artículos De Docentes E
    Trees (2013) 27:1387–1393 DOI 10.1007/s00468-013-0886-9 ORIGINAL PAPER Some physiological and morphological responses of Pyrus boissieriana to flooding Ghasem Ali Parad • Mehrdad Zarafshar • Gustavo Gabriel Striker • Ali Sattarian Received: 26 December 2012 / Revised: 6 March 2013 / Accepted: 20 May 2013 / Published online: 29 May 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract European pear is a flooding-sensitive species, Adventitious rooting was the most conspicuous registered and for its cultivation in lowland areas, it is necessary to morphological response to flooding, despite that flooded carry out the grafting of scions of commercial pear varie- plants had shorter shoots and roots than control plants. Leaf ties into rootstocks belonging to flooding-tolerant wild pear and root biomass were 63 and 89 % higher under short- species. Flooding tolerance of Pyrus boissieriana—a type term flooding (F ? R) than under continuous flooding (F), of wild pear—was studied as a promissory rootstock for condition in which plants did not survive. In conclusion, commercial pear. For this purpose, 3-month-old plants of P. boissieriana appears to be a promising species for its use P. boissieriana were subjected for 30 days to control (C), as rootstock of commercial pear in lowland areas prone to well-irrigated treatment, short-term (15 days) flooding plus flooding of up to 2 weeks. However, if the flooding period 15 days recovery (F ? R) and long-term (30 days) con- is extended, plants of this species are at risk of perishing. tinuous flooding (F). Physiological performance, plant morphological changes and biomass accumulation were Keywords Adventitious rooting Á Flooding tolerance Á assessed.
    [Show full text]
  • Conservation and Sustainable Use of Biodiversity of Fruit Crops and Wild Fruit Species
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CGSpace Conservation and sustainable use of biodiversity of fruit crops and wild fruit species Proceedings of the International scientific and practical conference 23-26 August 2011, Tashkent, Uzbekistan M.K. Turdieva, A.K. Kayimov, K.I. Baymetov, F.U. Mustafina, E.A. Butkov, editors c Conservation and sustainable use of biodiversity of fruit crops and wild fruit species Proceedings of the International scientific and practical conference 23-26 August 2011, Tashkent, Uzbekistan M.K. Turdieva, A.K. Kayimov, K.I. Baymetov, F.U. Mustafina, E.A. Butkov, editors This publication presents part of the findings of the regional GEF project “In situ/ on farm conservation and use of agricultural biodiversity (horticultural crops and wild fruit species) in Central Asia” implemented in five countries - Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan. The project is coordinated by Bioversity International (IPGRI) with financing from the Global Environmental Facility (GEF), and implementation support from the United Nations Environment Program (UNEP). Bioversity International is a research-for-development organization working with partners worldwide to use and conserve agricultural and forest biodiversity for improved livelihoods, nutrition, sustainability and productive and resilient ecosystems.Bioversity International is working towards a world in which smallholder farming communities in developing countries of Africa, Asia and the Americas are thriving and sustainable. Bioversity International focuses on rain-fed farming systems, primarily managed by smallholder farmers, in areas where large- scale agriculture is not a viable option. Its research influences policy decisions and investment in agricultural research, from the local level to the global level.
    [Show full text]