Origin, Domestication, and Dispersing of Pear (Pyrus Spp.)

Total Page:16

File Type:pdf, Size:1020Kb

Origin, Domestication, and Dispersing of Pear (Pyrus Spp.) Hindawi Publishing Corporation Advances in Agriculture Volume 2014, Article ID 541097, 8 pages http://dx.doi.org/10.1155/2014/541097 Review Article Origin, Domestication, and Dispersing of Pear (Pyrus spp.) G. J. Silva, Tatiane Medeiros Souza, Rosa Lía Barbieri, and Antonio Costa de Oliveira Plant Genomics and Breeding Center, Federal University of Pelotas, 96001-970 Pelotas, RS, Brazil Correspondence should be addressed to Antonio Costa de Oliveira; [email protected] Received 11 March 2014; Accepted 29 April 2014; Published 9 June 2014 Academic Editor: Innocenzo Muzzalupo Copyright © 2014 G. J. Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The pear (Pyrus communis L.) is a typical fruit of temperate regions, having its origin and domestication at two different points, China and Asia Minor until the Middle East. It is the fifth most widely produced fruit in the world, being produced mainly in China, Europe, and the United States. Pear belongs to rosaceous family, being a close “cousin” of the apple, but with some particularities that make this fruit special with a delicate flavor. Thus, it deserves a special attention and a meticulous review of all the history involved, and the recent research devoted to it, because of the economic and cultural importance of this fruit in a range of countries and cultures. Therefore, the purpose of this literature review is to approach the history of the origin, domestication, and dispersal of pears, as well as reporting their botany, their current scenario in the world, and their breeding and conservation. 1. Introduction such as Iran, Uzbekistan, China, Japan, Korea, and Bhutan. Commercially, it is divided into two major groups: European Pear, a typical fruit of temperate climates, with delicate and Asian pears. The first, with elongated and full-bodied pleasant taste and smooth, has a wide acceptance throughout texture, and the second, with sandy texture and rounded the world. By its shape, it inspires designers and architects. body, make this fruit the ninth in world production, being The fruit pleases generations; already in 1661, Jean-Baptiste de mainly a commodity in China [2–4]. LaQuintinie,lawyerandbotanist,responsibleforthegardens of the Versailles palace, passionate about the cultivation of pears, wrote in reports: “It must be confessed that, among all 2. Taxonomy, Origin, and Speciation fruitsinthisplace,naturedoesnotshowanythingsobeautiful norsonobleasthispear.Itispearthatmakesthegreatest The name pear is derived from Latin, pera or pira,withsome honor on the tables...” variants like in French as poire,inGermanaspeer, and in The pear is mainly consumed in natura, pies, cakes, Greece as acras as wild type and apios as cultivated pear. accompanying strong cheese or carpaccio, risotto, jams, and It belongs to Equisetopsida C. Agardh class of vascular ice creams and is a great fruit to be consumed in diets because plants, Magnoliidae Novak´ ex Takht subclass, characterized of its low caloric value. It has high nutritional value with by plants that have ribbed leaves and flowers. Belonging to the reasonable amounts of vitamins A, B1, B2, B3, and C and Rosales Bercht. & J.Presl order, and Rosaceae Juss family, with minerals like sodium, potassium, phosphorus, calcium, mag- hermaphrodite flowers, polypetalae and perigynics stamens, nesium, and iron. It has a lot of fiber, giving excellent results the pear, of Pyrus L., gender is a fruit of big importance for the in the treatment of constipation and intestine inflammation. agriculture of latitude moderate countries, being cultivated Many recommend pears to cure anomalies such as cystitis onalargescaleinChina,WesternEurope,andtheUnited and kidney stones [1]. States [5–7]. Belonging to the genus Pyrus, which originated in the The Maloideae subfamily, where the Pyrus gender Tertiary period, in Western China, the pear had its dispersion belongs, has a basic chromosome number as =17,which from northern Italy, Switzerland, former Yugoslavia, Ger- is fair if compared with other species of Rosaceae, where many,Greece,Moldova,andUkrainetotheEast,incountries =7or =9. Of the three hypotheses that emerged 2 Advances in Agriculture from the 1920s to explain the event, the most accepted (Table 2). Studies indicate that there is a large genetic distance theory [8] suggests an allotetraploid or allopolyploid from between these two groups [21]. The first is focusing on the cross between two primitive forms of Rosaceae family, most cultivated pears, found in Europe, North Africa, Asia Prunoideae with =8and Spiraeoideae with =9.This Minor, Iran, part of Soviet Central Asia, and Afghanistan. theory was based on the observation of a predominance of The second group includes species that are concentrated in univalent (unpaired chromosomes) and not from multivalent East Asia, the Tien-Shan and Hindu Kush mountains, and chromosomes during meiosis. Subsequently, isozyme studies Japan. In the latter, there is a very large group of cultivars supported this theory [9]. Most cultivated pears are diploid in China and Japan [11, 22]. Currently there are several (2 = 34), but there are a few polyploid cultivars of P. works that aim to estimate the genetic distance among the communis and Pyrus × bretschneideri. According to some different cultivars, concentrated in gene banks and breeding authors [9], the speciation of Pyrus occurred without a programs. change in chromosome number. It is believed that gender Researchers at the University of Lleida (UDL-ETSIA) Pyrus originated during the Tertiary period (65 to 55 million couldestimatethegeneticdistanceof141Spanishaccessions years ago) in the mountainous regions of western China of P. communis (past and current) through eight SSR markers. where a very large number of species of the gender Pomoideae Thirteen well-known Spanish cultivars that represent their and Prunoideae are concentrated. Taking into consideration diversity were also used, but all thirteen were grouped into the areas of distribution of the various genres of Pomoideae, a single cluster, showing the narrow genetic base of cultivars it is likely that the common ancestor of these was widely P. communis in Spain, mainly caused by market demands distributed in that territory during the Cretaceous or Pale- [23]. ocene and prior to the Tertiary. Evidence suggests that pear Another study was conducted by a group of Chinese dispersion and speciation followed the mountain ranges to researchers, in which, through six SSR markers, it was possi- both the east and the west [10, 11]. In this period, only ble to verify the genetic distance of 98 species of Pyrus,includ- fewtracesofleavesinsomelocalitiesfromeasternEurope ing 51 Pyrifolia, Japanese and Chinese Pyrus,11P. ussuriensis, and the Caucasus were found, as the village of Parschlug, 24 Chinese white pears, six wild types, two Korean species, Austria, and the Kakhetia mountains, where Pyrus theobroma two P. communis cultivars, and 2 unidentified types. The fossils were found. Whereas in eastern Georgia, Horizon results showed the grouping of these cultivars in 10 groups, Akchagyl, Azerbaijan, and Turkey, Pyrus communis L. fossil with 4 groups composed of white and sandy pears of Chinese leaves were also found. In postglacial records, traces of andJapaneseorigin.TheresultsshowedthatJapaneseculti- fruits were found in lacustrine deposits in Switzerland and vars have as parents, Chinese sandy pear. Western cultivars Italy [12]. It is believed that the process of domestication formed separated and distant groups from the eastern pears followed what is currently seen in the Caucasus, where one [24]. can find many types of pear trees that grow abundantly Many studies have been conducted in the context to [13]. identify genetic variations and clustering of populations of There are two domestication centers and primary origin cultivated pear in China, since the fruit is a commodity of of the genus Pyrus: the first is located in China, the second greatimportancetothiscountry,asastudyof233landraces located in Asia Minor to the Middle East, in the Caucasus of P. py r ifoli a , the “sandy pear,”was able to determine the level mountains, and a third secondary center located in Central of genetic diversity and relatedness of companies by 14 SSR Asia [14, 15]. markers [25]. The number of cataloged species varies greatly according In 2013, the pear genome sequencing was completed to the interpretation of each author, 20 to 75 species [16]. by combining the illumina sequencing technology and a There are 23 wild species cataloged, all native to Europe, BAC by BAC (bacterial artificial chromosome) strategy in an temperate Asia, and northern mountainous regions of Africa Asian pear named “Suli” [26]. This strategy minimized the [7, 17, 18]. Pears are classified into three groups according limitation of the sequencing of a heterozygous genome. The to the number of carpels and fruit size: small fruits that results showed a frequency of 1.02% of SNPs and 53.1% of have two carpels known as Asian pears, large fruits with repeated sequences in the pear genome. It was verified that five carpels, and fruits with three to four carpels that are the genomic portion of pear and apple is very similar, and the hybridsoffruitsmentionedabove.Asianpearshavea major differences between them are the repeated sequences crisp texture, while the European pear has a buttery
Recommended publications
  • Pyrus Calleryana James T
    Invasive Plant Science and Efficacy of five herbicide treatments for control Management of Pyrus calleryana www.cambridge.org/inp James T. Vogt1 , David R. Coyle2, David Jenkins3, Chris Barnes4, Christopher Crowe5, Scott Horn6, Chip Bates4 and Francis A. Roesch7 Research Article 1Project Leader, USDA Forest Service, Southern Research Station, Athens, GA, USA; 2Assistant Professor, Forest Health and Invasive Species, Clemson University, Forestry and Environmental Conservation Department, Cite this article: Vogt JT, Coyle DR, Jenkins D, Clemson, SC, USA; 3Forest Health Program Coordinator, South Carolina Forestry Commission, Columbia, SC, Barnes C, Crowe C, Horn S, Bates C, and USA; 4Forest Health Specialist, Georgia Forestry Commission, Macon, GA, USA; 5Forestry Technician, USDA Roesch FA (2020) Efficacy of five herbicide Forest Service, Southern Research Station, Athens, GA, USA; 6Entomologist, USDA Forest Service, Southern treatments for control of Pyrus calleryana. Research Station, Athens, GA, USA and 7Research Statistician, USDA Forest Service, Southern Research Station, Invasive Plant Sci. Manag 13:252–257. Asheville, NC, USA doi: 10.1017/inp.2020.36 Received: 23 June 2020 Abstract Revised: 18 September 2020 Accepted: 10 November 2020 Callery pear (Pyrus calleryana Decne.) is rapidly spreading in the United States, gaining atten- First published online: 17 November 2020 tion in the last two decades as a serious invasive pest. Recommended control methods include foliar, basal bark, cut stump, and hack-and-squirt application of herbicides, but there are few Associate Editor: published studies with replicated data on efficacy. Four readily available herbicidal active ingre- James K. Leary, University of Florida dients and a combination of two active ingredients were tested for control efficacy against Keywords: P.
    [Show full text]
  • Planting and Aftercare of New Trees
    Where to start? • Fruit plants that fit into to small spaces Producing Fruit for the Home – Apple … on dwarfing rootstocks • Most traditional and local garden centers do not identify specific rootstock ….”Dwarf”, “Semi Dwarf” Ron Perry • Eventual tree size within Dwarf and Semi Dwarf is large Professor Tree Spacing Nursery ID Hort. Department Rootstocks Eventual Height Between Trees Between Rows MSU M.27 or P.22 Dwarf 6 5 10 M.9 Dwarf 8 8 12 M.26 Dwarf 16 10 16 M.7 Semi Dwarf 18 14 22 MM.106 or 111 Semi Dwarf 20 16 22 Where to start? Where to start? • Fruit plants that fit into to small spaces – Cherry - Sour • Select desired fruit which will grow in your area. Tree Spacing Rootstocks • Determine how much space you have available. Varieties Eventual Height Between Trees Between Rows Northstar Mahaleb 10 8 12 • Select varieties which are easiest to grow. Montmorency Gi.5 or 6 12 10 12 Montmorency Mahaleb 12 10 14 – Disease or insect resistant varieties to reduce pest Montmorency Mazzard 14 12 16 pressures. Balaton Mahaleb 14 12 16 – Cherry - Sweet – Assess soil / site conditions Tree Spacing • Full sun VS shade or partial Nursery ID • Soil internal drainage Rootstocks Eventual Height Between Trees Between Rows • Weed competition (lawns are too competitive) Gi.5 Dwarf 12 12 16 Gi.6 Dwarf 14 14 16 Mahaleb Semi Dwarf 20 14 16 Mazzard Semi Dwarf 24 16 20 Average Annual Minimum Temperatures Where to start? (USDA Plant Hardiness Zone Map) Most MI fruit sites Zone 5 (-20oF to -10oF) to 6 (-10oF to 0oF) • Fruit plants that fit into to small spaces – Peach, Nectarine, Apricot and Plums – Can generally plant at a spacing of 10 ft X 15 ft* • * If trained to open center or vase shape • Closer spacing, needs to be trained in Chistmas Tree form (Vertical Axe).
    [Show full text]
  • Callery Pear, Bradford Pear Pyrus Calleryana Rosaceae
    CORNELL COOPERATIVE EXTENSION OF 121 Second Street Oriskany, NY 13424-9799 ONEIDA COUNTY (315) 736-3394 or (315) 337-2531 FAX: (315) 736-2580 Callery Pear, Bradford Pear Pyrus calleryana Rosaceae Habitat Native to Korea and Japan Zone 5 Habit and Form A medium-sized deciduous tree Tear-drop shaped in youth and spreading out with age 30' to 40' tall and about one-third as wide Fast growth rate Medium texture Summer Foliage Alternate, deciduous leaves Simple, ovate leaves with crenate margins Leaves are leathery and usually quite glabrous 2" to 3" long and almost as wide Leaves are held on a long petiole, almost 2" glossy, dark green leaf color Autumn Foliage Reds, purples, and oranges Very attractive leaves tend to hold late, freezes could happen before color fully develops Flowers White flowers Flower form corymbs about 3" in diameter Usually flowers peak before leaf set Helping You Put Knowledge to Work Cornell Cooperative Extension provides equal program and employment opportunities. NYS College of Agriculture and Life Sciences, NYS College of Human Ecology, and NYS College of Veterinary Medicine at Cornell University, Cooperative Extension associations, county governing bodies, and U.S. Department of Agriculture, cooperating. Flowers late April to early May Very attractive, slightly malodorous Fruit Round pome fruit Small, only about 0.5" in diameter Fruit is covered in russet dots Olive-brown to tan color, not ornamentally significant Bark Light brown to gray, develops horizontal lenticels with age Culture
    [Show full text]
  • Natural Fermentation of Pyrus Communis (Pear) Mesocarp by Associated Consortium Fungal Species
    obiolog Adedeji and Audu, J Microbiol Pathol 2018, 2:1 icr y & M P f a o t l h a o n l o r g u y o J Journal of Microbiology and Pathology Research Article Article OpenOpen Access Access Natural Fermentation of Pyrus communis (Pear) Mesocarp by Associated Consortium Fungal Species Oluwatosin Adewusi Adedeji* and Temitope Mulikat Audu Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ife, Nigeria Abstract This study was conducted to evaluate the effect of associated consortium fungal species on the natural fermentation of the mesocarp of Pyrus communis (Pear). The combined role played by the fungi (moulds and yeasts) involve in the natural fermentation of the Pear mesocarp were also investigated. Fresh and ripe pears were washed and surface sterilized with ethanol. The mesocarp was then scraped into a bowl and covered with a net to allow the action of aerobic fermentation for 50 days. Fungi were isolated from the samples at interval of 5 days. The morphological, microscopic and biochemical characteristics as well as the fungal count were also carried out according to standard methods. The physicochemical parameters of the pear’s mesocarp such as pH, total titrable acidity (TTA), moisture contents and total reducing sugar were also determined at every 5 days according to standard methods. The results showed that there were eight strains of mould namely: Aspergillus niger, Aspergillus flavus, Aspergillus oryzae, Aspergillus fumigatus, Mucor mucedo, Penicillum frequentas, Penicillum chrysogemun and Fusarium solani; and three strains of yeasts namely Saccharomyces cerivisae, Schizoaccharomyces pombe and Saccharomyces ludwigii were identified to be involved in the fermentation process for the fifty days.
    [Show full text]
  • Effect of Maturity on the Phenolic Compositions of Pear Juice and Cell Wall Effects on Procyanidins Transfer
    Effect of maturity on the phenolic compositions ofpear juice and cell wall effects on procyanidins transfer Marwa Brahem, Severin Eder, Catherine Renard, Michele Loonis, Carine Le Bourvellec To cite this version: Marwa Brahem, Severin Eder, Catherine Renard, Michele Loonis, Carine Le Bourvellec. Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT - Food Science and Technology, Elsevier, 2017, 85, pp.380-384. 10.1016/j.lwt.2016.09.009. hal-02619109 HAL Id: hal-02619109 https://hal.inrae.fr/hal-02619109 Submitted on 25 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Version définitive du manuscrit publiée dans / Final version of the manuscript published in : LWT – Food Science and Technology (2016), DOI: 10.1016/j.lwt.2016.09.009 Journal homepage : http://www.elsevier.com/locate/lwt ipt cr nus a m Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer / Author * r Marwa Brahem , Severin Eder, Catherine M.G.C. Renard, Michele Loonis, u e Carine Le Bourvellec ut UMR408 SQPOV (Securite et Qualite des Produits d'Origine Vegetale), INRA, Avignon University, F-84000 Avignon, France ’a it d cr article info abstract nus a Article history: Perry pear polyphenols were characterized in fruit, juice and pomace for two cultivars and at two M Received 28 June 2016 maturity stage.
    [Show full text]
  • Asian Pear: a Potential Alternative Fruit Crop for Growers in the Mid-Atlantic Region Christopher S
    HORTSCIENCE 51(11):1325–1328. 2016. doi: 10.21273/HORTSCI10526-16 Asian Pear: A Potential Alternative Fruit Crop for Growers in the Mid-Atlantic Region Christopher S. Walsh1, Julia M. Harshman, Anna E. Wallis, and Amy Barton Williams Department of Plant Science and Landscape Architecture, 2102 Plant Sciences Building, University of Maryland, College Park, MD 20742 Michael J. Newell Wye Research and Education Center, Maryland Agricultural Experiment Station, 124 Wye Narrows Drive, Queenstown, MD 21658 George R. (G.R.) Welsh Western Maryland Research and Education Center, Maryland Agricultural Experiment Station, 18330 Keedysville Road, Keedysville, MD 21756 Additional index words. fire blight, ‘Magness’ pear, pear psylla, rootstocks, precocity, fruit quality Abstract. Production of european pears (Pyrus communis L.) in the eastern United States is limited by a number of physiological and pathological problems. In an attempt to expand sustainable pear production in that region, a series of long-term field trials of asian pear [Pyrus pyrifolia (Burm. F) Nak. (syn. Pyrus serotina L.)] were established at two sites in Maryland. To compare precocity, productivity, and survival, nine asian pear cultivars and three European cultivars were planted in a replicated trial in 2010 at the Wye Research and Education Center (Wye REC). The asian pears were precocious and productive and many trees flowered and fruited in the second leaf. After the fourth leaf, survival of ‘Isi’iwasi’, ‘Shinsui’, ‘Kosui’, and ‘Olympic’ was good, while many ‘Hosui’ and ‘Ya Li’ (asian pear) trees as well as ‘Bartlett’ and ‘Golden Russett’ (european pear) trees had died at that point, following bloom infections of fire blight (Erwinia amylovora).
    [Show full text]
  • May 2016 Vol. 345 Annual Board Elections
    May 2016 Vol. 345 Summer Is Almost Here Summer is almost here and I know everyone is aching to hit the May Special Events pools and the beach. Well the time is right around the corner and with at the Country Club a new season comes some new things. All areas will open on Memorial Day weekend with a Volleyball Tourney Saturday at 12:00, and the Beach Bash on Monday at 12:00. Water Aerobics begin May 31st, operating Monday-Friday from 10:00-11:00am at the Country Club pool. The Recreation Department and The Recreation Committee are always in need of members and volunteers to pull off some of the wonderful events happening here in Fairfield Plantation. If you or someone you know has that outgoing spirit and would like to help bring more summer fun to the community, please feel free to contact the Recreation Department at 770-830-7124 or email [email protected]. Wine, Dine and Dance FAIRFIELD PLANTATION WHERE THE FUN NEVER ENDS!!! May 7th, 7-11pm Keith James, Recreation Director Buffet dinner served at 7:30 Annual Board Elections – Calling all Candidates $30 per person, The Board of Directors and the POA Management encourages property owners to Includes glass of wine with dinner participate in our community through volunteerism on committees and the Board of Music by DJ Arman Directors. Three property owners will be elected at the 2016 POA Annual Meeting by a Tickets available at Country Club majority vote of the Fairfield Plantation Property Owners. POA directors are elected for three year terms.
    [Show full text]
  • Characterization of Oleaster-Leafed Pear (Pyrus Elaeagrifolia Pall
    agronomy Article Characterization of Oleaster-Leafed Pear (Pyrus elaeagrifolia Pall. subsp. elaeagrifolia) Fruits in Turkey Halil Ibrahim Sagbas 1 , Gulce Ilhan 1, Sezai Ercisli 1 , Muhammad Akbar Anjum 2 and VojtˇechHolubec 3,* 1 Department of Horticulture, Agricultural Faculty, Ataturk University, 25240 Erzurum, Turkey; [email protected] (H.I.S.); [email protected] (G.I.); [email protected] (S.E.) 2 Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800 Multan, Pakistan; [email protected] 3 Department of Gene Bank, Crop Research Institute, Drnovská 507, Prague 6—Ruzynˇe, 161 06 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-233-022-497 Abstract: Oleaster-leafed pear (Pyrus elaeagrifolia Pall. subsp. elaeagrifolia) fruits are used for food and dietary supplements in Turkey, and seedlings are used as rootstock for pear cultivars. Information on the effect of genotypes on oleaster-leafed pear fruit characteristics is needed in order to optimize production of quality food and dietary supplements. The characteristics of oleaster-leafed pear fruits relative to genetic background were evaluated from 16 wild grown oleaster-leafed pear genotypes at eastern Turkey. Genotype influenced ripening dates, fruit weight, fruit length/width ratio, fruit pedicel length, fruit flesh texture, fruit firmness, the number of seeds per fruit, soluble solid content, titratable acidity, total phenolic content, total flavonoid content and antioxidant activity. Analysis of the data obtained from 16 oleaster-leafed pear genotypes demonstrated a highly significant influence of genotype on fruit characteristics. The genotypes G12, G13 and G9 had the highest fruit weight (19.22, 18.54 and 18.30 g) and G9 the highest total phenolic content (122 mg gallic acid Citation: Sagbas, H.I.; Ilhan, G.; equivalent/100 g fresh fruit).
    [Show full text]
  • Pyrus Communis (L.)
    CPVO-TP/015/1 Final Date: 27/03/2003 EUROPEAN UNION COMMUNITY PLANT VARIETY OFFICE PROTOCOL FOR DISTINCTNESS, UNIFORMITY AND STABILITY TESTS Pyrus communis (L.) PEAR UPOV Species Code: PYRUS_COM Adopted on 27/03/2003 CPVO-TP/015/1 Final Date: 27/03/2003 I SUBJECT OF THE PROTOCOL The protocol describes the technical procedures to be followed in order to meet the Council Regulation 2100/94 on Community Plant Variety Rights. The technical procedures have been agreed by the Administrative Council and are based on general UPOV Document TG/1/3 and UPOV Guideline TG/15/3 dated 04/05/2000 for the conduct of tests for Distinctness, Uniformity and Stability. This protocol applies to fruit varieties of Pyrus communis L. II SUBMISSION OF PLANT MATERIAL 1. The Community Plant Variety Office (CPVO) is responsible for informing the applicant of • the closing date for the receipt of plant material; • the minimum amount and quality of plant material required; • the examination office to which material is to be sent. A sub-sample of the material submitted for test will be held in the variety collection as the definitive sample of the candidate variety. The applicant is responsible for ensuring compliance with any customs and plant health requirements. 2. Final dates for receipt of documentation and material by the Examination Office The final dates for receipt of requests, technical questionnaires and the final date or submission period for plant material will be decided by the CPVO and each Examination Office chosen. The Examination Office is responsible for immediately acknowledging the receipt of requests for testing, and technical questionnaires.
    [Show full text]
  • Tree Planting and Management
    COMMONWEALTH WAR GRAVES COMMISSION Tree Planting and Management Breadth of Opportunity The spread of the Commission's responsibilities over some 148 countries in temperate, mediterranean, tropical and desert climates provides wonderful opportunities to experiment with nature's wealth of tree species. We are particularly fortunate in being able to grow many interesting and beautiful trees and we will explain how we manage them and what splendid specimens they can make. Why Plant Trees? Trees are planted for a variety of reasons: their amenity value, leaf shape and size, flowers, fruit, habit, form, bark, landscape value, shelter or screening, backcloth planting, shade, noise and pollution reduction, soil stabilisation and to encourage wild life. Often we plant trees solely for their amenity value. That is, the beauty of the tree itself. This can be from the leaves such as those in Robinia pseudoacacia 'Frisia', the flowers in the tropical tree Tabebuia or Albizia, the crimson stems of the sealing wax palm (Cyrtostachys renda), or the fruit as in Magnolia grandiflora. above: Sealing wax palms at Taiping War Cemetery, Malaysia with insert of the fruit of Magnolia grandiflora Selection Generally speaking the form of the left: The tropical tree Tabebuia tree is very often a major contributing factor and this, together with a sound knowledge of below: Flowers of the tropical the situation in which the tree is to tree Albizia julibrissin be grown, guides the decision to the best choice of species. Exposure is a major limitation to the free choice of species in northern Europe especially and trees such as Sorbus, Betula, Tilia, Fraxinus, Crataegus and fastigiate yews play an important role in any landscape design where the elements are seriously against a wider selection.
    [Show full text]
  • PRE Evaluation Report for Pyrus Calleryana 'Glen's Form
    PRE Evaluation Report -- Pyrus calleryana 'Glen's Form' CHANTICLEER Plant Risk Evaluator -- PRE™ Evaluation Report Pyrus calleryana 'Glen's Form' CHANTICLEER -- Illinois 2017 Farm Bill PRE Project PRE Score: 17 -- Reject (high risk of invasiveness) Confidence: 74 / 100 Questions answered: 19 of 20 -- Valid (80% or more questions answered) Privacy: Public Status: Completed Evaluation Date: April 30, 2017 This PDF was created on June 15, 2018 Page 1/20 PRE Evaluation Report -- Pyrus calleryana 'Glen's Form' CHANTICLEER Plant Evaluated Pyrus calleryana 'Glen's Form' CHANTICLEER Image by Learn2Grow Page 2/20 PRE Evaluation Report -- Pyrus calleryana 'Glen's Form' CHANTICLEER Evaluation Overview A PRE™ screener conducted a literature review for this plant (Pyrus calleryana 'Glen's Form' CHANTICLEER) in an effort to understand the invasive history, reproductive strategies, and the impact, if any, on the region's native plants and animals. This research reflects the data available at the time this evaluation was conducted. General Information Status: Completed Screener: Emily Russell Evaluation Date: April 30, 2017 Plant Information Plant: Pyrus calleryana 'Glen's Form' CHANTICLEER If the plant is a cultivar, how does its behavior differs from its parent's? 'Glen's Form' has a narrower habit than the species and it is thornless. It is reported to have good resistance to fireblight and to be slightly more cold hardy and less prone to breakage than other cultivars. It was selected by Scanlon Nursery in 1959, and patented in 1965. Chanticleer is a registered trademark and the correct cultivar name is 'Glen's Form.' This plant is also sold under the names Cleveland Select, Faurie, and Stonehill, which have been shown to be genetically identical, all originating from the same street tree in Cleveland, Ohio.
    [Show full text]
  • Pyrus Salicifolia 'Pendula'
    http://www.vdberk.ru/derevya/pyrus-salicifolia-pendula/ Rosaceae Pyrus Pyrus salicifolia 'Pendula' Height 5 - 6 m ????? broad weeping, half-open crown ???? ? ????? bark silvery grey, young twigs silvery white ???? narrow elliptical to lanceolate, velvety white, 4 - 9 cm long ????? in umbels, creamy-white, Ø approx. 2.5 cm, April/May ????? pear-shaped, green with brown lenticels, 2 – 3 cm ???????/???? none ?????????? ?????????? (??????) ??? ????? places little demands ????????? ????? suitable for dry soil ??????? tolerates paving ????????????? 5b (-26,0 to -23,4 °C) Wind resistance good ?????, ?????, ???? resistant to frost (WH 1 - 6) ??????????? ? ????? light-loving ??????-????? ???????? ??? valuable for bees (honey plant), provides food for birds ???????? ?????, ????? ??? ????????, ????? ????????????, ????????, ???? ?? ?????, ?????????, ?????????? ???????????? ????, ??????? ????, ????????? ????, ?????????? ??????? ???/????? ????????? ??????, ????????????? ??????, ?????????? ??????, ??????? Origin unknown Broadly growing weeping tree with protruding, pendulous branches with thin twigs that grow straight downward. The height is approx 5 -6 m and the tree often grows equally broad. The bark is silvery grey, twigs are lighter grey. Young twigs in particular are slightly hairy. The twigs have irregular thorns. The narrow elliptical to leaceolate leaves are grey-white, later greyish green and have a velvety hair. The underside remains grey-white and practically bare. The leaf is very similar to willow leaves (salicifolia = willow leaf) and remains on the tree until late in the autumn. The creamy white flowers grow in umbels of 6 – 8 together and appear at the same time as the leaves. They do not stand out very well amidst the silvery grey leaves. Places little demands on the soil. Tolerates dry conditions. More weeping manner of growth than the species and thus used more frequently. © Copyright Boomkwekerij Gebr. Van den Berk B.V. 2021.
    [Show full text]