Welfare Considerations in Aquatic Animals Colin Johnston BVMS(Hons) Macvsc MRCVS Manager, Aquatic Animal Health Primary Industries and Resources South Australia

Total Page:16

File Type:pdf, Size:1020Kb

Welfare Considerations in Aquatic Animals Colin Johnston BVMS(Hons) Macvsc MRCVS Manager, Aquatic Animal Health Primary Industries and Resources South Australia NEWS Volume 16 Number 2 2003 Welfare Considerations in Aquatic Animals Colin Johnston BVMS(Hons) MACVSc MRCVS Manager, Aquatic Animal Health Primary Industries and Resources South Australia ublic interest in animal welfare issues has increased are protected in their use for food preparation and transport for steadily over recent years. The ease of access to the restaurant trade, whilst fish are also protected in their use Pinformation via the internet allows people to do home for research and teaching. Fish are afforded protection as a research on whatever topic interests them. A quick scan of the vertebrate under the Australian Code of Practice for the Care internet on “animal welfare” and it’s easy to see that animal and Use of Animals for Scientific Purposes. This code of practice welfare pressure groups predominate in the top twenty or thirty is enacted under law according to State or Territory legislation, documents regardless of the search engine used. The and in South Australia most institutions also have a requirement information provided varies from peer-reviewed science, through that the Animal Ethics Committee approves all research involving empirical comment (positive or negative) to the blatantly untrue. vertebrates. Many societal groups are now becoming increasingly interested in animal welfare and not just that of animals seen as being the It is not just in the scientific and educational fields that the welfare most appealing. Animal welfare pressure groups have of aquatic animals is coming under scrutiny. The field of highlighted recreational fishing as a welfare concern for a aquaculture is also starting to develop formalised codes of number of years. Recently public interest has been piqued by practice and transparent audit schemes to demonstrate a high such previously unconsidered animals as the rock lobster. The standard of animal welfare. It is commonplace now in the message is clear; animal welfare is important; it must be Northern Hemisphere for the major retail chains to insist that considered by all sectors using animals; welfare-friendly the primary producers growing fish for their supermarkets adhere management systems must be in place and those systems must to detailed codes of practice. These codes of practice cover be progressive and transparent to engender faith in the users the whole life cycle of the fish from egg to harvest and include of animals. There is an obligation on all individuals to treat the for example: animals in their care humanely and with respect. This includes • stocking rates in hatchery tanks; aquatic animals such as fish, molluscs and crustaceans. • light levels in hatchery buildings; water flow rate through tanks; In Australia each State or Territory enacts its own legislation • with regard to animal welfare. Most States and Territories include • dissolved gas concentrations permissible (oxygen and fish within their animal welfare legislation, the exception being carbon dioxide); South Australia. Recent reviews of legislation in New South • feeding standards and feed quality; Wales, Victoria, the Northern Territory and the Australian Capital • handling and grading protocols and training; Territory have included crustaceans in the animal welfare • biosecurity of hatchery facilities; legislation. Generally speaking crustaceans, where covered, • transport techniques including monitoring; • regular health monitoring; Contents ... • veterinary health plan with regular veterinary input; • vaccination techniques; Welfare considerations in aquatic animals ............................ 1 Animal welfare in Western Australia .................................... 4 • sea pen stocking density; Morality and animal research ............................................... 5 • minimum water flow rates; ANZSLAS contributes to ANZCCART .................................6 • net cleanliness; Monitoring bird populations ................................................. 7 • feeding systems; ANZCCART NEWS readership survey ................................ 10 daily stock inspection; ANZCCART membership categories ................................... 11 • Using DNA to examine wombat population structure .............12 • methods of treating in sea pens; ANZCCART Fact Sheets ...................................................... 13 • grading and movement protocols; Report on recent ANZCCART Workshop.............................. 14 • crowding limits; and Volume 16 Number 2 200 • humane slaughter techniques. The Australian and New Zealand Council for the Care of Animals in Research and Teaching These therefore represent detailed comprehensive documents however when a scientist is quoted, without a reference being that fish farmers need to adhere to. In addition the European given. A thorough literature search usually fails to locate a Commission is working on codes of practice for aquaculture to scientific paper on the subject by the quoted scientist. Being maintain animal welfare standards across the European unable to read the context in which the quote was originally Community. The Office International des Epizooties (OIE), the made makes it difficult to assess to what degree the opinion is animal equivalent of the World Health Organisation, has also accurately represented or based on scientific evidence rather started the process of setting up a working group to examine than empirical experience. The question “is animal pain the the welfare of aquaculture animals. An internationally accepted same as human pain?” has been asked and discussed set of welfare standards for aquatic animals reared in captivity previously, including during the 1990 conference of ACCART is expected to result from this working group, and it will certainly (Australian Council on the Care of Animals in Research and take input from a wide range of sources. Teaching). It seems likely that the quality of sensation experiences in animals is not the same as in humans, but neither It is not only retailers, the European Commission and the OIE is it necessarily a prerequisite that it be so to be significant. that are looking seriously at aquatic animal welfare. Here in Australia the Aquatic Animal Health Committee (AAHC), a federal Numerous studies on nociception have been carried out in a committee consisting of aquatic animal health experts, policy number of species, and it is clear that there are well-developed developers and representatives from aquaculture, commercial sensory systems capable of responding to aversive stimuli and recreational fishing, is looking at the importance of an throughout the animal kingdom. The examples of learned or overarching welfare framework for fish grown in farms. adaptive behaviour has been cited as indicative of pain response in animals; however, a review of experiments carried out in this Other non-governmental organisations are examining the field suggest that these adaptive behaviours are most likely to welfare of fish; in 1992 a report on “The Welfare of Farmed be motor programs designed to respond to sign stimuli with a Fish” (Lymbery, 1992) was published by Compassion in World pre-wired motor sequence. The existence therefore of pre-wired Farming. This was followed up by the publication of their report adaptive behavioural units may well mean that problem-solving “In Too Deep” (Lymbery, 2002) in 2002. An individual described behaviours may not necessarily indicate awareness. Many of as an “international animal welfare consultant” wrote both these responses can occur without complex experiences, even reports. No qualifications or details of his or her experience were in humans. Differences in human and animal experience are indicated to confirm this statement. The report was widely likely to relate to differences in the design and complexity of the condemned by aquaculture bodies as being out of date and central nervous systems (Molony, 1992); however, a fixation on factually inaccurate, although it did succeed in being highly the prefrontal association cortex as being the only anatomical emotive: the press launch in Britain involved a personality sitting area of the central nervous system capable of experience or in a bathtub to illustrate the average amount of water available awareness is questionable (Divac, 1990). The presumed to each fish at their quoted stocking densities. A very memorable mechanised process involved in habituation and learned image when it is considered that the salmon farming Code of adaptive responses does not rule out the possible role of Practice clearly stated that fish occupied only 2% of the total consciousness in other behaviours (Griffin, 1981). volume of water available in the pen, and that each fish has freedom to move through the whole pen and is not restricted to a bathtub of water. Websites on the awareness of pain in fish What this illustrates is that there is an increasing awareness of University of Edinburgh Animal Welfare Research Group: the welfare of aquatic animals, especially fish. The general www.vet.ed.ac.uk/animalwelfare/Fish%20pain/ public either can seek out material from a myriad of information fish%20pain.htm sources, or it may be physically presented to them in a high profile manner. Recently there has been media interest in The Fisheries Society of the British Isles: research in the United Kingdom that suggests fish feel pain in www.le.ac.uk/biology/fsbi/ their lips. Media networks and animal welfare pressure groups immediately picked this up, the inference being that fishing Head-to-head: Feelings of fish. BBC News (UK Edition).
Recommended publications
  • Why Fish Do Not Feel Pain
    Key, Brian (2016) Why fish do not eelf pain. Animal Sentience 3(1) DOI: 10.51291/2377-7478.1011 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Call for Commentary: Animal Sentience publishes Open Peer Commentary on all accepted target articles. Target articles are peer-reviewed. Commentaries are editorially reviewed. There are submitted commentaries as well as invited commentaries. Commentaries appear as soon as they have been revised and accepted. Target article authors may respond to their commentaries individually or in a joint response to multiple commentaries. Instructions: http://animalstudiesrepository.org/animsent/guidelines.html Why fish do not feel pain Brian Key Biomedical Sciences University of Queensland Australia Abstract: Only humans can report feeling pain. In contrast, pain in animals is typically inferred on the basis of nonverbal behaviour. Unfortunately, these behavioural data can be problematic when the reliability and validity of the behavioural tests are questionable. The thesis proposed here is based on the bioengineering principle that structure determines function. Basic functional homologies can be mapped to structural homologies across a broad spectrum of vertebrate species. For example, olfaction depends on olfactory glomeruli in the olfactory bulbs of the forebrain, visual orientation responses depend on the laminated optic tectum in the midbrain, and locomotion depends on pattern generators in the spinal cord throughout vertebrate phylogeny, from fish to humans. Here I delineate the region of the human brain that is directly responsible for feeling painful stimuli.
    [Show full text]
  • Meetings and Announcements
    3. the prohibition of painful sur­ b. inspect and report to the Board on gical procedures without the use of a the treatment of animals in commer­ properly administered anesthesia; cial farming; MEETINGS !!!!! and c. investigate all complaints and alle­ ANNOUNCEMENTS 4. provisions for a licensing system gations of unfair treatment of for all farms. Such system shall in­ animals; clude, but shall not be limited to, the d. issue in writing, without prior hear­ following requirements: ing, a cease and desist order to any i. all farms shall b'e inspected person if the Commission has reason prior to the issuance of a I icense. to believe that that person is causing, ii. farms shall thereafter be in­ engaging in, or maintaining any spected at least once a year. condition or activity which, in the iii. minimum requirements shall Director's judgment, will result in or be provided to insure a healthy is likely to result in irreversible or ir­ life for every farm animal. These reparable damage to an animal or its requirements shall include, but environment, and it appears prejudi­ not be limited to: cial to the interests of the [State] a. proper space allowances; {United States] to delay action until b. proper nutrition; an opportunity for a hearing can be c. proper care and treatment provided. The order shall direct such of animals; and person to discontinue, abate or allevi­ d. proper medical care. .ate such condition, activity, or viola­ f. The Board may enter into contract tion. A hearing shall be provided with with any person, firm, corporation or ____ days to allow the person to FORTHCOMING association to handle things neces­ show that each condition, activity or MEETINGS sary or convenient in carrying out the violation does not exist; and functions, powers and duties of the e.
    [Show full text]
  • Fishery Oceanographic Study on the Baleen Whaling Grounds
    FISHERY OCEANOGRAPHIC STUDY ON THE BALEEN WHALING GROUNDS KEIJI NASU INTRODUCTION A Fishery oceanographic study of the whaling grounds seeks to find the factors control­ ling the abundance of whales in the waters and in general has been a subject of interest to whalers. In the previous paper (Nasu 1963), the author discussed the oceanography and baleen whaling grounds in the subarctic Pacific Ocean. In this paper, the oceanographic environment of the baleen whaling grounds in the coastal region ofJapan, subarctic Pacific Ocean, and Antarctic Ocean are discussed. J apa­ nese oceanographic observations in the whaling grounds mainly have been carried on by the whaling factory ships and whale making research boats using bathyther­ mographs and reversing thermomenters. Most observations were made at surface. From the results of the biological studies on the whaling grounds by Marr ( 1956, 1962) and Nemoto (1959) the author presumed that the feeding depth is less than about 50 m. Therefore, this study was made mainly on the oceanographic environ­ ment of the surface layer of the whaling grounds. In the coastal region of Japan Uda (1953, 1954) plotted the maps of annual whaling grounds for each 10 days and analyzed the relation between the whaling grounds and the hydrographic condition based on data of the daily whaling reports during 1910-1951. A study of the subarctic Pacific Ocean whaling grounds in relation to meteorological and oceanographic conditions was made by U da and Nasu (1956) and Nasu (1957, 1960, 1963). Nemoto (1957, 1959) also had reported in detail on the subject from the point of the food of baleen whales and the ecology of plankton.
    [Show full text]
  • HOME RANGE OVERLAP and SPATIAL-TEMPORAL INTERACTIONS in FEMALE FISHERS on the HOOPA INDIAN RESERVATION in CALIFORNIA by Kerry M
    HOME RANGE OVERLAP AND SPATIAL-TEMPORAL INTERACTIONS IN FEMALE FISHERS ON THE HOOPA INDIAN RESERVATION IN CALIFORNIA By Kerry M. Rennie A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Wildlife Committee Membership Dr. Micaela Szykman Gunther, Committee Chair J. Mark Higley, Committee Member Dr. Matthew Johnson, Committee Member Dr. William J. Zielinski, Committee Member Dr. Yvonne Everett, Graduate Coordinator July 2015 ABSTRACT HOME RANGE OVERLAP AND SPATIAL-TEMPORAL INTERACTIONS IN FEMALE FISHERS ON THE HOOPA INDIAN RESERVATION Kerry M. Rennie Spatial organization and interactions within animal populations can have important effects on population demography, social dynamics, and genetic composition. Understanding social behavior and relatedness of individuals in a population can advise species management and conservation. Previous research suggests that fishers (Pekania pennanti) are asocial and exhibit intrasexual territoriality, where home ranges rarely overlap with the same sex. On the Hoopa Valley Indian Reservation in California, female fishers appear to overlap with members of the same sex to a greater extent than most studies report. I tested the hypothesis that female fishers tolerate some degree of spatial overlap, but that co- occurrence in the area of overlap is uncommon. I also tested the hypothesis that this overlap is mediated by habitat selection and female philopatry. I found that female fishers share a large proportion of their home ranges and overlap at a high frequency. However, dynamic interactions revealed fishers avoided each other in both space and time. Habitat used in overlap areas differed from what was available to them in non-overlapping areas but lacked a consistent pattern of ii selection among habitat types.
    [Show full text]
  • Comparative Evolutionary Approach to Pain Perception in Fishes
    Brown, Culum (2016) Comparative evolutionary approach to pain perception in fishes. Animal Sentience 3(5) DOI: 10.51291/2377-7478.1029 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Animal Sentience 2016.011: Brown Commentary on Key on Fish Pain Comparative evolutionary approach to pain perception in fishes Commentary on Key on Fish Pain Culum Brown Biological Sciences Macquarie University Abstract: Arguments against the fact that fish feel pain repeatedly appear even in the face of growing evidence that they do. The standards used to judge pain perception keep moving as the hurdles are repeatedly cleared by novel research findings. There is undoubtedly a vested commercial interest in proving that fish do not feel pain, so the topic has a half-life well past its due date. Key (2016) reiterates previous perspectives on this topic characterised by a black-or-white view that is based on the proposed role of the human cortex in pain perception. I argue that this is incongruent with our understanding of evolutionary processes. Keywords: pain, fishes, behaviour, physiology, nociception Culum Brown [email protected] studies the behavioural ecology of fishes with a special interest in learning and memory. He is Associate Professor of vertebrate evolution at Macquarie University, Co-Editor of the volume Fish Cognition and Behavior, and Editor for Animal Behaviour of the Journal of Fish Biology.
    [Show full text]
  • SOLUTION: Gathering and Sonic Blasts for Oil Exploration Because These Practices Can Harm and Kill Whales
    ENDANGEREDWHALES © Nolan/Greenpeace WE HAVE A PROBLEM: WHAT YOU CAN DO: • Many whale species still face extinction. • Tell the Bush administration to strongly support whale protection so whaling countries get the • Blue whales, the largest animals ever, may now number as message. few as 400.1 • Ask elected officials to press Iceland, Japan • Rogue nations Japan, Norway and Iceland flout the and Norway to respect the commercial whaling international ban on commercial whaling. moratorium. • Other threats facing whales include global warming, toxic • Demand that the U.S. curb global warming pollution dumping, noise pollution and lethal “bycatch” from fishing. and sign the Stockholm Convention, which bans the most harmful chemicals on the planet. • Tell Congress that you oppose sonar intelligence SOLUTION: gathering and sonic blasts for oil exploration because these practices can harm and kill whales. • Japan, Norway and Iceland must join the rest of the world and respect the moratorium on commercial whaling. • The loophole Japan exploits to carry out whaling for “Tomostpeople,whalingisallnineteenth- “scientific” research should be closed. centurystuff.Theyhavenoideaabout • Fishing operations causing large numbers of whale hugefloatingslaughterhouses,steel-hulled bycatch deaths must be cleaned up or stopped. chaserboatswithsonartostalkwhales, • Concerted international action must be taken to stop andharpoonsfiredfromcannons.” other threats to whales including global warming, noise Bob Hunter, pollution, ship strikes and toxic contamination.
    [Show full text]
  • An Assessment of Recent Trade Law Developments from an Animal Law Perspective: Trade Law As the Sheep in Wolf's Clothing?
    AN ASSESSMENT OF RECENT TRADE LAW DEVELOPMENTS FROM AN ANIMAL LAW PERSPECTIVE: TRADE LAW AS THE SHEEP IN WOLF’S CLOTHING? By Charlotte Blattner* Further development within the field of animal law seems to be at an impasse, lost among the potential paths presented by its traditional influ- ences: international treaty law, domestic animal welfare regulations, and trade law. First, classical elements of global animal treaty law are limited to preservationist aspirations, insusceptible to the questions of how animals are treated or how they cope with their environment. Second, animal welfare regulation is understood as a matter confined to national territories. In cross-border dialogue, animal matters have been reduced to allegations of imperialism, which is not conducive to furthering animal interests. Third, animals are regarded as commodities in international trade law, rendering their regulation an undesirable barrier to trade. These present deficiencies deprive global animal law of its significance as a dynamic instrument re- sponsive to global challenges, be they ethical, environmental, economic, technological, or social in nature. The objective of this paper is to demonstrate future ways out of this impasse. Recent developments in trade law, as demonstrated by four exam- ples found within the World Trade Organization’s (WTO) ‘case law,’ mark an important development for animal law. State objectives expressed through trade law are slowly moving away from anthropocentric considera- tions (i.e., geared to preserve a fraction of animals for human interests) to- wards sentiocentric animal welfare (i.e., aimed at minimizing animal suffering and focusing on animal interests). Thereby, the quality of animal law that developed on the international scene through trade law exceeded the status quo of global animal treaty law.
    [Show full text]
  • Ecosystem Effects of Fishing and Whaling in the North Pacific And
    TWENTY-SIX Ecosystem Effects of Fishing and Whaling in the North Pacific and Atlantic Oceans BORIS WORM, HEIKE K. LOTZE, RANSOM A. MYERS Human alterations of marine ecosystems have occurred about the role of whales in the food web and (2) what has throughout history, but only over the last century have these been observed in other species playing a similar role. Then we reached global proportions. Three major types of changes may explore whether the available evidence supports these have been described: (1) the changing of nutrient cycles and hypotheses. Experiments and detailed observations in lakes, climate, which may affect ecosystem structure from the bot- streams, and coastal and shelf ecosystems have shown that tom up, (2) fishing, which may affect ecosystems from the the removal of large predatory fishes or marine mammals top down, and (3) habitat alteration and pollution, which almost always causes release of prey populations, which often affect all trophic levels and therefore were recently termed set off ecological chain reactions such as trophic cascades side-in impacts (Lotze and Milewski 2004). Although the (Estes and Duggins 1995; Micheli 1999; Pace et al. 1999; large-scale consequences of these changes for marine food Shurin et al. 2002; Worm and Myers 2003). Another impor- webs and ecosystems are only beginning to be understood tant interaction is competitive release, in which formerly (Pauly et al. 1998; Micheli 1999; Jackson et al. 2001; suppressed species replace formerly dominant ones that were Beaugrand et al. 2002; Worm et al. 2002; Worm and Myers reduced by fishing (Fogarty and Murawski 1998; Myers and 2003; Lotze and Milewski 2004), the implications for man- Worm 2003).
    [Show full text]
  • American Perceptions of Marine Mammals and Their Management, by Stephen R
    American Perceptions of Marine Mammals and Their Management Stephen R. Kellert Yale University School of Forestry and Environmental Studies May 1999 CHAPTER ONE: Introduction and Research Methodology Most Americans associate marine mammals with two orders of animals-the ceteceans, including the whales and dolphins, and the pinnipeds, consisting of the seals, sea lions, and walrus. The more informed recognize another marine mammal order, the sirenians, represented in the United States by one species, the manatee, mainly found along the Florida peninsula. Less widely recognized as marine mammals, but still officially classified as marine mammals, include one ursine species, the polar bear, and a mustelid, the sea otter. This report will examine American views of all marine mammals and their management, although mostly focusing on, for reasons of greater significance and familiarity, the cetaceans and pinnipeds. Marine mammals are among the most privileged yet beleaguered of creatures in America today. Many marine mammals enjoy unusually strong public interest and support, their popularity having expanded enormously during the past half-century. Marine mammals are also relatively unique among wildlife in America in having been the recipients of legislation dedicated exclusively to their protection, management, and conservation. This law - the Marine Mammal Protection Act - is one of the most ambitious, comprehensive, and progressive environmental laws ever enacted. More problematically, various marine mammal species have been the source of considerable policy conflict and management controversy, both domestically and internationally, and an associated array of challenges to their well-being and, in some cases, future survival. Over-exploitation (e.g., commercial whaling) was the most prominent cause of marine mammal decline historically, although this threat has greatly diminished.
    [Show full text]
  • 'Bycatch' Whaling a Growing Threat to Coastal Whales 23 June 2009
    'Bycatch' whaling a growing threat to coastal whales 23 June 2009 Scientists are warning that a new form of Whales are occasionally killed in entanglements unregulated whaling has emerged along the with fishing nets and the deaths of large whales are coastlines of Japan and South Korea, where the reported by most member nations of the IWC. commercial sale of whales killed as fisheries Japan and South Korea are the only countries that "bycatch" is threatening coastal stocks of minke allow the commercial sale of products killed as whales and other protected species. "incidental bycatch." The sheer number of whales represented by whale-meat products on the market Scott Baker, associate director of the Marine suggests that both countries have an inordinate Mammal Institute at Oregon State University, says amount of bycatch, Baker said. DNA analysis of whale-meat products sold in Japanese markets suggests that the number of "The sale of bycatch alone supports a lucrative whales actually killed through this "bycatch trade in whale meat at markets in some Korean whaling" may be equal to that killed through coastal cities, where the wholesale price of an adult Japan's scientific whaling program - about 150 minke whale can reach as high as $100,000," annually from each source. Baker said. "Given these financial incentives, you have to wonder how many of these whales are, in Baker, a cetacean expert, and Vimoksalehi fact, killed intentionally." Lukoscheck of the University of California-Irvine presented their findings at the recent scientific In Japan, whale-meat products enter into the meeting of the International Whaling Commission commercial supply chain that supports the (IWC) in Portugal.
    [Show full text]
  • New Behavioral Insights Into Home Range Orientation of the House Mouse (Mus Musculus) by Blythe E
    New Behavioral Insights Into Home Range Orientation of the House Mouse (Mus musculus) By Blythe E. Alexander Submitted to the graduate degree program in Ecology and Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Rudolf Jander ________________________________ Helen M. Alexander ________________________________ Kenneth B. Armitage ________________________________ Linda Trueb ________________________________ Stephen Egbert Date Defended: May 4, 2011 The Dissertation Committee for Blythe Alexander certifies that this is the approved version of the following dissertation: New Behavioral Insights Into Home Range Orientation of the House Mouse (Mus musculus) ________________________________ Rudolf Jander Date approved: ii Abstract Home‐range orientation is a necessity for an animal that maintains an area of daily activity. The ability to navigate efficiently among goals not perceived at the starting point requires the animal to rely on place recognition and vector knowledge. These two components of navigation allow the animal to dynamically update its current position and link that position with the locomotor distance and direction needed to reach a goal. In order to use place knowledge and vector knowledge the animal must learn and remember relevant spatial information obtained from the environment and from internal feedback. The research in this dissertation focuses on behavioral components of topographic orientation, using the house mouse as a model species. Specifically, this research made important discoveries in three main areas: 1) locomotor exploration behavior, 2) the use of learned spatial information for compass orientation, and 3) testable hypotheses based on the controversial cognitive map. In Chapter 1, I used a radial arm maze to find a systematic locomotor component to exploration behavior, which is typically described as random movement.
    [Show full text]
  • “But It's Just a Fish”: Understanding the Challenges of Applying the 3Rs
    animals Article “But It’s Just a Fish”: Understanding the Challenges of Applying the 3Rs in Laboratory Aquariums in the UK Reuben Message * and Beth Greenhough School of Geography and the Environment, University of Oxford, Oxford OX1 2JD, UK; [email protected] * Correspondence: [email protected] Received: 29 October 2019; Accepted: 28 November 2019; Published: 3 December 2019 Simple Summary: Fish are widely used in research and some species have become important model organisms in the biosciences. Despite their importance, their welfare has usually been less of a focus of public interest or regulatory attention than the welfare of more familiar terrestrial and mammalian laboratory animals; indeed, the use of fish in experiments has often been viewed as ethically preferable or even neutral. Adopting a social science perspective and qualitative methodology to address stakeholder understandings of the problem of laboratory fish welfare, this paper examines the underlying social factors and drivers that influence thinking, priorities and implementation of fish welfare initiatives and the 3Rs (Replacement, Reduction and Refinement) for fish. Illustrating the case with original stakeholder interviews and experience of participant observation in zebrafish facilities, this paper explores some key social factors influencing the take up of the 3Rs in this context. Our findings suggest the relevance of factors including ambient cultural perceptions of fish, disagreements about the evidence on fish pain and suffering, the language of regulators, and the experiences of scientists and technologists who develop and put the 3Rs into practice. The discussion is focused on the UK context, although the main themes will be pertinent around the world.
    [Show full text]