2 CLIMATEANDSTREAMFLOWVARIABILITY INTHERIVERBASIN

2.1 Introduction

Changesinclimatewillultimatelyaffectriverrunoff.Sincethelasticeageclimatein Northernhasfluctuatedconsiderably.Paleoecologicalevidencesuggests thatduringthemidHolocene(ca.8000-5000BP)summerswerewarmeranddrierthan today(Seppä&Hammarlund,2000).Thereappearstobeageneralcoolingtrend throughouttherestoftheHolocene,uptothe20thcentury(Eronen&Zetterberg,1996; Seppä&Birks,2002).DirectmeasurementsonclimateanddischargeinNorthern Fennoscandiaare,however,onlyavailableforthelastcentury.Leeetal.(2000)analysed dataontemperatureandprecipitationfornorthern,andconcludedthata significantwarmingoccurredinthefirsthalfofthe20thcentury,whileannual precipitationhasincreasedsince1880.Fewstudieshaveanalysedlong-termtrendsin riverdischargefornorthernLapland.Hyvärinen&Leppäjärvi(1989)analysed observationsondischargein,butcouldnotfindacleartrendforriversin northernLapland.Roaldetal.(1997)reportedaslight,thoughnotsignificant,decreasing trendforriversinnorthernFinland,Swedenandnortheastovertheperiod1930- 1980.Inthischapter,dataseriesoftemperature,precipitationandriverdischargeinthe TanaBasinareanalysed,inordertoidentifythevariationsinclimateandhydrologythat occurredoverthepastcentury.Thisanalysisisprecededbyageneraldescriptionofthe studyarea.

2.2 Studyarea

2.2.1 Location

TheTanaRiverBasinislocatedinthenorthernmostpartofFennoscandia(i.e. andFinland,seefigure2.1),between68º28'and70º28'Nand23º30'and 28º30'E.Thecatchmentareaisapproximately16000km2,ofwhich32%belongsto Finlandandtheremaining68%toNorway(Mansikkaniemi,1970).TheTanaRiver(in FinnishTenojoki)flowsfromtheconfluenceoftheKarasjåkkaandInarijokiriversinto the,andisoneofthelargestriversinScandinaviadrainingintotheBarents sea.Itdrainsanextensiveuplandarea,includingalargepartofthein Norway,andbelongstothesub-arcticzoneofFennoscandia.

2.2.2 Geologyandtopography

TheTanaBasinisunderlainbyPrecambrianbedrock,consistingmainlyofgranites, granulites,andvarioustypesofgneissesandschists.Eocambriansedimentaryrockscan befoundinthenorthernmostpart,consistingofsiltstones,shalesandsandstones 31 (Mansikkaniemi,1970).Exceptforafewplacesthebedrockiscoveredwithglacialtills, mainlydepositedduringthelastglaciation(Weichselian),althoughinsomeareas depositsofpre-Weichselianagepredominate(Olsenetal.,1996).Sincethelast glaciationextensivepeat-bogshavebeenformed.PermafrostinNorthernFennoscandia isdiscontinuous,mainlyoccurringinpalsamires,andinbedrockonfellsummitswhere itmayreachadepthofseveraltensofmeters(King&Seppälä,1988;Seppälä,1997, 1998;Kukkonen&Šafanda,2001).

Thetopographyoftheuplandareaisgenerallysmoothwithgentlyslopingfells(treeless areas)andveryflatsummits(Seppälä&Rastas,1980).Thishighlandiscutthroughby severalsteep-sidedfaultvalleys,suchasthevalleysoftheandTana,whichare tectonicinorigin(Mansikkaniemi,1970).Althoughelevationsaregenerallynothigher than500m,someNorwegianmountainpeaksinthenorthernpartreachtojustmorethan 1000mabovesealevel.AdigitalelevationmodeloftheTanaBasin,derivedfromthe USGeologicalSurvey(USGS)GTOPO30globaldataset(USGS,2001),andafrequency distributionoftheelevationclasses,areshowninfigure2.2.

Figure2.1Location,topographyanddrainagenetworkoftheTanaRiverBasin 32 2.2.3 Climate

TheclimateoftheTanabasinisinfluencedbytheproximityoftheArcticOceanandthe AtlanticGulfstream,andthereforerelativelymildandmaritime,consideringitslatitude. SeveralmeteorologicalstationsarelocatedinandaroundtheTanabasin,mostofwhich haveobservationrecordssincethe1950sor1960s.Thesestationsarelistedintables2.1 and2.2(forlocationsseefigure2.3).Seasonaldifferencesintemperature,precipitation andsnowdepthareillustratedinfigure2.4for,Norway.TheclimateofKevo, Finland,hasbeendescribedinmoredetailbySeppälä(1976).IntheKöppenclimate classificationsystemthisstationbelongstothesubpolar(Dfc)climates,withshort,cool summers,severewinters,andnoclearseasonalityinprecipitation.Polartundra(ET) climatesmaybefoundathigheraltitudesintheregion(Seppälä,1976).

Table2.1MeanannualtemperaturesformeteorologicalstationsinandaroundtheTanabasin

Elevation Meanannual Maximumannual Minimumannual temperature temperature temperature m ºC period ºC period ºC 9 -0.46 1957-1998 1.62 1990 -2.28 1971 Kevo(Finland) 107 -1.85 1962-1998 0.65 1974 -3.81 1966 Karasjok 129 -2.15 1957-1998 0.36 1974 -4.43 1966 Cuovddatmohkki 286 -2.46 1966-1998 -0.38 1974 -4.33 1985 1957-1970, 307 -2.54 -0.52 1959 -4.83 1966 1996-1998 KautokeinoII 330 -1.79 1970-1996 -0.25 1989 -4.25 1985 Sihcajavri 382 -2.88 1957-1998 -0.76 1974 -5.10 1985

Annualprecipitationisgenerallylowforallweatherstations,rangingfromabout 340-360mminKautokeino(southwestoftheTanaBasin)to460mminRustefjelbmain thenortheast.Therearesignificantdifferencesbetweenindividualyears,butingeneral theannualprecipitationamountisnotlowerthan200mm/year,orhigherthan700 mm/year.Precipitationisusuallyhighestinthesummermonths.However,ithaslong beenrecognisedthatgaugerecordsintheArcticmayseriouslyunderestimateactual precipitationamounts,especiallyinwinter.Duetowind-inducedundercatch,wettingand evaporationeffects,measurementofsnowusingprecipitationgaugeshasbeenshownto havesystematiclossesofupto100%,dependingongaugetypeandtheobservationsite (Goodisonetal.,1998;Yangetal.,2001).

33 Table2.2MeanannualprecipitationformeteorologicalstationsinandaroundtheTanabasin.

Elevation Meanannual Maximumannual Minimumannual precipitation precipitation precipitation m mm period mm year mm year Rustefjelbma 9 459 1957-1998 600 1992 327 1980 21 397 1968-1980 569 1975 291 1969 Sirbma 51 384 1968-1998 609 1992 210 1980 SkoganvarreII 74 424 1957-1997 586 1989 289 1969 Kevo(Finland) 107 407 1962-1998 582 1964 263 1980 Port 115 380 1981-1998 487 1982 289 1994 Karasjok 129 367 1957-1998 513 1964 252 1969 Valjok 132 444 1957-1998 681 1964 283 1969 Iskorasjohka 153 404 1974-1998 543 1982 308 1996 Jergol 230 362 1981-1998 484 1982 270 1994 1966-1980, Cuovddatmohkki 286 371 494 1992 273 1986 1982-1998 KautokeinoII 307 361 1970-1996 497 1992 202 1980 Kautokeino 330 342 1957-1970 460 1961 226 1968 Mollesjohka 382 360 1974-1998 506 1992 248 1980 Sihcajavri 382 377 1957-1998 601 1957 199 1976 Jotkajavre 389 458 1957-1998 619 1959 320 1969

Meanannualtemperaturesrangefrom-2.88ºCforSihcajavritoslightlybelow0ºCin Rustefjelbma,whichislocatedclosetotheTanafjord.Temperaturesareusuallybelow0 ºCfromthemiddleofOctoberuntiltheendofMay.Likeinmostsub-arctic environments,snowmeltintheTanabasinisusuallyaveryrapidprocess.AtKevo, Finland,thedepletionofthesnowcovermayamounttomorethan20cmofsnowdepth perday.Almost50%ofthesnowpackmaydisappearinonly10days,andin30dayson average85%ofthesnowpackismeltedaway.Mostmeteorologicalstations,usually locatedintherivervalleys,becomefreeofsnowinMayoroccasionallyinearlyJune, butthiscanbeseveralweekslaterinthesurroundinguplands.

2.2.4 Vegetation

InNorthernFennoscandiaextensiveforestsofmountainbirch(Betulapubescensssp. tortuosa)extentbeyondthearcticconiferoustreeline.MostoftheTanabasintherefore

34 (a)

(b)

Figure2.2(a)DigitalElevationModel(DEM)oftheTanaRiverBasin;(b)histogramandcumulative distributionofelevationclasses.DatadistributedbytheEROSDataCenterDistributedActiveArchive Center(LPDAAC),locatedattheUSGeologicalSurvey'sEROSDataCenterinSiouxFalls,South Dakota,USA.Seetheappendixforacolourversion

35 Figure2.3MeteorologicalanddischargestationsintheTanaBasin belongstothesub-arcticdeciduousbirchzone(Hustich,1961).Someisolatedpine (Pinussylvestris)forestscanbefoundintheInarijoki,KarasjåkkaandUtsjokivalleys, whichcouldbesaidtobelongtotheborealconiferousregion.NeartheArcticOceanthe upperlimitofbirchoccurrenceisonly20-30mabovesealevel,butintheKarasjåkka valleythetreelineisfoundatanaltitudeofnearly400m(Mansikkaniemi,1970). Tundraheathsdominatethelandscapeabovethebirchforests;typicalplantspecieshere areBetulanana,EmpetrumhermaphroditumandVacciniummyrtillus.Thehighestfells andmountaintopsarebarren.Miresandpeatlandsintheareaarecharacterisedby willows(Salix),Sphagnum,anddifferentgrassesandsedges.Seppälä&Rastas(1980) distinguishedaseparatevegetationclassforbirchforestsdamagedbybutterflylarvaeof thegeometridOporiniaautumnata.RegularoutbreaksofOpiriniaareseenasoneofthe additionalfactorsthatdeterminethelimitsofbirchoccurrences.Humaninfluenceis believedtobeinsignificant(Mansikkaniemi,1970).Somemeadowsandfieldscanbe foundinthemainvalleys,whileintherestoftheareareindeerherdingisthemainland use.

AgeneralisedvegetationmapoftheTanabasinisshowninfigure2.5.Thismapwas madebasedonaLandsatTMsatelliteimageofJuly18th,1987.Thisimagewas classifiedusingfielddescriptions,collectedduringseveralfieldtripsin1999and2000. TheclassesresemblethoseofSeppälä&Rastas(1980).Amixedpine/birchclasscould 36 howevernotbediscerned,asinmid-summerthespectralresponseofthefreshbirch leavesispredominatingthelowerreflectivityofthepinetrees.Spectralclassesthatcould beseparatedincludealpineheaths,blockfields,sandandgravel,areascoveredwith reindeerlichens(whichhaveaverycharacteristic,brightreflectance),andmeadowsin therivervalleys.Theclassificationprocedurewascomplicatedbyseveralfactors,suchas shadowedsteepvalleyslopes,thesimilarspectralresponseatpixelscaleofpineforests andmires,andthehighdegreeofmixingofvegetationspeciesinthearea,inparticularof birchandpinetrees.Nevertheless,itisbelievedthatthismaprepresentsthegeneral distributionofvegetationtypesintheTanaRiverBasincorrectly.

2.2.5 Riverdischarge

MeanannualrunoffoftheTanaRiver,asmeasuredatPolmak,Norway,is166m3/s.The interannualvariabilityindischargeishigh,rangingfrom103m3/s(in1941)to269m3/s (1932).ThestreamflowregimeoftheTanathroughouttheyear(figure2.6)istypicalfor riversinsub-arcticenvironments.Itisdominatedbyahighdischargepeakinspring, causedbymeltingofthesnowcoverincombinationwithstillfrozensoils.Maximum runoffmostlyoccursinthesecondhalfofMay,butinsomeyearsitisdelayeduntillate June.Onaverageitamountsto1304m3/s;therecordstandsforMay21,1920,when 3844m3/swasmeasured.Snowmeltrunoffmaycontributeasmuchas65%tothetotal annualdischarge.Duringmostofthesummerdischargeissteadilydecreasing, interruptedbyoccasionalrainstormpeaks.Inwinterdischargeissmall,andtheannual minimum,usuallyreachedinApril,isonaverageonly41m3/s.

Figure2.4Monthlymeantemperature,precipitationandsnowdepthinKarasjok,Norway,in1961-1990

37 Figure2.5GeneralisedvegetationmapoftheTanaBasin,basedonaLandsatTMimageof18July1987. Fordisplaypurposesseveralclasseshavebeengroupedtogether.PleasenotethatsmallpartsoftheTana Basininthenorthandwestfalloutsidetheimagearea.Seetheappendixforacolourversion

2.3 Methodology

DischargeoftheTanaRiverwasobservedatPolmakfrom1911to1994,andinKarasjok temperatureandprecipitationhavebeenrecordedsince1870.Theseperiodsare considerablylongerthaninmostsub-arcticriverbasins,andallowexaminationfortrends overthelast100years.Thedataofthesestationswereconvertedtoannualvaluesof hydrologicalyears,startinginOctober,andwereanalysedforevidenceoflineartrendsin precipitation,temperatureandrunoffovertheperiod1912-1993.Inaddition,separate trendlineswereproducedforyearsoccurringinthefirstandinthesecondhalfofthe century(i.e.1912-1950and1951-1993).Thedatawerefurthermoreanalysedfortrends ineach(hydrological)season.Sinceallprecipitationfallingassnowaccumulatesduring thewinter,andisreleasedinspring,temperatureandprecipitationinthewinterseason (definedhereasOctobertoApril)werecomparedwithriverdischargeinspring(Aprilto June).Datafromthesummerseason(JulytoSeptember)werecompareddirectly.

38 Figure2.6Monthlymean,maximumandminimumdischargeoftheTanaRiveratPolmak,Norway,in 1911-1992.

2.4 Results

ThemeanannualtemperatureinKarasjokintheperiod1876-1999isshowninfigure2.7, expressedasanomaliesfromtheclimatereferenceperiod1961-1990.Figure2.8shows theanomaliesinannualprecipitationintheperiod1902-1999.Between1912and1993, precipitationatKarasjokincreasedsignificantly(r=0.35,p<0.01),correspondingtoan averageincreaseofabout1mmperyear(figure2.9).Alsotheprecipitationinwinter(r= 0.29,p<0.01)andsummer(r=0.30,p<0.01)increasedsignificantlybetween1912and 1993(figures2.10and2.11).Overthesameperiod,thereisnosignificanttrendinannual temperature.However,inthefirsthalfofthecentury(1912-1950)therewasasignificant annualwarmingtrend(r=0.43,p<0.01),aswellasasignificanttrendinwinter temperatures(r=0.33,p<0.05),withamaximuminthe1930s(figure2.9).Although therewasaslightpositivetrendinsummertemperaturesinthesameperiod,itwasnot significant.Thetrendsinseasonalandannualtemperaturesinthesecondhalfofthe centurywerenotsignificantaswell.

Figure2.9alsoshowsthemeanannualdischargeoftheTanaRiver,expressedas anomaliesfrom1961-1990.DespitetheincreaseinprecipitationatKarasjok,therewas nosignificantincreasingtrendinrunoffatPolmakbetween1912and1993.Asignificant decreasingtrendoccurredinthefirsthalfofthecentury(r=0.30,p<0.1),whena significantwarmingwasfoundaswell.Negativeanomaliesindischargeinthe1930sand 1940scorrespondwithlowerprecipitationtotalsinthesameperiod,butthisisnotthe

39 Figure2.7MeanannualtemperatureinKarasjok,Norway,in1876-1999,expressedasanomaliesinºC from1961-1990.Thesmoothcurverepresents10-yearrunningmeans

Figure2.8Annual(OctobertoSeptember)precipitationinKarasjok,Norway,in1902-1999,expressedas anomaliesinmmfrom1961-1990.Thesmoothcurverepresents10-yearrunningmeans

40 Figure2.9Meanannual(OctobertoSeptember)temperature(above)andprecipitation(middle)in Karasjok,anddischargeoftheTanaRiveratPolmak(below),in1912-1992,expressedasanomaliesinºC, mmandm3/srespectivelyfrom1961-1990

41 caseinthe1910sand1920s.Awetterperiodinthe1960sisreflectedbyaslightincrease indischargeinthesameperiod(seefigure2.9),butthegeneralincreaseinrunoffinthe secondhalfofthecenturywasnotstatisticallysignificant.

Asforannualdischarge,theonlysignificant(decreasing)trendinspringdischarge occurredinthefirsthalfofthecentury(r=0.42,p<0.01).Anomaliesinspring dischargecanhowevernotunambiguouslybecorrelatedwithanomaliesinwinter precipitationatKarasjok(figure2.10).Forexample,inthe1910spositivedischarge anomaliesoccurredinyearswithstrongnegativeprecipitationanomalies.Alsothe increasingtrendinsummerprecipitationsince1911didnotresultinasignificant increaseinsummerdischarge(figure2.11).Individualyearswithhighanomalies,suchas 1932,1964,1982and1992arehowevercorrelated.Asfigure2.12shows,highsummer dischargeanomaliesarerelatedtohighprecipitationanomalies,andlowdischarge anomalieswithlowprecipitationanomalies(R2=0.59).

Figure2.10Winter(OctobertoApril)precipitationatKarasjok(above)andspring(ApriltoJune) dischargeatPolmak(below)in1912-1992,expressedasanomaliesinmmandm3/srespectivelyfrom 1961-1990

42 Figure2.11Summer(JulytoSeptember)precipitationatKarasjok(above)anddischargeatPolmak (below)in1911-1992,expressedasanomaliesinmmandm3/srespectivelyfrom1961-1990

Itcouldbeexpectedthatchangesinsummerprecipitationwillbereinforcedor counterbalancedbychangesinsummertemperatureandhenceevapotranspiration.Iflow precipitationisaccompaniedbyhighevaporationrates,theresultingdischargewillbe muchlowerthanwhenlowtemperaturesgiverisetosmallevaporationlosses.Likewise, highprecipitationamountsmaybecounterbalancedbyhightemperatures,butwillresult inhighdischargesifevaporationlossesaresmall.However,asshowninfigure2.12,the relationshipbetweensummertemperatureanddischargeanomaliesismuchweakerthan forprecipitationanddischarge.

2.5 Discussionandconclusions

AthoroughanalysisofclimatedatafromnorthernFinlandisgivenbyLeeetal.(2000). Asinthepresentstudy,Leeetal.(2000)wereunabletoidentifyasignificantwarming 43 trendbetween1876and1993,buttheydidfindsignificantannualwarmingintheperiod 1901-1945,aswellasaslightwarmingtrendsincethe1990s,mostlyduetowinter warming.Precipitationincreasedsignificantlybetween1880and1993,andtheperiod 1946-1990waswetterthantheperiod1901-1945,withgreatervariabilityparticularlyin thesummermonths.Incontrasttothepresentstudy,Leeetal.(2000)werenotableto findasignificantincreaseordecreaseinsummerprecipitationsince1880,duetoa particularwetperiodtowardstheendofthe19thcentury.

TheincreaseinprecipitationatKarasjokbetween1912and1993ishowevernotreflected indischargedataoftheTanaRiver.Infact,theonlysignificant(decreasing)trendin runoffthatcouldbefoundoccurredinthefirsthalfofthe20thcentury(1912-1950),and seemstocorrespondtoincreasingtemperaturesratherthanprecipitation.However,this apparentcorrelationcannotbeexplainedbyhigherevapotranspirationrates,sincethe trendsinbothsummertemperatureandsummerdischargewerenotsignificantinthe sameperiod.Apossiblyexplanationmaythereforebethathigherwintertemperatures resultedinmoresublimationduringwinter.Obviously,thereareseveralprocessesthat mayhavebeencounteracting,therebyobscuringtheresponseofdischargetochangesin precipitation.Anyconclusionsonthehydrologicalresponsetofutureclimaticchanges basedonhistoricaldatawouldthereforebepremature.

Figure2.12Scatterplotofanomaliesinsummer(JulytoSeptember)precipitation(inmm)andtemperature (inºC)atKarasjok,anddischarge(inm3/s)atPolmak,1911-1992

44 2.6 References

Anisimov,O.&B.Fitzharris(2001):PolarRegions(ArcticandAntarctic).In:J.J.McCarthy,O.F. Canziani,N.A.Leary,D.J.Dokken&K.S.White(eds.):ClimateChange2001:Impacts,Adaptation andVulnerability.Cambridge:CambridgeUniversityPress,pp.801-841. Eronen,M.&P.Zetterberg(1996):ClimaticchangesinNorthernEuropesinceLateGlacialtimes,with specialreferencetodendroclimatologicalstudiesinnorthernFinnishLapland.Geophysica32,pp.35- 60. Goodison,B.E.,P.Y.T.Louie&D.Yang(1998):WMOsolidprecipitationmeasurementintercomparison, finalreport.Geneva:WorldMeteorologicalOrganization(WMOInstrumentsandObservingMethods ReportNo.67,WMO/TD-No.872). Hustich,I.(1961):Plantgeographicalregions.In:A.Sømme(ed.):AGeographyofNorden.: Cappellen,pp.54-62. Hyvärinen,V.&R.Leppäjärvi(1989):Long-termtrendsinriverflowinFinland.In:Proceedingsofthe ConferenceonClimateandWater,Helsinki,Finland,11-15September1989(Publicationsofthe AcademyofFinland9/89),pp.450-461. King,L.&M.Seppala(1988):PermafrostthicknessanddistributioninFinnishLapland-resultsof geoelectricalsoundings.Polar-forschung57,pp.127–147. Kukkonen,I.T.&J.Šafanda(2001):Numericalmodellingofpermafrostinbedrockinnorthern FennoscandiaduringtheHolocene.GlobalandPlanetaryChange29,pp.259-273. S.E.Lee,Press,M.C.&Lee,J.A.(2000):Observedclimatevariationsduringthelast100yearsinLapland, NorthernFinland.InternationalJournalofClimatology20,pp.329-346. Mansikkaniemi,H.(1970):DepositsofsortedmaterialintheInarijoki-TanarivervalleyinLapland. ReportsfromtheKevoSubarcticResearchStation6,pp.1-63. Olsen,L.,A.Reite,K.Riibe&E.Sørensen(1996):county,MapofQuaternaryGeology,scale 1:500,000,withdescription.Trondheim:GeologicalSurveyofNorway. Roald,L.A.,H.Hisdal,T.Hiltunen,V.Hyvärinen,T.Jutman,K.Gudmundsson,P.Jonsson&N.B.Ovesen (1997):HistoricalrunoffvariationintheNordiccountries.In:A.Gustard,S.Blazkova,M.Brilly,S. Demuth,J.Dixon,H.VanLanen,C.Llasat,S.Mkhandi&E.Servat(eds.):FRIEND’97–Regional hydrology:conceptsandmodelsforsustainablewaterresourcemanagement.Wallingford:IAHSPubl. 246,pp.87-96. Seppä,H.&H.J.B.Birks(2002):HoloceneclimatereconstructionsfromtheFennoscandiantree-linearea basedonpollendatafromToskaljavri.QuaternaryResearch57,pp.191-199. Seppä,H.&D.Hammarlund(2000):Pollen-stratigraphicalevidenceofHolocenehydrologicalchangein northernFennoscandiasupportedbyindependentisotopicdata.JournalofPaleolimnology24,pp.69- 79. Seppälä,M.(1976):PeriglacialcharacteroftheclimateoftheKevoregion(FinnishLapland)onthebasis ofmeteorologicalobservations1962-71.ReportsfromtheKevoSubarcticResearchStation13,pp.1- 11. Seppälä,M.(1997):DistributionofpermafrostinFinland.BulletinoftheGeologicalSocietyofFinland69, pp.87-96. Seppälä,M.(1998):Newpermafrostformedinpeathummocks(pounus),FinnishLapland.Permafrostand PeriglacialProcesses9,pp.367-373. Seppälä,M.&J.Rastas(1980):VegetationmapofnorthernmostFinlandwithspecialreferencetosubarctic forestlimitsandnaturalhazards.Fennia158,pp.41-61. UnitedStatesGeologicalSurvey(USGS)(2001):GTOPO30documentation. http://edcdaac.usgs.gov/gtopo30/README.html. Yang,D.,B.E.Goodison,J.R.Metcalfe,P.Y.T.Louie,E.Elomaa,C.L.Hanson,V.S.Golubev,Th. Gunther,J.Milkovic&M.Lapin(2001):Compatibilityevaluationofnationalprecipitationgauge measurements.JournalofGeophysicalResearch106,p.1481-1492.

45