Golden Alga Division of Environmental Services Updated June 2021

Total Page:16

File Type:pdf, Size:1020Kb

Golden Alga Division of Environmental Services Updated June 2021 Aquatic Invasive Species Control Plan Golden Alga Division of Environmental Services Updated June 2021 Aquatic Invasive Species (AIS) Control Plan: Golden Alga This control plan is a living document that will be updated, as needed, to reflect the status of the species within Pennsylvania. Natural History Figure 1. Micrograph of Golden Alga Description: Golden Alga is a single-celled, morphology. Source: University of Nevada. flagellated, photosynthetic microorganism that is capable of releasing toxins which can Origin: Golden Alga is spreading globally cause extensive kills of gill-breathing through multiple introductions from discrete aquatic animals. locales; the strain occurring in the United States likely originated in Europe (Lutz- Taxonomy Carrillo et al. 2010). In the United States, Golden Alga was first reported in water samples from a 1985 fish kill on the Pecos Common name: Golden Alga River, Texas (Southard et al. 2010). Since Family: Prymnesiaceae then, it has been reported in scattered Species: Prymnesium parvum locations mainly in the southern and western Integrated Taxonomic Information System United States (Sallenave 2018). In (ITIS) Serial Number: 2170 Pennsylvania, Golden Alga may have been introduced from the south-central part of the Morphology: Each cell has two hair-like United States. flagella used to swim through the water (Figure 1). There is also a shorter stiff hair- Food Preferences: Golden alga can like structure called a haptonema, which can manufacture its own food when abundant be used to attach the cell to other cells or nitrogen and phosphorus are available or, objects (Sallenave 2018; Figure 1). Each cell when these nutrients are limited, it releases has a C-shaped or “saddle shaped” chemical substances called prymnesins that chloroplast which contributes to the yellow- allow it to envelop and digest bacteria and green color of the organism (Sallenave other algae (Barkoh and Fries 2010). These 2018; Figure 1). prymnesins also inhibit growth of other alga, giving it a competitive edge over other P a g e | 1 Aquatic Invasive Species Control Plan Golden Alga Division of Environmental Services Updated June 2021 species and leading to the potential for large temperature range of about 5°C to 35°C blooms (Barkoh and Fries 2010). (41°F to 95°F). Besides salinity and temperature, many factors influence the Reproduction: This organism typically growth of this species including phosphorus reproduces asexually through simple cell (P) and nitrogen (N) levels, cationic division. Fish kills generally occur at cell substance levels, and pH. Toxic blooms of counts > 50 -100 million cells per liter. the Golden Alga typically occur during Golden Alga can form dormant cysts when cooler water temperatures and periods of stressed or conditions become unfavorable. limited nutrients (Sallenave 2018). Sexual reproduction exists but is not well documented outside of the laboratory Distribution and Status (Edvardsen and Paasche 1998). Notable Behavioral Characteristics: Golden Distribution: Golden Alga has been reported Alga exhibits a characteristic swimming from at least 14 countries among every motion of moving forward while spinning continent but Antarctica (Southard et al. on its longitudinal axis. 2010). In the US, at least 23 States, including Pennsylvania and West Virginia, Historic Vectors: Numerous and non- have reported Golden Alga. In specific. Both natural (birds, mammals) and Pennsylvania, Golden Alga has been anthropogenic (bilge water, industrial documented in Greene County within the equipment, fishing gear) vectors have been Dunkard Creek and Whiteley Creek proposed (Sallenave 2018). watersheds (Figure 2). Current Pathways/Vectors: Because of the distances involved (North Carolina being the previously closest state with infestations), circumstantial evidence points toward possible introduction of Golden Alga to Pennsylvania/West Virginia waters by means of cells (possibly encysted) carried on industrial equipment, which later spread by unknown means. Figure 2. County-level distrbution of Golden Alga in Pennsylvania (December Preferred Habitat: In general, Golden Alga 2020). is found in brackish waters but tolerates a wide range of conditions (Salenave 2018). The species has a salinity range of ~1- 40 PSU (Practical Salinity Unit) and a P a g e | 2 Aquatic Invasive Species Control Plan Golden Alga Division of Environmental Services Updated June 2021 organisms; therefore, it is not known to be a human health concern (Texas Parks and Pennsylvania Legal Status: As of April Wildlife 2009; Sallenave 2018). 2021, Golden Alga is not regulated in 58 Pa. Code §71.6 and §73.1. Threats Toxicity: Blooms of Golden Alga release toxins under stressed conditions, such as when nutrients become limited (Sallenave 2018). Golden Alga can release several chemical compounds called prymnesins that combine with cations (such as magnesium [Mg++] and calcium [Ca++]) in the water to Figure 3. Fish kill resulting from Golden make toxins. The type of toxin created is Alga bloom. Source: Michael Hooper dependent on the water chemistry and (USGS). usually there is a combination of toxins in the water. The toxins cause cells without Environmental and Economic: Severe protective layers, such as on the surface of economic losses can occur from fish kills gills and fins, to fail. Exposed cells either caused by Golden Alga (Figure 3). Recent die due to chemical damage or lyse due to economic losses to communities and excessive osmotic pressure (Sallenave hatcheries in Norway and Texas, for 2018). In fish, the gills become so badly example, are estimated in millions of U.S. damaged that they are unable to function, dollars (Barkoh and Fries 2010; Sallenave and blood vessels in the gills hemorrhage. 2018). Despite years of research on Golden Affected fish behave as if there is not Alga, no proven strategies have been enough oxygen in the water. They travel at developed to prevent or mitigate bloom the top of the water surface or rest on the formation or toxicity effects in large water bottom in edges and shallow areas, and bodies (Barkoh and Fries 2010). ultimately succumb to asphyxiation (Sallinave 2018; Figure 3). These toxic In Pennsylvania, fisheries in colonized effects extend to other aquatic organisms, waters having the potential to reach the including amphibians, invertebrates, optimal conditions necessary for a Golden plankton, and bacteria (Barkoh and Fries Alga bloom are at risk of producing large 2010). fish kills. This occurred in 2009 within Dunkard Creek in Greene County, which Human Health: Golden Alga toxins have no decimated populations of many fish species, apparent lethal effect on non-gill breathing freshwater mussels, and Mudpuppy P a g e | 3 Aquatic Invasive Species Control Plan Golden Alga Division of Environmental Services Updated June 2021 Salamanders (C. Urban, personal during routine water quality sampling. communication). This can be accomplished by examining water samples for Golden Alga via Management microscopy or by Environmental DNA (eDNA) sampling (Sallinave 2018). Management Goals: Golden Alga already resides in Pennsylvania. Therefore, • Consider the inclusion of Golden Alga management of the species must focus on on the invasive species lists in 58 Pa. containing or eliminating existing Code §71.6 and §73.1. populations, on preventing their spread, and on preventing new incursions of the species • Encourage the incident reporting of from out of state. aquatic invasive species within Pennsylvania. Although Golden Alga Containment and Prevention Actions: may be difficult to identify outside of a Efforts to stop the spread of Golden Alga in laboratory setting, the reporting of Pennsylvania need to focus on containing suspected observations is encouraged. the existing Dunkard Creek and Whiteley Online reporting can now be conducted Creek populations (both in Greene County), at the following PFBC web site: on identifying potential habitat for new https://pfbc.pa.gov/forms/reportAIS.htm incursions, and on preventing the alga from as well as PA iMapInvasives at: infesting those areas: https://www.paimapinvasives.org/ and at the national level, USGS Nonindigenous • Initiate a public education effort to Aquatic Species website: acquaint the populace with the threat of https://nas.er.usgs.gov/SightingReport.as and measures to prevent the spread of px Golden Alga. Because Golden Alga can potentially spread on recreational • Discuss the water hauler disinfection equipment such as boating gear, waders, procedures and regulations within and fishing tackle, education efforts Pennsylvania with appropriate state should include best practices to disinfect partners and initiate guidance or gear. These include completely draining regulatory oversight to prevent the water from watercraft bilges, live wells, spread of AIS such as Golden Alga. and other areas; allowing all materials or equipment to fully dry for at least three • Initiate and support research to elucidate days; or disinfection with 10% bleach the ecological requirements of Golden solution (Sanninave 2018). Alga in Pennsylvania waters and develop strategies to prevent or mitigate • Request Federal and Pennsylvania State bloom formation. This includes agencies to monitor for Golden Alga engaging with appropriate state and P a g e | 4 Aquatic Invasive Species Control Plan Golden Alga Division of Environmental Services Updated June 2021 federal partners to monitor Golden Alga Alga (Prymnesium parvum). Journal of in Pennsylvania watersheds, particularly
Recommended publications
  • 28-Protistsf20r.Ppt [Compatibility Mode]
    9/3/20 Ch 28: The Protists (a.k.a. Protoctists) (meet these in more detail in your book and lab) 1 Protists invent: eukaryotic cells size complexity Remember: 1°(primary) endosymbiosis? -> mitochondrion -> chloroplast genome unicellular -> multicellular 2 1 9/3/20 For chloroplasts 2° (secondary) happened (more complicated) {3°(tertiary) happened too} 3 4 Eukaryotic “supergroups” (SG; between K and P) 4 2 9/3/20 Protists invent sex: meiosis and fertilization -> 3 Life Cycles/Histories (Fig 13.6) Spores and some protists (Humans do this one) 5 “Algae” Group PS Pigments Euglenoids chl a & b (& carotenoids) Dinoflagellates chl a & c (usually) (& carotenoids) Diatoms chl a & c (& carotenoids) Xanthophytes chl a & c (& carotenoids) Chrysophytes chl a & c (& carotenoids) Coccolithophorids chl a & c (& carotenoids) Browns chl a & c (& carotenoids) Reds chl a, phycobilins (& carotenoids) Greens chl a & b (& carotenoids) (more groups exist) 6 3 9/3/20 Name word roots (indicate nutrition) “algae” (-phyt-) protozoa (no consistent word ending) “fungal-like” (-myc-) Ecological terms plankton phytoplankton zooplankton 7 SG: Excavata/Excavates “excavated” feeding groove some have reduced mitochondria (e.g.: mitosomes, hydrogenosomes) 8 4 9/3/20 SG: Excavata O: Diplomonads: †Giardia Cl: Parabasalids: Trichonympha (bk only) †Trichomonas P: Euglenophyta/zoa C: Kinetoplastids = trypanosomes/hemoflagellates: †Trypanosoma C: Euglenids: Euglena 9 SG: “SAR” clade: Clade Alveolates cell membrane 10 5 9/3/20 SG: “SAR” clade: Clade Alveolates P: Dinoflagellata/Pyrrophyta:
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • Water Resources Report
    MMINNEAPOLISINNEAPOLIS PPARKARK && RRECREATIONECREATION BBOARDOARD 20122012 WWATERATER RRESOURCESESOURCES RREPORTEPORT Environmental Stewardship Water Resources Management www.minneapolisparks.org January 2015 2012 WATER RESOURCES REPORT Prepared by: Minneapolis Park & Recreation Board Environmental Stewardship 3800 Bryant Avenue South Minneapolis, MN 55409-1029 612.230.6400 www.minneapolisparks.org January 2015 Funding provided by: Minneapolis Park & Recreation Board City of Minneapolis Public Works Copyright © 2015 by the Minneapolis Park & Recreation Board Material may be quoted with attribution. TABLE OF CONTENTS Page Abbreviations ............................................................................................................................. i Executive Summary ............................................................................................................... iv 1. Monitoring Program Overview .............................................................................................. 1-1 2. Birch Pond .............................................................................................................................. 2-1 3. Brownie Lake ......................................................................................................................... 3-1 4. Lake Calhoun ......................................................................................................................... 4-1 5. Cedar Lake ............................................................................................................................
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • A Brief Review
    PEER-REVIEWED REVIEW ARTICLE bioresources.com Potential of the Micro and Macro Algae for Biofuel Production: A Brief Review Renganathan Rajkumar,* Zahira Yaakob, and Mohd Sobri Takriff The world seems to be raising its energy needs owing to an expanding population and people’s desire for higher living standards. Diversification biofuel sources have become an important energy issue in recent times. Among the various resources, algal biomass has received much attention in the recent years due to its relatively high growth rate, its vast potential to reduce greenhouse gas (GHG) emissions and climate change, and their ability to store high amounts of lipids and carbohydrates. These versatile organisms can also be used for the production of biofuel. In this review, sustainability and the viability of algae as an up-coming biofuel feedstock have been discussed. Additionally, this review offers an overview of the status of biofuel production through algal biomass and progress made so far in this area. Keywords: Microalgae; Macroalgae; Biomass; Lipid; Biofuel; Oil production; Bioconversion; Algaculture; Wastewater treatment; Malaysia Contact information: Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia; * Corresponding author: [email protected] INTRODUCTION The energy requirements of the global community are rising year by year. Currently, fossil fuels are a prominent source of transportation fuels and energy. The world’s demand for oil is expected to rise 60% from the current level by 2025 (Khan et al. 2009). In view of the increasing oil demand and the depleting oil reserves, development of innovative techniques for the production of biofuels from novel renewable biomass feedstock sources are gaining importance all over the world.
    [Show full text]
  • And Macro-Algae: Utility for Industrial Applications
    MICRO- AND MACRO-ALGAE: UTILITY FOR INDUSTRIAL APPLICATIONS Outputs from the EPOBIO project September 2007 Prepared by Anders S Carlsson, Jan B van Beilen, Ralf Möller and David Clayton Editor: Dianna Bowles cplpressScience Publishers EPOBIO: Realising the Economic Potential of Sustainable Resources - Bioproducts from Non-food Crops © September 2007, CNAP, University of York EPOBIO is supported by the European Commission under the Sixth RTD Framework Programme Specific Support Action SSPE-CT-2005-022681 together with the United States Department of Agriculture. Legal notice: Neither the University of York nor the European Commission nor any person acting on their behalf may be held responsible for the use to which information contained in this publication may be put, nor for any errors that may appear despite careful preparation and checking. The opinions expressed do not necessarily reflect the views of the University of York, nor the European Commission. Non-commercial reproduction is authorized, provided the source is acknowledged. Published by: CPL Press, Tall Gables, The Sydings, Speen, Newbury, Berks RG14 1RZ, UK Tel: +44 1635 292443 Fax: +44 1635 862131 Email: [email protected] Website: www.cplbookshop.com ISBN 13: 978-1-872691-29-9 Printed in the UK by Antony Rowe Ltd, Chippenham CONTENTS 1 INTRODUCTION 1 2 HABITATS AND PRODUCTION SYSTEMS 4 2.1 Definition of terms 4 2.2 Macro-algae 5 2.2.1 Habitats for red, green and brown macro-algae 5 2.2.2 Production systems 6 2.3 Micro-algae 9 2.3.1 Applications of micro-algae 9 2.3.2 Production
    [Show full text]
  • Brown Algae and 4) the Oomycetes (Water Molds)
    Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level.
    [Show full text]
  • Harmful Algal Blooms in Coastal Waters of New Jersey Include Red Tides, Green Tides, Brown Tides and Other Harmful Species As Listed in Appendix I
    Brown Tide Alga, Aureococcus anophagefferens HARMFUL ALGAL BLOOMS IN COASTAL WATERS OF NEW JERSEY BY Mary Downes Gastrich, Ph.D. May, 2000 NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION Division Of Science, Research and Technology Leslie McGeorge, Director Table of Contents Executive Summary iii Foreward v I. Background 1 II. National Assessment of Harmful Algal Blooms (HABs) 1 A. National Assessment of HABs 1 B. National Perspective on the Causes of HABs 2 III. Sources of Current and Historical Data on HABs 2 A. Sources of Historical Data 2 B. Sources of Current Information 3 IV. Health and Ecological Implications 6 A. Human health impacts 6 B. Ecological impacts 8 C. Aesthetic/Economic Impacts 11 V. Extent, Severity and Duration of HABs 11 A. Summary of Historic and Recent HABs in NJ 11 B. Summary of the 1999 HABs in NJ coastal waters 13 VI. Research and Indicator Development 17 A. General Research and Indicator Development: HABs 18 B. Specific Brown Tide Bloom Research Needs 20 VII. References 24 List of Figures Figure 1. Historical perspective of major phytoplankton blooms 32 causing red tides in the New York Bight and adjacent New Jersey coastal region Figure 2. New Jersey’s Coastal Phytoplankton Monitoring Network 33 List of Tables Table 1. Listing of documented algal blooms from 1957-1995 34 In NY Harbor and NY Bight VIII. Appendix I: Documented occurrences of harmful algae in New Jersey waters 1-4 Acknowledgements: The following people are gratefully acknowledged for their review and input to this report: Paul Olsen for his expertise and information on the NJ Phytoplankton Network and his comprehensive reviews, Eric Feerst, Bob Connell, Bill Eisele, Jim Mumman, Tom Atherholt and to Alan Stern, Dr.P.H.
    [Show full text]
  • Short Communication on the Classification of The
    SHORT COMMUNICATION ON THE CLASSIFICATION OF THE GENERA Labyrinthula, Schizochytrium AND Thraustochytrium (Labyrinthulids AND Thraustochytrids) Øjvind Moestrup Biological Institute, University of Copenhagen Universitetsparken 4 , DK- 2100 Copenhagen, Denmark E-mail: [email protected] Citation as: Moestrup Øjvind, 2019. On the classification of the genera Labyrinthula, Schizochytrium and Thraustochytrium (Labyrinthulids and Thraustochytrids). Tap chi Sinh hoc, 41(2): xx–xx. https://doi.org/10.15625/0866-7160/v41n2.xxxxx Species of the genera Labyrinthula, Schizochytrium, Thraustochytrium and related organisms have recently attracted attention in biotechnology, and here is a short note on how to classify these rather special organisms. The labyrinthulids and thraustochytrids belong to the heterokonts, a large group of very diverse organisms, from microscopic unicells to metre-long brown algae. The heterokonts comprise species that were formerly classified as algae, fungi and/or protozoa. Many heterokonts are autotrophic and contain chloroplasts, and such organisms are often classified as algae (golden algae, brown algae). Labyrinthulids and thraustochytrids, however, are heterotrophic and lack chloroplasts. They were until recently known as Labyrinthulomycetes or Labyrinthulea , indeed the new classification of Adl et al. (2019) uses the first of these names. It is an unfortunate name as it gives the misleading impression that they are fungi. Honigberg et al. (1964) and others considered them protozoa. Are heterokonts algae, protozoa or fungi? And, more specifically, what are labyrinthulids and thraustochytrids? The heterokonts are thought to be a very old group (probably precambrian), and this may account for their huge morphological diversity. In the WORMS list (World Register of Marine Species) heterokonts are classified as the Infrakingdom Heterokonta .
    [Show full text]
  • Limnological Information Supporting the Development of Regional Nutrient Criteria for Alaskan Lakes
    LIMNOLOGICAL INFORMATION SUPPORTING THE DEVELOPMENT OF REGIONAL NUTRIENT CRITERIA FOR ALASKAN LAKES Water Quality Monitoring and Trophic Assessment of Seven Lakes in the Matanuska-Susitna Borough J. A. Edmundson REGIONAL INFORMATION REPORT No. 2A03-24 Alaska Department of Fish and Game Division of Commercial Fisheries 333 Raspberry Road Anchorage, Alaska 99518-1599 August 2002 I The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished division reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting ofrecently collected information. reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Division of Commercial Fisheries. AUTHORS II,'" Jim A. Edmundson is the project leader for Central Region Limnology of the Alaska Department ofFish and Game, Division of Commercial Fisheries, 43961 Kalifornsky Beach Road, Suite B, Soldotna, AK 99669. "..• '''11I11 ,." "J " ,,j Product names used in this report are included for scientific completeness but do not constitute endorsement by Alaska Department of Fish and Game. " il"l I.~ II~ IH ""I' TABLE OF CONTENTS Section Page LIST OF TABLES .iii LIST OF FIGURES iv LIST OF APPENDICES viii ABSTRACT ix INTRODUCTION 1 Objectives . 3 Description of Study Site 3 METHODS 6 Data Gathering 6 Databases, Statistical Analysis, and Trophic State Index 15 RESULTS and DISCUSSION 16 Physical Conditions 16 Chemical Characteristics 22 Nutrients 29 Particulate Organic Carbon '" 34 Phytoplankton 34 Nutrient-Chlorophyll Models 36 Trophic Status 43 CONCLUSIONS and RECOMMENDATIONS 46 ACKN"OWLEDGEMENTS 49 REFERENCES 49 ii ., LIST OF TABLES Table " ;I 1.
    [Show full text]
  • Cladistic Analyses of Combined Traditional and Moleculardata
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 244-248, January 1995 Evolution Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage (18S rRNA/chromophyte/chrysophyte/diatom/phylogeny) GARY W. SAUNDERSt, DANIEL POTrERt, MICHAEL P. PASKIND§, AND ROBERT A. ANDERSENt$ tBotany School, University of Melbourne, Parkville, Victoria 3052, Australia; tBigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575; and §BASF Research Corporation, Worcester, MA 01605 Communicated by Hewson Swift, University of Chicago, Chicago, IL, September 12, 1994 ABSTRACT The chromophyte algae are a large and bio- ultrastructural features, especially those of the flagellar appa- logically diverse assemblage of brown seaweeds, diatoms, and ratus. The eukaryotic flagellum (including cilium) probably other golden algae classified in 13 taxonomic classes. One evolved only once, and regardless of life stage, flagella are subgroup (diatoms, pedinellids, pelagophytes, silicoflagel- considered homologous; i.e., a flagellum of a sperm cell is lates, and certain enigmatic genera) is characterized by a considered homologous to that of a flagellate phytoplankter or highly reduced flagellar apparatus. The flagellar apparatus an asexual zoospore (10). Microtubular roots often anchor the lacks microtubular and fibrous roots, and the flagellum basal flagellum or flagella, and they are the major component of the body is attached directly to the nucleus. We hypothesize that cell's cytoskeleton (17), often being active in specific cell the flagellar reduction is the result of a single evolutionary activities [e.g., phagocytosis (18-20) and scale formation (21- series of events. Cladistic analysis of ultrastructural and 23)]. The flagellar apparatus in many chromophyte classes has biochemical data reveals a monophyletic group that unites all four microtubular roots, and in some cases a system II fiber or taxa with a reduced flagellar apparatus, supporting our rhizoplast is also present (Fig.
    [Show full text]