Water Resources Report

Total Page:16

File Type:pdf, Size:1020Kb

Water Resources Report MMINNEAPOLISINNEAPOLIS PPARKARK && RRECREATIONECREATION BBOARDOARD 20122012 WWATERATER RRESOURCESESOURCES RREPORTEPORT Environmental Stewardship Water Resources Management www.minneapolisparks.org January 2015 2012 WATER RESOURCES REPORT Prepared by: Minneapolis Park & Recreation Board Environmental Stewardship 3800 Bryant Avenue South Minneapolis, MN 55409-1029 612.230.6400 www.minneapolisparks.org January 2015 Funding provided by: Minneapolis Park & Recreation Board City of Minneapolis Public Works Copyright © 2015 by the Minneapolis Park & Recreation Board Material may be quoted with attribution. TABLE OF CONTENTS Page Abbreviations ............................................................................................................................. i Executive Summary ............................................................................................................... iv 1. Monitoring Program Overview .............................................................................................. 1-1 2. Birch Pond .............................................................................................................................. 2-1 3. Brownie Lake ......................................................................................................................... 3-1 4. Lake Calhoun ......................................................................................................................... 4-1 5. Cedar Lake ............................................................................................................................. 5-1 6. Diamond Lake ........................................................................................................................ 6-1 7. Grass Lake .............................................................................................................................. 7-1 8. Lake Harriet ............................................................................................................................ 8-1 9. Lake Hiawatha ........................................................................................................................ 9-1 10. Lake of the Isles ................................................................................................................... 10-1 11. Loring Pond .......................................................................................................................... 11-1 12. Lake Nokomis ...................................................................................................................... 12-1 13. Powderhorn Lake ................................................................................................................. 13-1 14. Ryan Lake ............................................................................................................................ 14-1 15. Spring Lake .......................................................................................................................... 15-1 16. Webber Pond ........................................................................................................................ 16-1 17. Wirth Lake ............................................................................................................................ 17-1 18. Comparisons Among Lakes ................................................................................................. 18-1 19. Public Beach Monitoring ...................................................................................................... 19-1 20. Exotic Aquatic Plant Management ....................................................................................... 20-1 21. Wetland Health Evaluation Program (WHEP) ..................................................................... 21-1 22. Bassett Creek Watershed Outlet Monitoring Program (WOMP) Station ............................. 22-1 23. Minnehaha Creek Watershed Outlet Monitoring Program (WOMP) Station ...................... 23-1 24. National Pollutant Discharge Elimination System (NPDES) Monitoring ............................ 24-1 th st 25. Nokomis 56 & 21 (BMP) Monitoring .............................................................................. 25-1 26. Xerxes Avenue at Minnehaha Creek Monitoring Station…………………………………26-1 27. Golf Course Wetland Monitoring ......................................................................................... 27-1 28. Climatological Summary ...................................................................................................... 28-1 29. Water Quality Education ...................................................................................................... 29-1 30. Quality Assurance Assessment Report ................................................................................. 30-1 31. Additional Sources of Water Quality Information ............................................................... 31-1 32. References ............................................................................................................................ 32-1 Appendix A – Box and Whisker Plot Record ....................................................................... A-1 Appendix B – Brownie, Powderhorn and Wirth Lake Macrophyte Maps ........................... B-1 Appendix C – Lake Monitoring Data 2012 .......................................................................... C-1 2012 Water Resources Report – Minneapolis Park & Recreation Board EXECUTIVE SUMMARY As part of its stewardship of the lakes and other water bodies within the City of Minneapolis, the Minneapolis Park and Recreation Board (MPRB) monitors lakes, streams, and stormwater flows for contaminants and other water quality indicators. This report presents the results for the 2012 monitoring season. The report is primarily based on data collected by the MPRB Environmental Operations Section. The MPRB monitors the water quality of Brownie, Calhoun, Cedar, Diamond, Grass, Harriet, Hiawatha, Isles, Loring, Nokomis, Powderhorn, Spring, Webber, and Wirth Lakes. Data from 2003- 2012 are used to calculate trophic state index (TSI) trends and estimate the trophic status for each lake. Based on the trophic state report for 2012 the following observations are made: Lakes with increasing Lakes with decreasing Lakes with stable trend water quality indicators water quality indicators Diamond Lake Brownie Lake Lake Calhoun Grass Lake Cedar Lake Lake Harriet Webber Pond Lake of the Isles Wirth Lake Loring Pond Lake Nokomis Powderhorn Lake Spring Lake Water Quality Highlights The Minneapolis lakes experienced both a very wet spring and also drought conditions from August through October during the 2012 sampling season. The water quality of Lakes Calhoun and Harriet continues to be strong for lakes in urban settings; however, the last decade of monitoring data has begun to trend towards slight degradation in water quality. Monitoring data should be used to track this nascent trend and to develop next generation plans for these lakes. Powderhorn Lake received its ninth barley straw treatment. Duckweed and filamentous algae impacted the aesthetics and clarity at Powderhorn Lake in 2012. An aquatic plant survey found that C. demersum (coontail) a native plant has begun to colonize the lake, bringing the total number of submerged aquatic plants in the lake to three up from zero. Wirth Lake continued its increasing water quality trend. Wirth Lake currently meets the Minnesota Pollution Control Agency (MPCA) guidelines for phosphorus, chlorophyll-a, and secchi depth and has for most years since 2000. Lake of the Isles and Cedar Lake both exhibit stable TSI values. These lakes have received significant improvements in stormwater treatment since the 1990’s. They exhibited a resulting improvement in water quality and have stabilized over the last five years at a higher level of water quality. 2012 Water Resources Report – Minneapolis Park & Recreation Board Page iv Qualitative monitoring of the floating artificial islands in Spring Lake showed establishment of planted vegetation. Weedy and invasive plants have also self-seeded to the islands. MPRB will monitor water quality parameters in the lake as well as the success of vegetation on the islands. The project will allow MPRB to evaluate artificial islands as a management technique for aquatic and wetland systems. The water quality at Lake Hiawatha is largely controlled by the inflow from Minnehaha Creek. Drought years strongly influence this lake. Monitoring data from Lake Hiawatha as well as flow data from the Minnehaha Creek WOMP station and the Minneapolis Park Board Xerxes station were used in the Minnehaha Creek – Lake Hiawatha TMDL study. Because of the long-term datasets collected by MPRB, the TMDL study will be based on actual watershed and in-lake conditions rather than relying on modeled data. The MPRB monitored 12 public beaches for Escherichia coli (E. coli, as recommended by the US Environmental Protection Agency). These bacteria are used as proxy indicators of pathogens in water. Four beaches had extremely low season long geometric means where the geometric mean was below 10. The single sample limit of 1,260 E. coli per 100 mL of water was exceeded at Harriet Southeast Beach and Wirth Beach during the 2012 beach season. Eurasian water milfoil harvesting was carried out on Calhoun, Cedar, Harriet, Lake of the Isles, Lake Nokomis and Wirth Lake in 2012. Plant growth in the permitted harvest areas were very low compared
Recommended publications
  • An Analysis of Primary and Secondary Production in Lake Kariba in a Changing Climate
    AN ANALYSIS OF PRIMARY AND SECONDARY PRODUCTION IN LAKE KARIBA IN A CHANGING CLIMATE MZIME R. NDEBELE-MURISA A thesis submitted in partial fulfillment of the requirements for the degree of Doctor Philosophiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape Supervisor: Prof. Charles Musil Co-Supervisor: Prof. Lincoln Raitt May 2011 An analysis of primary and secondary production in Lake Kariba in a changing climate Mzime Regina Ndebele-Murisa KEYWORDS Climate warming Limnology Primary production Phytoplankton Zooplankton Kapenta production Lake Kariba i Abstract Title: An analysis of primary and secondary production in Lake Kariba in a changing climate M.R. Ndebele-Murisa PhD, Biodiversity and Conservation Biology Department, University of the Western Cape Analysis of temperature, rainfall and evaporation records over a 44-year period spanning the years 1964 to 2008 indicates changes in the climate around Lake Kariba. Mean annual temperatures have increased by approximately 1.5oC, and pan evaporation rates by about 25%, with rainfall having declined by an average of 27.1 mm since 1964 at an average rate of 6.3 mm per decade. At the same time, lake water temperatures, evaporation rates, and water loss from the lake have increased, which have adversely affected lake water levels, nutrient and thermal dynamics. The most prominent influence of the changing climate on Lake Kariba has been a reduction in the lake water levels, averaging 9.5 m over the past two decades. These are associated with increased warming, reduced rainfall and diminished water and therefore nutrient inflow into the lake. The warmer climate has increased temperatures in the upper layers of lake water, the epilimnion, by an overall average of 1.9°C between 1965 and 2009.
    [Show full text]
  • 28-Protistsf20r.Ppt [Compatibility Mode]
    9/3/20 Ch 28: The Protists (a.k.a. Protoctists) (meet these in more detail in your book and lab) 1 Protists invent: eukaryotic cells size complexity Remember: 1°(primary) endosymbiosis? -> mitochondrion -> chloroplast genome unicellular -> multicellular 2 1 9/3/20 For chloroplasts 2° (secondary) happened (more complicated) {3°(tertiary) happened too} 3 4 Eukaryotic “supergroups” (SG; between K and P) 4 2 9/3/20 Protists invent sex: meiosis and fertilization -> 3 Life Cycles/Histories (Fig 13.6) Spores and some protists (Humans do this one) 5 “Algae” Group PS Pigments Euglenoids chl a & b (& carotenoids) Dinoflagellates chl a & c (usually) (& carotenoids) Diatoms chl a & c (& carotenoids) Xanthophytes chl a & c (& carotenoids) Chrysophytes chl a & c (& carotenoids) Coccolithophorids chl a & c (& carotenoids) Browns chl a & c (& carotenoids) Reds chl a, phycobilins (& carotenoids) Greens chl a & b (& carotenoids) (more groups exist) 6 3 9/3/20 Name word roots (indicate nutrition) “algae” (-phyt-) protozoa (no consistent word ending) “fungal-like” (-myc-) Ecological terms plankton phytoplankton zooplankton 7 SG: Excavata/Excavates “excavated” feeding groove some have reduced mitochondria (e.g.: mitosomes, hydrogenosomes) 8 4 9/3/20 SG: Excavata O: Diplomonads: †Giardia Cl: Parabasalids: Trichonympha (bk only) †Trichomonas P: Euglenophyta/zoa C: Kinetoplastids = trypanosomes/hemoflagellates: †Trypanosoma C: Euglenids: Euglena 9 SG: “SAR” clade: Clade Alveolates cell membrane 10 5 9/3/20 SG: “SAR” clade: Clade Alveolates P: Dinoflagellata/Pyrrophyta:
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • Top-Down Trophic Cascades in Three Meromictic Lakes Tanner J
    Top-down Trophic Cascades in Three Meromictic Lakes Tanner J. Kraft, Caitlin T. Newman, Michael A. Smith, Bill J. Spohr Ecology 3807, Itasca Biological Station, University of Minnesota Abstract Projections of tropic cascades from a top-down model suggest that biotic characteristics of a lake can be predicted by the presence of planktivorous fish. From the same perspective, the presence of planktivorous fish can theoretically be predicted based off of the sampled biotic factors. Under such theory, the presence of planktivorous fish contributes to low zooplankton abundances, increased zooplankton predator-avoidance techniques, and subsequent growth increases of algae. Lakes without planktivorous fish would theoretically experience zooplankton population booms and subsequent decreased algae growth. These assumptions were used to describe the tropic interactions of Arco, Deming, and Josephine Lakes; three relatively similar meromictic lakes differing primarily from their absence or presence of planktivorous fish. Due to the presence of several other physical, chemical, and environmental factors that were not sampled, these assumptions did not adequately predict the relative abundances of zooplankton and algae in a lake based solely on the fish status. However, the theory did successfully predict the depth preferences of zooplankton based on the presence or absence of fish. Introduction Trophic cascades play a major role in the ecological composition of lakes. One trophic cascade model predicts that the presence or absence of piscivorous fishes will affect the presence of planktivorous fishes, zooplankton size and abundance, algal biomass, and 1 subsequent water clarity (Fig. 1) (Carpenter et al., 1987). The trophic nature of lakes also affects animal behavior, such as the distribution patterns of zooplankton as a predator avoidance technique (Loose and Dawidowicz, 1994).
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • Town of Seneca
    TOWN OF BRISTOL Inventory of Land Use and Land Cover Prepared for: Ontario County Water Resources Council 20 Ontario Street, 3rd Floor Canandaigua, New York 14424 and Town of Bristol 6740 County Road 32 Canandaigua, New York 14424 Prepared by: Dr. Bruce Gilman Department of Environmental Conservation and Horticulture Finger Lakes Community College 3325 Marvin Sands Drive Canandaigua, New York 14424-8395 2020 Cover image: Ground level view of a perched swamp white oak forest community (S1S2) surrounding a shrub swamp that was discovered and documented on Johnson Hill north of Dugway Road. This forest community type is rare statewide and extremely rare locally, and harbors a unique assemblage of uncommon plant species. (Image by the Bruce Gilman). Acknowledgments: For over a decade, the Ontario County Planning Department has supported a working partnership between local towns and the Department of Environmental Conservation and Horticulture at Finger Lakes Community College that involves field research, ground truthing and digital mapping of natural land cover and cultural land use patterns. Previous studies have been completed for the Canandaigua Lake watershed, the southern Honeoye Valley, the Honeoye Lake watershed, the complete Towns of Canandaigua, Gorham, Richmond and Victor, and the woodlots, wetlands and riparian corridors in the Towns of Seneca, Phelps and Geneva. This report summarizes the latest land use/land cover study conducted in the Town of Bristol. The final report would not have been completed without the vital assistance of Terry Saxby of the Ontario County Planning Department. He is gratefully thanked for his assistance with landowner information, his patience as the fieldwork was slowly completed, and his noteworthy help transcribing the field maps to geographic information system (GIS) shape files.
    [Show full text]
  • Minneapolis Public Works Department Minneapolis Park & Recreation
    NPDES MS4 Phase I Permit No. MN0061018 Annual Report for 2014 Activities City of Minneapolis and the Minneapolis Park & Recreation Board, Co-Permittees Prepared by: Minneapolis Public Works Department in conjunction with Minneapolis Park & Recreation Board July 31, 2015 NPDES MS4 PHASE I PERMIT ANNUAL REPORT FOR 2014 ACTIVITIES Acknowledgements Public Works-Surface Water & Sewers Paul Chellsen Lane Christianson Kevin Danen Lois Eberhart Paul Hudalla Kelly Moriarity Matt Stonich Jeremy Strehlo John Studtmann Dick Thornbloom Karl Westermeyer Public Works - Transportation Maintenance & Repair Steve Collin Minneapolis Park & Recreation Board Rachael Crabb Michael Perniel Debra Pilger MaryLynn Pulscher Health Department - Environmental Services Tom Frame Patrick Hanlon Regulatory Services Steve Kennedy Source: Minneapolis Public Works – Surface Water and Sewers ii Table of Contents Cover Page ...................................................................................................................................................... Signature Page ............................................................................................................................................... Certification and Resolution 2015R-303…………………………………………………………………... Acknowledgements ....................................................................................................................................... Table of Contents ..........................................................................................................................................
    [Show full text]
  • A Brief Review
    PEER-REVIEWED REVIEW ARTICLE bioresources.com Potential of the Micro and Macro Algae for Biofuel Production: A Brief Review Renganathan Rajkumar,* Zahira Yaakob, and Mohd Sobri Takriff The world seems to be raising its energy needs owing to an expanding population and people’s desire for higher living standards. Diversification biofuel sources have become an important energy issue in recent times. Among the various resources, algal biomass has received much attention in the recent years due to its relatively high growth rate, its vast potential to reduce greenhouse gas (GHG) emissions and climate change, and their ability to store high amounts of lipids and carbohydrates. These versatile organisms can also be used for the production of biofuel. In this review, sustainability and the viability of algae as an up-coming biofuel feedstock have been discussed. Additionally, this review offers an overview of the status of biofuel production through algal biomass and progress made so far in this area. Keywords: Microalgae; Macroalgae; Biomass; Lipid; Biofuel; Oil production; Bioconversion; Algaculture; Wastewater treatment; Malaysia Contact information: Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia; * Corresponding author: [email protected] INTRODUCTION The energy requirements of the global community are rising year by year. Currently, fossil fuels are a prominent source of transportation fuels and energy. The world’s demand for oil is expected to rise 60% from the current level by 2025 (Khan et al. 2009). In view of the increasing oil demand and the depleting oil reserves, development of innovative techniques for the production of biofuels from novel renewable biomass feedstock sources are gaining importance all over the world.
    [Show full text]
  • And Macro-Algae: Utility for Industrial Applications
    MICRO- AND MACRO-ALGAE: UTILITY FOR INDUSTRIAL APPLICATIONS Outputs from the EPOBIO project September 2007 Prepared by Anders S Carlsson, Jan B van Beilen, Ralf Möller and David Clayton Editor: Dianna Bowles cplpressScience Publishers EPOBIO: Realising the Economic Potential of Sustainable Resources - Bioproducts from Non-food Crops © September 2007, CNAP, University of York EPOBIO is supported by the European Commission under the Sixth RTD Framework Programme Specific Support Action SSPE-CT-2005-022681 together with the United States Department of Agriculture. Legal notice: Neither the University of York nor the European Commission nor any person acting on their behalf may be held responsible for the use to which information contained in this publication may be put, nor for any errors that may appear despite careful preparation and checking. The opinions expressed do not necessarily reflect the views of the University of York, nor the European Commission. Non-commercial reproduction is authorized, provided the source is acknowledged. Published by: CPL Press, Tall Gables, The Sydings, Speen, Newbury, Berks RG14 1RZ, UK Tel: +44 1635 292443 Fax: +44 1635 862131 Email: [email protected] Website: www.cplbookshop.com ISBN 13: 978-1-872691-29-9 Printed in the UK by Antony Rowe Ltd, Chippenham CONTENTS 1 INTRODUCTION 1 2 HABITATS AND PRODUCTION SYSTEMS 4 2.1 Definition of terms 4 2.2 Macro-algae 5 2.2.1 Habitats for red, green and brown macro-algae 5 2.2.2 Production systems 6 2.3 Micro-algae 9 2.3.1 Applications of micro-algae 9 2.3.2 Production
    [Show full text]
  • Brown Algae and 4) the Oomycetes (Water Molds)
    Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level.
    [Show full text]
  • HIAWATHA GOLF COURSE AREA MASTER PLAN Aligning Water Management and Use
    HIAWATHA GOLF COURSE AREA MASTER PLAN Aligning Water Management and Use AMENDMENT TO THE NOKOMIS-HIAWATHA REGIONAL PARK MASTER PLAN FEBRUARY 17, 2021 HIAWATHA GOLF COURSE AREA MASTER PLAN EXECUTIVE SUMMARY Nokomis-Hiawatha Regional Park is named for the lakes it surrounds, Lake Nokomis and Lake Hiawatha. The park is a treasured gathering space in the heart of South Minneapolis and is located along the Grand Rounds National Scenic Byway and the banks of Minnehaha Creek. It provides a wide range of recreational opportunities, including a beloved 18-hole golf course on the west shore of Lake Hiawatha. The site was once the location of Rice Lake and a connected wetland complex. The lake was dredged and the wetlands filled in the 1920s, and the golf course was designed and constructed in the early 1930s over the dredge materials. The course has a classic feel with its tree-lined fairways and pushup greens. It is easily playable, but still challenging. And it is a course that is steeped in history and a tradition of welcoming all people. In June of 2014, over 11 inches of rain fell over a large area of the Minnehaha Advisory Committee (CAC) requested that the design team look at an 18-hole Creek watershed, causing a severe flood and subsequent closure of the Hiawatha option. Given the increase in the anticipated water footprint within the area and Golf Course for a significant period. The Minneapolis Park and Recreation Board the directive from the Board of Commissioners to achieve a flood-resilient design, (MPRB) began a process of assessing damages and working with the Federal the engineers, landscape architects, and golf course architect determined that an Emergency Management Agency (FEMA) to get the course up and running again.
    [Show full text]