Understanding Place in Fisheries Management

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Place in Fisheries Management UNDERSTANDING PLACE IN FISHERIES MANAGEMENT: AN EXAMINATION OF ECOLOGICAL AND SOCIAL COMMUNITIES IN THE PRIBILOF ISLANDS, ALASKA By Courtney Lyons RECOMMENDED: Dr. Advisory C. __________ Dr. Courtney Carothers Advisory Committee Co-Chair Dr. Shannon Atkinson Chair, Graduate Program in Fisheries APPROVED: Dr. }j0an Braddock UNDERSTANDING PLACE IN FISHERIES MANAGEMENT: AN EXAMINATION OF ECOLOGICAL AND SOCIAL COMMUNITIES IN THE PRIBILOF ISLANDS, ALASKA A DISSERTATION Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Courtney Lyons, B.S., M.S. Fairbanks, Alaska August 2015 Abstract Holistic approaches toward fisheries management are widely considered a more sustainable option than standard single-species frameworks. This project uses the holistic frameworks of ecosystem-based fisheries management (EBFM) and place-making to examine the ecological and social systems of the Pribilof Islands and the ways in which fisheries management decisions have structured these systems. In Chapter 1, we sought to understand potential ecological constraints of temperature, fish predation, and interactions with a congener (red king crab; Paralithodes camtschaticus) on blue king crab (Paralithodesplatypus) recovery. These examinations suggest that blue king crab juveniles switch strategies from predator avoidance to a strategy of predator deterrence in situations where predation is more likely. In addition, this research suggests that predatory interactions between crab congeners may be more likely than fish predation to inhibit blue king crab recovery. In Chapter 2, we sought to understand local place-making efforts and how they differed between the two Pribilof Island villages, as well as, how these place-making efforts articulated with development programs. We found that place-making efforts in both communities were based on maintaining residence in the islands and an appreciation of the way- of-life that residence provided. The way place-making efforts articulated with development programs, however, differed between the communities. In St. George, Alaska, residents selectively embraced development, only supporting initiatives that would help realize the goal of maintaining residence in the community, as opposed to integrating into a regional economy. Residents of St. Paul, Alaska, in contrast, had more autonomy and were able to control development projects in their community to support local place-making efforts. In Chapter 3 we used these data to develop a framework for assessing the vulnerability of fishing communities based on holistic, ethnographic understandings of local social systems. This framework showed v St. George to be a highly vulnerable community, while St. Paul was only moderately vulnerable. These assessments challenged previously published, quantitative vulnerability assessments. The results of our investigations into the social and ecological systems of the Pribilof Islands support the idea that holistic perspectives provide important information that can drastically alter management understandings of both fish resources and the people who depend upon them. vi Table of Contents Page Signature Page........................................................................................................................................i Title Page.............................................................................................................................................. iii Abstract.................................................................................................................................................. v Table of Contents ................................................................................................................................ vii List of Figures.................................................................................................................................... xiii List of Tables......................................................................................................................................xiii List of Appendices ...............................................................................................................................xv Acknowledgements ........................................................................................................................... xvii General Introduction ..............................................................................................................................1 Chapter 1 Influence of temperature and congener presence on blue ( Paralithodes platypus) and red (Paralithodes camtschaticus) king crab habitat preference and fish predation ..........................5 Abstract...................................................................................................................................... 5 1.1 Introduction ......................................................................................................................... 6 1.2 Materials and methods ......................................................................................................10 1.2.1 Animals ............................................................................................................ 10 1.2.2 Habitat preferences for single-species assemblages of blue and red king crabs................................................................................................................ 11 1.2.3 Habitat preferences for congener-present assemblages of blue and red king crabs................................................................................................................ 12 1.2.4 Fish predation ...................................................................................................13 1.3 Results ................................................................................................................................ 16 vii!! Page 1.3.1 Habitat preferences ........................................................................................ 16 1.3.2 Fish predation trials ........................................................................................ 17 1.4 Discussion ..........................................................................................................................18 1.5 Acknowledgements ...........................................................................................................23 1.6 Figures...............................................................................................................................24 1.7 References ........................................................................................................................ 29 Chapter 2 Community development versus economic development: Place-making as a framework for understanding development in fishing communities ...............................................37 Abstract....................................................................................................................................37 2.1 Introduction ....................................................................................................................... 38 2.2 Place-making..................................................................................................................... 39 2.3 Pribilof Island history ...................................................................................................... 41 2.4 Alaskan development programs relevant to the Pribilof Islands ..................................45 2.5 Vignette: Struggle in St. George......................................................................................48 2.5.1 The harbor in St. George: An example of development conflicting with place-making...............................................................................................................50 2.5.2 “The reincarnation of government control” ....................................................53 2.5.2.1 Concern A: Fishing opportunities don’t allow locals to fish in the way they desire to fish ...................................................................................55 2.5.2.2 Concern B: APICDA would rather lease out quota than help locals catch it.............................................................................................................55 2.6 Vignette: The contrast of St. Paul ....................................................................................57 viii! Page 2.6.1 CDQ in St. Paul: An example of development supporting place-making efforts...........................................................................................................................57 2.7 Local and extra-local politics ...........................................................................................60 2.7.1 St. George: “Who do you represent... the communities or the large fishing fleet?” ...........................................................................................................................61 2.7.2 St. Paul: “They’re not seeing how much struggling the shareholders do here” .............................................................................................................................63 2.8 Lessons for fisheries: Articulation of place-making and development .........................66 2.9 Conclusion: The importance of place ............................................................................. 73 2.10 Acknowledgements
Recommended publications
  • Use of Lower Minimum Size Limits to Reduce Discards in the Bristol Bay Red King Crab (Paralithodes Camtschaticus) Fishery
    NOAA Technical Memorandum NMFS-AFSC-20 Use of Lower Minimum Size Limits to Reduce Discards in the Bristol Bay Red King Crab (Paralithodes camtschaticus) Fishery by J. E. Reeves U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center August 1993 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The new NMFS-NWFSC series will be used by the Northwest Fisheries Science Center. This document should be cited as follows: Reeves, J. E. 1993. Use of lower minimum size limits to reduce discards in the Bristol Bay red king crab (Paralithodes camtschaticus) fishery. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-20, 16 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-20 Use of Lower Minimum Size Limits to Reduce Discards in the Bristol Bay Red King Crab (Paralifhodes camtschaticus) Fishery by J. E. Reeves Alaska Fisheries Science Center 7600 Sand Point Way N.E., BIN C-15700 Seattle, WA 98115-0070 U.S. DEPARTMENT OF COMMERCE Ronald H.
    [Show full text]
  • High-Pressure Processing for the Production of Added-Value Claw Meat from Edible Crab (Cancer Pagurus)
    foods Article High-Pressure Processing for the Production of Added-Value Claw Meat from Edible Crab (Cancer pagurus) Federico Lian 1,2,* , Enrico De Conto 3, Vincenzo Del Grippo 1, Sabine M. Harrison 1 , John Fagan 4, James G. Lyng 1 and Nigel P. Brunton 1 1 UCD School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; [email protected] (V.D.G.); [email protected] (S.M.H.); [email protected] (J.G.L.); [email protected] (N.P.B.) 2 Nofima AS, Muninbakken 9-13, Breivika, P.O. Box 6122, NO-9291 Tromsø, Norway 3 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, I-33100 Udine, Italy; [email protected] 4 Irish Sea Fisheries Board (Bord Iascaigh Mhara, BIM), Dún Laoghaire, A96 E5A0 Co. Dublin, Ireland; [email protected] * Correspondence: Federico.Lian@nofima.no; Tel.: +47-77629078 Abstract: High-pressure processing (HPP) in a large-scale industrial unit was explored as a means for producing added-value claw meat products from edible crab (Cancer pagurus). Quality attributes were comparatively evaluated on the meat extracted from pressurized (300 MPa/2 min, 300 MPa/4 min, 500 MPa/2 min) or cooked (92 ◦C/15 min) chelipeds (i.e., the limb bearing the claw), before and after a thermal in-pack pasteurization (F 10 = 10). Satisfactory meat detachment from the shell 90 was achieved due to HPP-induced cold protein denaturation. Compared to cooked or cooked– Citation: Lian, F.; De Conto, E.; pasteurized counterparts, pressurized claws showed significantly higher yield (p < 0.05), which was Del Grippo, V.; Harrison, S.M.; Fagan, possibly related to higher intra-myofibrillar water as evidenced by relaxometry data, together with J.; Lyng, J.G.; Brunton, N.P.
    [Show full text]
  • Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values
    water Article Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values Qingfei Zeng 1,*, Erik Jeppesen 2,3, Xiaohong Gu 1,*, Zhigang Mao 1 and Huihui Chen 1 1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; [email protected] (Z.M.); [email protected] (H.C.) 2 Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; [email protected] 3 Sino-Danish Centre for Education and Research, University of CAS, Beijing 100190, China * Correspondence: [email protected] (Q.Z.); [email protected] (X.G.) Received: 26 September 2018; Accepted: 26 October 2018; Published: 29 October 2018 Abstract: We examined the food preference of Chinese mitten crabs, Eriocheir sinensis (H. Milne Edwards, 1853), under food shortage, habitat choice in the presence of predators, and cannibalistic behavior by comparing their response to the popular culture plant Elodea nuttallii and the structurally more complex Myriophyllum verticillatum L. in a series of mesocosm experiments. Mitten crabs were found to consume and thus reduce the biomass of Elodea, whereas no negative impact on Myriophyllum biomass was recorded. In the absence of adult crabs, juveniles preferred to settle in Elodea habitats (appearance frequency among the plants: 64.2 ± 5.9%) but selected for Myriophyllum instead when adult crabs were present (appearance frequency among the plants: 59.5 ± 4.9%). The mortality rate of mitten crabs in the absence of plant shelter was higher under food shortage, primarily due to cannibalism.
    [Show full text]
  • Prospects of Red King Crab Hepatopancreas Processing: Fundamental and Applied Biochemistry
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2020 doi:10.20944/preprints202009.0263.v1 Article Prospects of Red King Crab Hepatopancreas Processing: Fundamental and Applied Biochemistry Tatyana Ponomareva 1, Maria Timchenko 1, Michael Filippov 1, Sergey Lapaev 1, and Evgeny Sogorin 1,* 1 Federal Research Center "Pushchino Scientific Center for Biological Research of the RAS", Pushchino, Russia * Correspondence: [email protected]; Tel.: +7-915-132-54-19 Abstract: Since the early 1980s, a large number of research works on enzymes from the red king crab hepatopancreas have been conducted. These studies have been relevant both from a fundamental point of view for studying the enzymes of marine organisms and in terms of the rational management of nature to obtain new and valuable products from the processing of crab fishing waste. Most of these works were performed by Russian scientists due to the area and amount of waste of red king crab processing in Russia (or the Soviet Union). However, the close phylogenetic kinship and the similar ecological niches of commercial crab species and the production scale of the catch provide the bases for the successful transfer of experience in the processing of red king crab hepatopancreas to other commercial crab species mined worldwide. This review describes the value of recycled commercial crab species, discusses processing problems, and suggests possible solutions to these problems. The main emphasis is placed on the enzymes of the hepatopancreas as the most highly salubrious product of waste processed from red king crab fishing. Keywords: marine fisheries; aquatic organisms; brachyura; anomura; commercial crab species; red king crab; Kamchatka crab; processing waste; hepatopancreas; waste recycling; enzymes; proteases; hyaluronidase 1.
    [Show full text]
  • Ecological Effects of Predator Information Mediated by Prey Behavior
    ECOLOGICAL EFFECTS OF PREDATOR INFORMATION MEDIATED BY PREY BEHAVIOR Tyler C. Wood A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2020 Committee: Paul Moore, Advisor Robert Green Graduate Faculty Representative Shannon Pelini Andrew Turner Daniel Wiegmann ii ABSTRACT Paul Moore, Advisor The interactions between predators and their prey are complex and drive much of what we know about the dynamics of ecological communities. When prey animals are exposed to threatening stimuli from a predator, they respond by altering their morphology, physiology, or behavior to defend themselves or avoid encountering the predator. The non-consumptive effects of predators (NCEs) are costly for prey in terms of energy use and lost opportunities to access resources. Often, the antipredator behaviors of prey impact their foraging behavior which can influence other species in the community; a process known as a behaviorally mediated trophic cascade (BMTC). In this dissertation, predator odor cues were manipulated to explore how prey use predator information to assess threats in their environment and make decisions about resource use. The three studies were based on a tri-trophic interaction involving predatory fish, crayfish as prey, and aquatic plants as the prey’s food. Predator odors were manipulated while the foraging behavior, shelter use, and activity of prey were monitored. The abundances of aquatic plants were also measured to quantify the influence of altered crayfish foraging behavior on plant communities. The first experiment tested the influence of predator odor presence or absence on crayfish behavior.
    [Show full text]
  • King Crab Life History Poster V3
    Early Life History of King Crabs, Paralithodes camtschaticus and P. platypus Bradley G. Stevens1, Kathy Swiney2, and Sara Persselin2 Red and blue king crabs (Paralithodes camtschaticus and P. platypus, respectively) supported valuable commercial fisheries in the Bering Sea. In 1998, populations of blue king crabs declined dramatically and its fishery was closed. Research on king crab life history has focused on the first year of life, from fertilization, through embryo development, hatching, larval development, settling, and juvenile growth. This poster documents important events in the life cycle of the king crab. King crabs extrude eggs within 24 hr of mating, and they Blue king crab female with fertilized eggs Red king crab female are fertilized with spermatophores deposited by the male crab. Stages of development are shown below. On day 1, the fertilized egg is about 1 mm in By day 12, the eggs are at the 256-512 cell stage. The embryo becomes apparent after about 4 months. diameter. It does not start to divide until day 4, At this point, only the eyes, abdomen, and mouthparts after which it undergoes one division daily are visible. Yolk Eye Heart Abdomen At 13 months (388 days), the eyes are large, and the About 6 months after fertilization, the eyes begin to embryo is almost ready to hatch. The egg is 1.3 mm in form as small crescent slivers. Yolk occupies most of diameter, and only a small amount of yolk remains. the egg. Chromatophores (red color cells) are easily seen. The abdomen (tail) is wrapped around and over the head.
    [Show full text]
  • Alaska King Crabs
    Alaska King Crabs King or stone crabs occur around the world. Commercial fisheries have existed for them in Alaska, Canada, Russia, Japan, Korea, New Zealand, Australia, South Georgia and Falkland Islands, Argentina, and Chile. King crabs have "tails," or abdomens, that are distinctive, being fan-shaped and tucked underneath the rear of the shell. They also have five pairs of legs; the first bears their claws or pincers, the right claw is usually the largest on the adults, the next three pairs are their walking legs, and the fifth pair of legs are small and normally tucked underneath the rear portion of their carapace (the shell covering their back). These specialized legs are used by adult females to clean their embryos (fertilized eggs) and the male uses them to transfer sperm to the female during mating. Distribution: In Alaska there are three commercial king crab species. Red king crabs, Paralithodes camtschaticus, have been the commercial "king" of Alaska's crabs. It occurs from British Columbia to Japan with Bristol Bay and the Kodiak Archipelago being the centers of its abundance in Alaska. Blue king crabs, P. platypus, live from Southeastern Alaska to Japan with the Pribilof and St. Matthew Islands being their highest abundance areas in Alaska. Golden king crabs, Lithodes aequispinus, are distributed from British Columbia to Japan with the Aleutian Islands their Alaska stronghold of abundance. Red and blue kings can occur from the intertidal zone to 100 fathoms or more. Golden king crabs live mostly between 100-400 fathoms, but can occur from 50-500 fathoms. Life History: Adult females brood thousands of embryos underneath their tail flap for about a year's time.
    [Show full text]
  • Marine Ecology Progress Series 469:195
    Vol. 469: 195–213, 2012 MARINE ECOLOGY PROGRESS SERIES Published November 26 doi: 10.3354/meps09862 Mar Ecol Prog Ser Contribution to the Theme Section ‘Effects of climate and predation on subarctic crustacean populations’ OPENPEN ACCESSCCESS Ecological role of large benthic decapods in marine ecosystems: a review Stephanie A. Boudreau*, Boris Worm Biology Department, Dalhousie University, 1355 Oxford Street, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada ABSTRACT: Large benthic decapods play an increasingly important role in commercial fisheries worldwide, yet their roles in the marine ecosystem are less well understood. A synthesis of exist- ing evidence for 4 infraorders of large benthic marine decapods, Brachyura (true crabs), Anomura (king crabs), Astacidea (clawed lobsters) and Achelata (clawless lobsters), is presented here to gain insight into their ecological roles and possible ecosystem effects of decapod fisheries. The reviewed species are prey items for a wide range of invertebrates and vertebrates. They are omnivorous but prefer molluscs and crustaceans as prey. Experimental studies have shown that decapods influence the structuring of benthic habitat, occasionally playing a keystone role by sup- pressing herbivores or space competitors. Indirectly, via trophic cascades, they can contribute to the maintenance of kelp forest, marsh grass, and algal turf habitats. Changes in the abundance of their predators can strongly affect decapod population trends. Commonly documented non- consumptive interactions include interference-competition for food or shelter, as well as habitat provision for other invertebrates. Anthropogenic factors such as exploitation, the creation of pro- tected areas, and species introductions influence these ecosystem roles by decreasing or increas- ing decapod densities, often with measurable effects on prey communities.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Reducing the Size Limit on Alaska Red King Crab: Price and Revenue Implications
    Reducing the Size Limit on Alaska Red King Crab: Price and Revenue Implications Sarah A. Bibb and Scott C. Matulich Reprinted from the Alaska Fishery Research Bulletin Vol. 1 No. 1, Summer 1994 Alaska Fishery Research Bulletin 1 (1):55–65. 1994. Reducing the Size Limit on Alaska Red King Crab: Price and Revenue Implications Sarah A. Bibb and Scott C. Matulich ABSTRACT: A size-structured shellfish population, like Alaska king crab Paralithodes camtschaticus poses special challenges for fishery managers and industry, alike. One often overlooked issue centers on how the size structure of the catch translates into prices and industry revenues. This investigation provides preliminary insight into whole- sale price determination for frozen red king crab legs and claws, which are sold by size in the U.S. wholesale market. Bayesian bootstrapping with informative priors was used to estimate the pricing model. Two policy simu- lations were conducted to assess how a lower size limit might have affected wholesale prices during the 1987–88 and 1988–89 marketing years. The results show that prices-by-size can change substantially and processor revenues can rise slightly or fall depending upon how management policies affect the size structure of the catch. INTRODUCTION will react to changes in the distribution. Moreover, published data do not provide adequate detail on prices The Alaskan king crab Paralithodes camtschaticus and quantities of king crab sold to estimate models of fishery began a precipitous decline in 1981. Follow- price determination by size and species. It follows that ing record harvests of 185 million pounds in 1980, neither regulatory agencies nor industry are able to statewide harvests declined to 16 million pounds by judge the merits of any potential management action 1985.
    [Show full text]
  • 6.2.5 Infection with Hematodinium Ted Meyers
    6.2.5 Hematodiniasis - 1 6.2.5 Infection with Hematodinium Ted Meyers Alaska Department of Fish and Game, Commercial Fisheries Division Juneau Fish Pathology Laboratory P.O. Box 115526 Juneau, AK 99811-5526 A. Name of Disease and Etiological Agent Hematodiniasis occurs in a wide range of crustaceans from many genera and results from a systemic infection of hemolymph and hemal spaces by parasitic dinoflagellates of the genus Hematodinium (superphylum Alveolata, order Syndinida, family Syndiniceae). The type species is H. perezi, morphologically described from shore crab (Carcinus maenas) and harbor crab (Portunas (Liocarcinus) depurator) (Chatton and Poisson 1931) from the English Channel coastline of France. A second Hematodinium species was described as H. australis (based entirely on different morphological characteristics) from the Australian sand crab (Portunus pelagicus) (Hudson and Shields 1994). Without molecular sequence data to allow comparative determination of the number of species or strains that might be infecting various crustacean hosts there has been an emergence of numerous Hematodinium and Hematodinium-like descriptions in the literature. These have been based on dinoflagellate-specific morphological features that cannot discriminate among species or strains and may also be somewhat plastic depending on environmental or host factors. Later sequencing of the partial small subunit ribosomal DNA (SSU rDNA) gene and internal transcribed spacer (ITS1) region of Hematodinium and Hematodinium-like dinoflagellates suggested there are three species (Hudson and Adlard 1996). A more recent similar comparison of the same sequences from the re-discovered type species H. perezi with other publicly available sequences indicated there are three distinct H. perezi genotypes (I, II, III (Small et al.
    [Show full text]
  • An Overview of the Decapoda with Glossary and References
    January 2011 Christina Ball Royal BC Museum An Overview of the Decapoda With Glossary and References The arthropods (meaning jointed leg) are a phylum that includes, among others, the insects, spiders, horseshoe crabs and crustaceans. A few of the traits that arthropods are characterized by are; their jointed legs, a hard exoskeleton made of chitin and growth by the process of ecdysis (molting). The Crustacea are a group nested within the Arthropoda which includes the shrimp, crabs, krill, barnacles, beach hoppers and many others. The members of this group present a wide range of morphology and life history, but they do have some unifying characteristics. They are the only group of arthropods that have two pairs of antenna. The decapods (meaning ten-legged) are a group within the Crustacea and are the topic of this key. The decapods are primarily characterized by a well developed carapace and ten pereopods (walking legs). The higher-level taxonomic groups within the Decapoda are the Dendrobranchiata, Anomura, Brachyura, Caridea, Astacidea, Axiidea, Gebiidea, Palinura and Stenopodidea. However, two of these groups, the Palinura (spiny lobsters) and the Stenopodidea (coral shrimps), do not occur in British Columbia and are not dealt with in this key. The remaining groups covered by this key include the crabs, hermit crabs, shrimp, prawns, lobsters, crayfish, mud shrimp, ghost shrimp and others. Arthropoda Crustacea Decapoda Dendrobranchiata – Prawns Caridea – Shrimp Astacidea – True lobsters and crayfish Thalassinidea - This group has recently
    [Show full text]