(12) United States Patent (10) Patent No.: US 9,399,762 B2 Far Well Et Al
Total Page:16
File Type:pdf, Size:1020Kb
US0093.99762B2 (12) United States Patent (10) Patent No.: US 9,399,762 B2 Far Well et al. (45) Date of Patent: Jul. 26, 2016 (54) METHODS AND SYSTEMS FOR 540,145 SULFMIDATION OR SULFOXMIDATION 2011 0196086 A1 8/2011 Matsushita et al. 2012/0237591 A1 9/2012 Cullis et al. OF ORGANIC MOLECULES FOREIGN PATENT DOCUMENTS (71) Applicant: The California Institute of Technology, Pasadena, CA (US) EP O 200 638 B1 4f1986 WO 2007 144599 A2 12/2007 (72) Inventors: Christopher C. Farwell, Thousand WO 2011, 1595.50 A3 12/2011 Oaks, CA (US); John A. McIntosh, OTHER PUBLICATIONS Pasadena, CA (US); Frances H. Arnold, Wang et al. Angewandte Chemie. Int. Ed., 2013, 52(33), 8661-65.* La Canada, CA (US) Mancheno et al. Organic Letters, 2006, 8(11).2349-52.* Adams, PD. et al., “PHENIX: a comprehensive Python-based system for macromolecular structure solution.” Acta Crystallogr., Sect. D, (73) Assignee: California Institute of Technology, Biol. Crystallogr., 2010, D66(2):213-221. Pasadena, CA (US) Ajikumar, P.K. et al., “Isoprenoid pathway recursor overproduction in Escherichia coli, Science, 2010, 330:70-74. (*) Notice: Subject to any disclaimer, the term of this Atschul, S.F. et al., “Basic local alignment search tool.” J. Mol. Biol. patent is extended or adjusted under 35 1990, 215(3): 403-10. U.S.C. 154(b) by 0 days. Bergman, R.G., “Organometallic chemistry: C-H activiation.” Nature, 2007, 446(7134):391-393. Bloom, J.D. et al., “Protein stability promotes evolvability.” Proc. (21) Appl. No.: 14/625,514 Natl. Acad. Sci. USA, 2006, 103(15):5869-5874. Bornscheur, U.T. and R.J. Kazlauskas, “Reaction specificity of (22) Filed: Feb. 18, 2015 enzymes: Catalytic promiscuity in biocatalysis: Using old enzymes to form new bonds and follow new pathways.” Angew. Chem. Int. (65) Prior Publication Data Ed., 2004, 43(45):6032-6040. Boyce, M. and C.R. Bertozzi. "Bringing chemistry to life.” Nat. US 2015/O232814 A1 Aug. 20, 2015 Methods, 2011, 8(8):638-642. Breslow, R., "Biomimetic chemistry: Biology as an inspiration.” J. Biol. Chem., 2009, 284(3): 1337-1342. Chen, M.S. and M.C. White, "Apredictably selective aliphatic C-H Related U.S. Application Data oxidation reaction for complex molecule synthesis.” Science, 2007. (60) Provisional application No. 61/941,197, filed on Feb. 318(5851):783-787. Cirino, P.C. and F.H. Arnold, "A self-sufficient perioxide-driven 18, 2014, provisional application No. 61/976,927, hydroxylation biocatalyst.” Angew. Chem. Int. Ed., 2003, filed on Apr. 8, 2014. 42(28):3299-3301. Clark, J.P. et al., “The role of Thr268 and Phe393 in cytochrome P450 (51) Int. Cl. BM3.” J. Inorg. Biochem., 2006, 100(5-6): 1075-1090. CI2N 9/02 (2006.01) Coelho, P.S. et al., “A serine-substituted P450 catalyzes highly effi CI2PI3/00 (2006.01) cient carbene transfer to olefins in vivo.” Nat. Chem. Biol., 2013, C07C33/24 (2006.01) 9(8):485-487. Coelho, P.S. et al., “Olefin Cyclopropanation via Carbene Transfer (52) U.S. Cl. Catalyzed by Engineered Cytochrome P450 Enzymes.” Science, CPC ............... CI2N 9/0042 (2013.01); CI2P 13/00 2013, 339(6117):307-310. (2013.01): CI2Y 106/02004 (2013.01) Davies, H.M.L. and J.R. Manning, “Catalytic C-H functionaliza (58) Field of Classification Search tion by metal carbenoid and nitrenoid insertion.” Nature, 2008, 451(7177), 417-424. CPC .................. C12N 9/0042; C12P 13/00; C12Y Davies, H.M.L. and R.E.J. Beckwith, “Catalytic Enantioselective 106/02004 C–H Activation by Means of Metal-Carbenoid-Induced C–H See application file for complete search history. Insertion.” Chem. Rev. 2003, 103 (8), pp. 2861-2904. Donaldson, W.A., “Synthesis of cyclopropane containing natural (56) References Cited products.” Tetrahedron, 2001, 57(41): 8589-8627. Dunford, A.J. et al., “Probing the molecular determinants of coen U.S. PATENT DOCUMENTS zyme selectivity in the P450 BM3 FAD/NADPH domain.” Biochim Biophys Acta., 2009, 1794(8): 1181-1189. 3,965,204 A 6, 1976 Lukas et al. Emsley, P. and K. Cowtan, "Coot: model-building tools for molecular 5,296,595 A 3/1994 Doyle graphics.” Acta Crystallogr., Sect. D., Biol. Crystallogr, 2004, 5,703,246 A 12/1997 Aggarwal et al. D60(12, Pt 1):2126-2132. 7,267,949 B2 9, 2007 Richards et al. Evans, P. "Scaling and assessment of data quality.” Acta Crystallogr., 7.625,642 B2 12/2009 Matsutani et al. Sect. D, Biol. Crystallogr., 2006, D62(1): 72-82. 7,662.969 B2 2/2010 Doyle 7,863,030 B2 1/2011 Arnold et al. (Continued) 8,247.430 B2 8, 2012 Yuan 8,993,262 B2 * 3/2015 Coelho ..................... C12P 7/62 Primary Examiner — Shailendra Kumar 435/119 (74) Attorney, Agent, or Firm — Joseph R. Baker, Jr.; 2006/0030718 A1 2/2006 Zhang et al. Gavrilovich, Dodd & Lindsey LLP 2006/011 1347 A1 5/2006 Askew, Jr. et al. 2007/0276013 A1 1 1/2007 Ebbinghaus et al. (57) ABSTRACT 2009/0238790 A2 9/2009 Sommadossi et al. The disclosure generally relates to the fields of synthetic 2010.00568.06 A1 3/2010 Warren organic chemistry. In particular, the present disclosure relates 2010, 0168463 A1 7, 2010 Hirata et al. 2010/02401.06 A1 9/2010 Wong et al. to methods and systems for the imidation of sulfides. 2011/01 12288 A1* 5/2011 Zhang .................. B01J 31, 1815 20 Claims, 27 Drawing Sheets US 9,399,762 B2 Page 2 (56) References Cited Omura, T. and R. Sato, “The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature.” J. Biol. OTHER PUBLICATIONS Chem., 1964, 239(7):2370-8. Ost, T.W.B. et al., “Phenylalanine 393 exerts thermodynamic control Girvan et al., “Glutamate-haem ester bond formation is disfavoured over the heme of flavocytochrome P450 BM3.” Biochemistry, 2001, in flavocytochrome P450 BM3: characterization of glutamate substi 40(45): 13421-13429. tution mutants at the haem site of P450 BM3.’ Biochemical Journal, Otey, C.R. et al., “Structure-guided recombination creates an artifi 2010,455-466. cial family of cytochromes P450.” PLoS Biol., 2006, 4(5) 189-798. Groves, J.T., “The bioinorganic chemistry of iron in Oxygenases and Perera, R. et al., “Molecular basis for the inability of an oxygenatom Supramolecular assemblies.” PNAS, Apr. 1, 2003, vol. 100, No. 7. donor ligand to replace the natural Sulfur donor heme axial ligand in 3569-3574. cytochrome P450 catalysis. Spectroscopic characterization of the Haines, D.C. et al., “Pivotal Role of Water in the Mechanism of Cys436Ser CYP2B4 mutant.” Arch. Biochem. Biophys., 2011, 507(1): 119-125. P450BM-3+.” Biochemistry, 2001, 40: 13456-13465. Preissner, S. et al., “SuperCYP: a comprehensive database on Hiraga, K. and F.H. Arnold, “General Method for Sequence-indepen Cytochrome P450 enzymes including a tool for analysis of CYP-drug dent Site-directed Chimeragenesis,” J. Mol. Biol. (2003) 330, 287 interactions.” Nucleic Acids Res., 2010, 38(Database issue):D237 296. 43. Hittinger, K., "Semi-synthetic proteins for catalytic and analytical Raphael, A.L. and H.B. Gray, 'Semisynthesis of axial-ligand (posi applications,” in Chemistry and Biochemistry, May 2009, Georgia tion 80) mutants of cytochrome c.” J. Am. Chem. Soc., 1991, Institute of Technology. 113(3):1038-40. Hyster, T.K. et al., “Biotinylated Rh(III) Complex in Engineered Reedy, C.J. et al., “Development of a heme protein structure-electro Streptavidin for Accelerated Asymmetric C–H Activation.” Sci chemical function database.” Nucleic Acids Res., 2008, 36(Database Iss.): D307-D313. ence, 2012, 338(6106):500-503. Rosenberg, M.L. et al., “Highly cis-Selective Cyclopropanations Isin, E.M and F.P. Guengerich, "Complex reactions catalyzed by with Ethyl Diazoacetate Using a Novel Rh(I) Catalyst with a Chelat cytochrome P450 enzymes.” Biochimica Biophysica Acta Gen. ing N-Heterocyclic Iminocarbene Ligand.” Org. Lett., 2009, 11(3), Subj, Mar. 2007, vol. 1770, Issue 3, pp. 314-329. 547-50. Kabsch, W., “Integration, Scaling, space-group assignment and post Ruppel, J.V. et al., "Cobalt-Catalyzed Intramolecular C H Amina refinement.” Acta Crystallogr., Sect. D, Biol. Crystallogr., Sect. D. tion with Arylsulfonyl Azides.”Org. Lett. 2007, 9(23):4889-4892. Biol. Crystallogr., 2010, D66(2):133-144. Setsune, J.I. and D. Dolphin, “Organometallic aspects of cytochrome Kataoka, M. et al., “Novel bioreduction system for the production of P-450 metabolism.” Can. J. Chem., 1987, 65(3):459-67. chiral alcohols.” Appl. Microbiol. Biotechnol. 2003, 62(5-6):437-45. Siegel, J.B. et al., “Computational design of an enzyme catalyst for a Lebel, H. et al., “Stereoselective cyclopropanation reactions', Chem. stereoselective biomolecular Diels-Alder reaction.” Science, 2010, Rev., 2003, 103(4): 977-1050. 329(5989):309-313. Lewis, J.C. and F.H. Arnold, “Catalysts on demand: selective oxida Sirim, D. et al., “The Cytochrome P450 Engineering Database: inte tions by laboratory-evolved cytochrome P450 BM3.” Chimia, 2009, gration of biochemical properties.” BMC Biochemistry 2009, 10:27. 63(6):309-312. Vagin, A. and A. Teplyakov, “MOLREP: an automated program for Lewis, J.C. et al., "Chemoenzymatic elaboration of monosaccharides molecular replacement.” J. Appl. Cryst., 1997, 30(6):1022-1025. using engineered cytochrome P450BM3 demethylases.” PNAS, Vatsis, K.P. et al., “Replacement of active-site cysteine-436 by serine 2009, 106(39), 16550-16555. converts cytochrome P450 2B4 into an NADPH oxidase with negli Lewis, J.C. et al., “Combinatorial Alanine Substitution Enables gible monooxygenase activity,” Journal of Inorganic Biochemistry, Rapid Optimization of Cytochrome P450BM3 for Selective 2002, 91(4): 542-553. Hydroxylation of Large Substrates.” Chembiochem, 2010, 11(18), Westfall, P.J. et al., “Production of amorphadiene in yeast, and its 2502-05. conversion to dihydroartemisinic acid, precursor to the antimalarial Mansuy, D.